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Abstract  In this paper we proposed a Mathematical 
model of Measles disease dynamics. The Disease Free 
Equilibrium (DFE) state, Endemic Equilibrium (EE) states 
and the characteristic equation of the model were obtained. 
The condition for the stability of the Disease Free 
equilibrium state was obtained. We analyze the bifurcation 
of the Disease Free Equilibrium (DFE) and the result of the 
analysis was presented in a tabular form. 
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1. Introduction 
Bifurcation theorem is concerned with dynamical systems 

which contain one or more external parameters and with the 
manner in which the solution set may undergo structural 
changes as the parameters are varied. Such behaviour is 
essentially determined by the stability of solutions and the 
manner in which this may change as the parameters vary [2]. 
When modeling measles dynamics, or those of any other 
microparasitic disease, the number or density of individuals 
in each stage of the disease is the important quantity to keep 
track of whereas the viral load per person is relatively 
unimportant.[3]. Following the classical approach, the 
population is divided into a susceptible, an infectious (and 
infected), and a recovered class, denoted by S, I and R, 
respectively. 

Measles, also known as rubeola or morbilli, is an infection 
of the respiratory system caused by a virus, specifically a 
paramyxovirus of the genus Morbillivirus. Morbilliviruses, 
like other paramyxoviruses, are enveloped, single-stranded, 
negative-sense RNA viruses. Symptoms include fever, 
cough, runny nose, red eyes and a generalized, 
maculopapular, erythematous rash. 

2. Materials and Methods 

2.1. The SIR Model 

dS  S
dt

N SIβ α µ= − −
              (1) 

( )dI SI I
dt

α γ δ µ= − + +           (2) 

dR I R
dt

γ µ= −                       (3) 

Where  
β= Birth rate 
α= contact rate 
μ = Natural death rate 
S = Susceptible 
γ = Recovery rate 
I = Infected 
δ = Death rate due to disease 
R = Removed with immunity/ Recovery 

 
set, , i.e. assuming a closed population for a given 
period of time. 

2.2. Equilibrium State of the Model 

At equilibrium   

Let  and  

                (4) 

                 (5) 

                 (6) 

2.3. The Disease Free Equilibrium (DFE) 

The equilibrium state in the absence of infection is known 
as Disease Free Equilibrium (DFE) and is such that, y = 0,  
From (5) 

  R  I  S  ++=N
1=N

0===
dt
dR

dt
dI

dt
dS

yIxS == , zR =
0=−− xxy µαβ

( ) 0=++− yxy µδγα

0=− zy µγ
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             (7) 

Either  or  

If , then we have   

                      (8) 

y = 0 and z = 0                  (9) 

Therefore the Disease Free equilibrium is: 

              (10) 

2.4. The Endemic Equilibrium (EE) State 

The equilibrium state with the presence of infection (i. e. y 
≠ 0) is known as endemic equilibrium or non- zero 
equilibrium. 

if  then we have from (7)  

∴  

 x γ δ µ
α

+ +
=

                (11) 

( )
( )

 y
αβ µ γ δ µ
α γ δ µ
− + +

=
+ +          (12) 

( )
( )

 z
αβγ µγ γ δ µ

αµ γ δ µ
− + +

=
+ +         (13) 

Then, the endemic equilibrium state is given as: 

( ) ( )
( )

( )
( ) 
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++−
++
++−++

=
µδγαµ

µδγµγαβγ
µδγα
µδγµαβ

α
µδγ   ,   ,,, zyx          

(14) 

2.5. The Characteristic Equation 

The Jacobian Matrix of the system is given by: 
( )

( )
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0

0

0

xy
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Thus, the IJ λ−det is   
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0
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i.e.   

