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Abstract: We analyze with four compartments a deterministic nonlinear mathematical model of 
typhoid fever transmission dynamics. Using the Lipchitz condition, we verified the existence and 
uniqueness of the model solutions to establish the validity of the model and derive the equilibria 
states of the model that is, disease-free equilibrium (DFE) and endemic equilibrium (EE). The 
computed basic reproductive number R0 was used to establish that the disease-free equilibrium is 
globally asymptotically stable when its numerical value is less than one, the disease will be 
under control. In addition, the Lyapunov function was applied to investigate the stability 
property for the (DFE). The model was numerically simulated to validate the results of the 
analysis. 
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1. INTRODUCTION 

Typhoid fever is an infection caused by Salmonella typhi bacteria. Typhoid is usually 
triggered by the ingestion of food or water contaminated with feces or urine of infected 
individuals and is, therefore, a typical illness in regions with poor sanitation. (Brooks [1]; 
Roumagnac et al., [2]). In developing economies, typhoid fever outbreaks occur from time to 
time in overwhelmed areas and refugee camps with high population density. The disease 
causes high morbidity in children below ten years of age, with at least seventeen million new 
cases globally and nearly 600 000 deaths annually. The disease is not rampant in North 
America: In the US, an estimated four hundred cases are reported every year; seventy percent 
of the cases are traced to those who return from endemic regions. The mortality of typhoid 
fever is ten percent, but with adequate treatment, it can be limited to one percent. (Lin et al., 
[3]; Sinha et al., [4]; Hyman, [5]). 

Intestinal fever treatment is anchored on the blood culture condition of the patients. If 
the species is sensitive, the oral antibiotic is used. Typhoid fever is becoming an increasingly 
common illness worldwide, making antibiotic treatment more expensive and harder. Enteric 
fever signs vary and are similar to the signs of different microbial infections. Symptoms of 
typhoid fever are as follows: variable level of high fever in 75 cases, body aches and muscle 
pain, chills, shriveled loss of appetite, abdominal pain in 20 to 40 cases, nose bleeds, 
headache, dizziness, rashes on the skin, bowel constipation or looseness, weakness and 
fatigue, sore throat and cough (Lifshitz [6]). Some mathematical models have been 
formulated on the transmission of typhoid fever. (Adetunde [7]; Lauria et al., [8]; 
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Kalajdzievska [9];  Mushayabasa [10]; Cvjetanovic et al.,[11]; Moffact [12]; Pitzer et al., 
[13]; Date et al.,[14]; Muhammad, et al.,[15]; Watson & Edmunds [16]; Nthiiri [17]; 
Moatlhod & Gosaamang [18]; Mushayabasa [19]; Peter & Ibrahim [20]; Peter et al.,[21]; 
Peter and Ibrahim [22]). The aim of this study is to extend and complement previous works 
by formulating a model that captures the following controls; vaccination and education. 

 

2. MATERIALS AND METHODS 

The model comprises four compartments: Susceptible class; represents the proportion of 
those who are prone to typhoid. Infected class; represents the population of individuals who 
have been infected with typhoid fever and capable of transmitting the infection to susceptible 
populations through interaction. Carrier-class; represents the population of individuals who 
have been infected with typhoid fever but without signs of infectiousness in them. Recovered 
compartment; represent the number of individuals infected with typhoid fever but are now 
cured of typhoid as a result of treatment.  

Recruitment into susceptible populations is by birth or immigration at the rate . It is 
assumed that a certain proportion in the susceptible class moved to the carrier infectious 
class at rate while the complement  moved to the infectious compartment. We also 
assume that the rate of disease transmission  of carrier individuals will be higher than the 
disease transmission rate of infected individuals this is because they are more likely to be 
unaware of their infection.  

Carrier's disease symptom is noticeable at the rate . Contagious individuals may 
receive treatment and recuperate at the rate . Susceptible individuals receive vaccination to 
protect themselves from contracting the disease at the rate . is an educational 
parameter that serves as the limitation for carriers and indicative persons from transmitting 
typhoid fever. This parameter lies within the range . When  it implies that 
educational campaign not in position so that the vulnerable population are oblivious of 
typhoid fever and when   it denotes that all vulnerable persons are well informed of the 
causes of typhoid fever, that is, they explicitly understand what brings about the diseases, 
how the disease is being transmitted and how to safeguard themselves from being infected by 
the disease. 

