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A B S T R A C T   

In this paper, a model for direct and indirect transmission dynamics of typhoid fever with three control in-
terventions is analyzed. Optimal control strategies are proposed to minimize both the disease burden and the 
intervention cost. We proved the existence and uniqueness of optimal control paths and obtained these optimal 
paths analytically using Pontryagin’s Maximum Principle. We analyzed our results numerically to compare 
various strategies of proposed controls. It is observed that the implementation of the three controls among all 
strategies is most successful. Thus, we conclude that in order to reduce typhoid fever threat, all the three controls 
must be taken into consideration concurrently.   

Introduction 

Typhoid fever is an infection that is limited to humans and is 
endemic in the world’s least developed countries. Despite advances in 
medical science and recent advances in water and environmental man-
agement, the disease remains a major health crisis. There are more than 
16 million cases of typhoid worldwide each year and more than 600 000 
deaths [1]. The typhoid fever bacterium Salmonella is transmitted by 
ingestion of contaminated water or food. When the bacterium enters the 
body, it travels in the intestines of human body and then enters the 
bloodstream [2]. The symptoms of this disease are abdominal pain, 
fever, stomach pain and either constipation or diarrhea. When the dis-
ease gets worse, high fever and severe diarrhea occurs. The incubation 
period is usually ten to fourteen days [3,4]. Some mathematical models 
have been formulated on the transmission of typhoid fever [5–19]. 
Other studies on infectious disease can be found in [20–24]. To the best 
of our knowledge, this is the first work on optimal control of typhoid 
fever model that has considered educational campaign, prevention via 
sanitation and screening along with early treatment as control 

intervention. This studies aims to extend and compliment previous work 
of [19] by formulating a model that captures the following controls; 
educational campaign, prevention via sanitation and screening along 
with early treatment and the application of optimal control theory to the 
model. The paper is arranged as follows: section two is devoted to 
describing the transmission of typhoid fever and the control variables. 
Section three, the analysis of the optimal control is discussed; section 
four contains numerical simulation of the optimal control of the model. 
Section five deals with the discussion of results for the optimal control. 
Finally, section six contains the conclusion of the study. 

Materials and methods 

The model subdivides the human population into four compart-
ments: susceptible class S(t), infected carrier class Ic(t), infected class I 
(t), and recovered class R(t). Although typhoid is primarily contracted 
from environmental bacteria through contaminated food or water, it can 
also be contracted through direct person to person contact. To incor-
porate this real biological phenomenon, we consider an additional 
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compartment, W(t), which represents bacteria in the environment. We 
assume that susceptible individuals get infected with typhoid at a rate 
proportional to the susceptible population, S(t). We incorporate addi-
tional parameter, φ which represents the progression rate from infected 

carrier class to infected class. individuals in the infected class, can 
recover from typhoid fever at a rate δ. The infected carrier and infected 
individuals both excrete bacteria into the environment. However, the 
rate of excretion by the infectious group ε2 is higher than that of the 
carrier group ε1 this is because infectious carriers do not show any signs 
of infection. The constant recruitment rate into the susceptible human 
population is represented by θ, the natural death rate of susceptible 
individuals, infected carrier individuals, infected individuals and 
recovered individuals is represented by μ1, μ2, μ3 and μ4 respectively, 
while the natural death rate of bacteria is represented by μb. The pro-
gression rate from infected carrier to infected class is denoted by φ. The 
following set of nonlinear ordinary differential equations in (1) is ob-
tained from the above illustrations. 

S′

= θ − μ1S − S(β1Ic + β2I + β3W)

I ′

c = ρS(β1Ic + β2I + β3W) − (μ2 + ε1 − φ)Ic

I
′

= (1 − ρ)S(β1Ic + β2I + β3W) − (μ3 + δ + ε2)I + φIc

R′

= δI − μ4R
W ′

= ε1Ic + ε2I − μbW

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)  

Extension of the model into optimal control 

In this section, we extend the model in (1) which comprises direct 

Table 1 
Descriptions of parameters.  

Parameter Initial Value Source 

μ2  0.2day− 1  [1] 
μ1  0.142 day− 1  [1] 
μ3  0.2 day− 1  [1] 
μ4  0.142 day− 1  [1] 
ρ  0.5  Assumed 
β1  0.02  Assumed 
β2  0.01  Assumed 
β3  0.01  Assumed 
δ  0.75  Assumed 
θ  106 day− 1 [6] 
ε1  0.4  Estimated 
ε2  0.5  Estimated 
φ  0.3 Assumed 
μb  0.01 day− 1  [8]  

Fig. 1. Simulation result showing effect of using optimal educational campaign 
as the only control strategy. 