( ) ( )[ ]( )[ ]
( )   0                                     2 =++

+−++−++

λµα

λµλµδγαλµα

xy
xy

(15) 

Equation (15) is our characteristic equation 
But recall that the DFE is given as: 

 
Then, 

( )

( )

)(

0

det 0 0 0

0

J I

βµ λ α
µ

βλ α γ δ µ λ
µ

γ µ λ

− +

− = − + + − =

− +

 

 
 Either   

 or  

Therefore, and s 

            (17) 

The condition for stability of DFE is that the eigen values 
;3  ,2  ,1   ;0 =< iiλ  

From (17) 

 and  

 if   

if  

Hence, the DFE is stable if 
 
and 

unstable if  

2.6. Bifurcation at Equilibrium State 

Recall from (17)  

The Disease Free Equilibrium state is stable if 

( ) 0x yα γ δ µ− + + =  
0=y ( ) 0=++− µδγαx

0=y

µ
β

=x
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            (17b) 

We use the inequality above to obtain a bifurcation 
parameter from the Disease Free Equilibrium state 

From (17b) we have: 

( )µβ γ δ µ
α

< + +
           (18) 

Define, 

( )µω γ δ µ β
α

= + + −
        (19) 

Let  be a bifurcation parameter from the Disease Free 
Equilibrium state, if   the disease free equilibrium  
state will be stable and unstable if  
It follows that as  transit from positive to negative there 
is likelihood of disease outbreak. 
From (19) 

( ) ( )  02 =+−++ αωβµδγµ        (19b) 
Making  the subject gives 

( ) ( ) ( )2 4
2

γ δ γ δ α β ω
µ

− + + + + +
=     (20) 

or 

( ) ( ) ( )2 4
2

γ δ γ δ α β ω
µ

− + − + + +
=      (21) 

Taking the positive value of   
Expanding the characteristic equation (15) we have: 
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Setting   

              (23) 

( )
( )( )

2

2

2 2

2   

B x y xy

y

αµ α

γ δ µ α µ µ

= − − + −
+ + + − 

  

(24) 

(25) 

Therefore, (22) becomes: 

                (26) 

Differentiating (26) with respect to ω  we have: 

         (27) 

Here the index  indicates differentiation with respect to
. 

Using Hopf’s bifurcation theorem, we set , 
with . 

 

    
(28) 

Rationalizing (28) we have 

 

(29) 

The real part of (29) is given by: 

 
(30) 

By Akinwade (1996) the sufficient condition for 
 is for the numerator of (30) to be strictly 

non-negative 
i.e. 

  (31) 

(32) 

Equation (32) is a quadratic in , thus sufficient 
conditions for it to hold are that: 

-3Aω>0      (33) 

And 

(34) 

Assuming that (34) holds. From (33) we have that: 
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Recall from (23) 

 

  (36) 

Recall from (20) 
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Recall from (11) and (12) 
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Substituting (37), (38) and (39) into (36) we have 
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Using (35) on (41) gives 

( ) ( ) ( )2 2 4 0γ δ αβ γ δ γ δ αβ+ + + + + + <  (42) 

Let  

(43) 

Clearly from (43),  which imply that the Endemic 
Equilibrium (EE) state does not bifurcate, i.e. indicating that 
the state is stable.  

The implication of this is that the Measles may become 
prevalent in the population but may not be endemic.  

The table below justifies our analysis. 

3. Results and Discussion 
Table 1.  The Bifurcation Analysis of Endemic Equilibrium State 

 

 

 

 J2 REMARK 

0.001 0.2 0.01 0.15 0.051797 STABLE 

0.002 0.2 0.01 0.15 0.052388 STABLE 

0.003 0.2 0.01 0.15 0.052973 STABLE 

0.004 0.2 0.01 0.15 0.053553 STABLE 

0.005 0.2 0.01 0.15 0.054127 STABLE 

0.006 0.2 0.01 0.15 0.054697 STABLE 

0.007 0.2 0.01 0.15 0.055262 STABLE 

0.008 0.2 0.01 0.15 0.055822 STABLE 

0.009 0.2 0.01 0.15 0.056377 STABLE 

0.01 0.2 0.01 0.15 0.056928 STABLE 
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4. Conclusion 
The Disease Free equilibrium state will be stable if 

 that is the population is sustainable. 

We went further to define a bifurcation parameter  from 
the condition of stability of zero equilibrium state and use it 
to analyze the non-zero equilibrium state. The  transit 
from positives to negative, when it is negative it implies 
disease outbreak otherwise no outbreak. The  result was 
tested by hypothetical values and it shows no indication of  
outbreak of  disease epidemics, which implies that once the 
disease enters into a population, it is likely to persist. 
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