 

 
 

Figure 1. Pictorial Description of the Model 
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          (1) 

Where  

          (2) 

 
 

Table 1. Variables and parameters interpretation 
 

Variables Description 
 vulnerable populations 
 carrier contagious populations 
 contagious populations 
 recovered populations 

Parameters Interpretation 
 recruitment rate in vulnerable class 
 mortality rate of vulnerable class 
 mortality rate for carrier infected class 
 mortality rate for infected class 
 mortality rate for recovered class 
 the rate at which individual carriers develops symptoms 
 parameter for education 
 rate of vaccination 
 the probability of newly infected persons becoming asympt

omatic or carrier 
 rate of transmission of infection for carrier individuals 
 rate of transmission of infection for infectious individuals 
 force of disease infection 
 rate at which individual in the infectious class recovered 

 

 

ï
ï
ï
ï

þ

ïï
ï
ï

ý

ü

-+

+--+--

----

----

RIS
dt
dR

IIS
dt
dI

IIS
dt
dIc

SSS
dt
dS

c

cc

4

3

2

1

=

)()(1)(1)(1=

)(1)(1=

)(1=

µdy

dµfaflr

faµfrl

yflµq

IIc gbl +=

ï
ï
ï
ï

þ

ïï
ï
ï

ý

ü

-+

+--++--

----+

--+--

RIS
dt
dR

IIIIS
dt
dI

IIIIS
dt
dIc

SIISS
dt
dS

cc

ccc

c

4

3

2

1

=

)()(1)())(1(1=

)(1))(1(=

))(1(=

µdy

dµfagbfr

faµfgbr

yfgbµq

( )S t
( )Ic t
)(tI
)(tR

q
1µ

2µ

3µ

4µ
a
f
y
r

b
g
l
d



GLOBAL STABILITY ANALYSIS OF TYPHOID FEVER MODEL 

   

Copyright ©2020 ASSA.                                                                                    Adv. in Systems Science and Appl. (2020) 
 

23 

3. SOLUTION OF THE MODEL 

3.1. Existence and Uniqueness of the Model 

The validity of any mathematical model is a function of the solution of the model, provided 
the solution is unique. We verify the singularity of the solution of the model in equation (2) 
via the popular Lipchitz condition. 

Given the system of equation (2) be as follows 

          (3) 

Theorem 3.1 
Assuming the region  is denoted by 

                   (4) 
And suppose that  R’ meets the Lipchitz condition 

 
On each occasion, the pairs and , where is a positive constant. Hence, 

there is a constant  such that there exists a unique continuous vector solution   of 
the system in the interval   . It is vital to mention that the requirement is fulfilled 

by the condition that  is continuous and bounded in . Considering the 

model equation (2), we are of the interest in the region  We look for the solution 
that is bounded in the region and whose partial derivatives satisfy  where  and 

  are positive constants. 

 
Theorem 3.2 
Let J represent the region  then equation (2) has a unique solution if it is established that 
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, 

 
 

For  

,  

      
,  

For  

      
, , ,  

The partial derivatives exist, continuous and bounded, so the model has a unique solution 
that completes the proof of theorem 3.1. 
 
3.2. Feasible Region and Equilibrium 
 
From equation (2) we have that 

and thus,  along with each solution. 

Also from (2), we see that  

Where . Therefore,  

We have omitted R because R does not appear in other equations. This reveals that the 
model can be studied in the feasible region; 

. is positively invariant in relation to (2). 

Once the dynamics  are understood, those of R can then be determined from the 

equation . 
The first stage of our analysis is to find the disease-free equilibrium states  from 

the equations by setting the right-hand side to zero i.e., 
 

 
 

The model always has a disease-free- equilibrium . 

And the endemic equilibrium satisfies  From the 

equilibrium  equations we can show that a unique  exist with 
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For  to exist  in the feasible region  , the necessary and sufficient condition 

requires , or equivalently,  Define 

         (4) 

Then a threshold parameter determines the actual number of equilibria. In the next 
section, we shall explain the basic reproduction number.  

 
Proposal 3.1 
If  then is the only equilibrium in  ; if  so, two equilibria exist, , 

and a unique endemic equilibrium,  

 
3.3. Basic Reproduction Number 

The basic reproductive number measures the number of secondary cases that the bacterium is 
able to introduce into the whole population of fully susceptible individuals in a stable 
demographic state (Kalajdzievska [9]). The basic number of reproduction is a significant 
quantity in epidemiology since it sets the threshold for the analysis of an outbreak of disease 
and the evaluation of its control strategies. The value of the reproductive number, therefore, 
indicates whether a disease becomes endemic or dies out in a population.  

If , it indicates that each contagious person will not cause an infection and 
therefore, the disease will always disappear but when the basic reproduction number is 
greater than one i.e., each contagious person will cause at least one secondary 
infection which will subject the entire population to the attack of the disease. It is obtained 
by taking the largest eigenvalue(spectral radius) of the matrix 

 

Where  is the rate of new infections in infectious class,  is the transfer of persons out 
of the compartment by another means,  is the disease-free equilibrium. Applying the next 
generation matrix approach, the basic reproduction number for the model  is given as 

        (5) 

In equation (5), the expression in the big square brackets is the per capita mean number 

of secondary infections. This expression is multiplied by , the number of susceptible 

individuals in the absence of infection to come about the basic reproduction number  

 
3.4. Disease-Free Equilibrium’s Stability 

In order to check the local stability in the absence of infection A0, the Jacobian matrix will be 
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The following stability results indicate that  is a sharp threshold. 
 
Proposal 3.2 
A0 locally asymptotically stable if   and is unstable if . 

Proof 
One eigenvalue of  is < 0. The other two eigenvalues 

are matrix. 

 

 
We want to show that whenever  then the Routh-Hurwitz conditions hold, that is, 

 and . 

 

Going by the assumption that 
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 and  

This shows that  and the whenever . This establishes the 
proposition. 
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3.5. Global Stability of Disease-Free Equilibrium Point (DFE)  

Theorem 3.3 
A0 is globally stable in the region    if .  

Proof. To establish the global asymptotic stability of (DFE) we adopt the method of      
Lyapunov functions.  

Define 
 

Where ,  

 

  

              
Substituting the values of both X and Y as in above and simplifying, we shall obtain 

 

Using the condition  we have 

 

So,  if  

Furthermore,  if  

Therefore, the largest invariant set in where    is the singleton . Hence, by 

LaSalle’s Principle [23],   is globally asymptotically stable in the region . 
 

Table 2. Values of parameters  for the model 
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  Estimated 
 106 Lauria, et al. [8] 

 

4. RESULTS AND DISCUSSION 

We performed numerical simulations to describe graphically the long-term impact of early 
treatment on the dynamics of typhoid fever. Table 2 indicated the various set of parameter 
values adopted to validate the outcome of the analysis. Graphical illustrations showed time 
graphs of each state variable. Figure 2 described the time-sensitive graph. with high 
vaccination achievement, both the effective contact rate and the prevalence rate were low, 
thereby limiting the pool of susceptible populations over time. On the other hand, the 
population of susceptible individuals increased drastically when the rate of vaccination was 
low. 

Figure 3 showed the diagram of infective carriers against time. The number of Infectious 
carriers  was rising because they are not aware of their conditions. However, as the 
symptoms of the disease began to manifest, the population began to fall as a result of early 
treatment. Figure 4 depicted the chart of infective against time. The population of the 
Infected   grows continuously which might be attributed to late treatment. In Figure 5, 
the graph for the Recovered individuals continued to grow as a result of treatment and 
regular medical check-ups. 

 
 

 
 

Figure 2. Susceptible Population 
 

f 0.3
q

)(tI c

)(tI
)(tR



GLOBAL STABILITY ANALYSIS OF TYPHOID FEVER MODEL 

   

Copyright ©2020 ASSA.                                                                                    Adv. in Systems Science and Appl. (2020) 
 

29 

 
Figure 3. Infected Carrier Population 

 

 
Figure 4. Infected Population 

 

 
Figure 5. Recovered Population 
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5. CONCLUSION 

We analyzed a deterministic model for the management of typhoid. The conditions for the 
existence and stability of the equilibria described by the basic reproduction number of the 
model were successfully derived. The analysis showed that there is a disease-free 
equilibrium that is locally and globally asymptotically stable as long as  an unstable if 

. The model revealed that the transmission of typhoid fever depended largely on the 
contact rate with the infected individuals in a population. Thus, timely detection and early 
treatment could reduce the infection rate. 
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