Fig. 2. Simulation result showing effect of using optimal prevention via sani-
tation as the only control strategy. 
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and indirect transmission of typhoid fever by incorporating three control 
strategies: namely, educational campaign, prevention via sanitation and 
screening along with early treatmentu1, u2andu3 respectively. Further-
more, 0⩽,u1(t),u2(t),u3(t)⩽1. When the control is zero this means that 
there is no effort invested in controlling the spread of typhoid fever that 
is, no control and when it is unity, maximum control is implemented. 
After incorporating the following assumptions and controls into the 
basic model, the model equations with controls are given as 

dS
dt

= θ − μ1S − S(β1Ic + β2I + β3W)(1 − u1)

dIc
dt

= ρS(1 − u1)(β1Ic + β2I + β3W) − (μ2 + ε1)Ic − (φ + u2)Ic

dI
dt

= (1 − ρ)(1 − u1)S(β1Ic + β2I + β3W) + (1 − u2)φIc − (u3 + δ)I − (ε2 + μ3)I

dR
dt

= (μ3 + δ)I − μ4R

dW
dt

= ε1Ic + ε2I − μbW

(2) 

S⩾0, Ic⩾0, I⩾0, R⩾0, W⩾0.The objective function is used to mini-
mized the total number of carrier infected Ic(t) as well as infected in-
dividuals I(t) with typhoid fever and the cost associated with the control 
variables u*

1,u*
2,u*

3. The objective function is defined as 

J(u1, u2, u3) =

∫ tf

0
(A1Ic + A2I + K1

u2
1

2
+ K1

u2
2

2
+ K1

u2
3

2
)dt (3) 

The state Eq. in (2) where A1 and A2are non-negative weighted 

constant of infected carrier Ic(t) and infected individuals I(t). K1, K2 and 
K3 are costs associated with educational campaign, prevention with 
sanitation and screening with early treatment. Our main target is to find 
the optimal control function (u*

1, u*
2, u*

3) such that, J(u*
1, u*

2, u*
3) =

min{J(u1, u2, u3) | (u1, u2, u3) ∈ Ω }where Ω =
{
u = ((u1, u2, u3)) :

ui(t) is Lebesque Measurable on
[
0, tf

]
, 0⩽ui⩽1, i = 1, 2, 3

}
is the control 

set. 

Existence of the optimal control 

The essential conditions are derived from Pontryagin’s Maximum 
Principle to be fulfilled by the controls and the corresponding states 
[25]. Using the differential equations of the state variables in (2), the 
Hamiltonian H as defined by [26–30] is given as 

H = dJ
dt +λ1

dS
dt +λ2

dIc
dt +λ3

dI
dt +λ4

dR
dt +λ5

dW
dt that is, 

H(S,Ic,I,R,W)=

(

A1Ic+A2I+K1
u2

1

2
+K1

u2
2

2
+K1

u2
3

2

)

+λ1(θ− μ1S− S(β1Ic+β2I+β3W)(1− u1))

+λ2(ρS(1− u1)(β1Ic+β2I+β3W)− (μ2+ε1)Ic − (φ+u2)Ic)

+λ3((1− ρ)(1− u1)S(β1Ic+β2I+β3W)+(1− u2)φIc − (u3+δ)I − (ε2+μ3)I)

+λ4((u3+δ)I − μ4R)

+λ5(ε1Ic+ε2I − μbW)

(4)  

where λ1, λ2, λ3, λ4, λ5 are adjoint variable functions. 
Theorem 1: There exist an optimal control with the corresponding 

solution (S, Ic, I, R, W) corresponding to the state Eq. in (2) and the 
adjoint variables λ1(t), λ2(t), λ3(t), λ4(t), λ5(t) such that, 

λ
′

1= − λ1(− μ1 − (β1Ic+β2I+β3W)(1− u1))− λ2(ρ(1− u1)(β1Ic+β2I+β3W))

− λ3((1− ρ)(1− u1)S(β1Ic+β2I+β3W)),

λ
′

2 = − λ1(− (1 − u1)β2S) − λ2((1 − u1)ρβ1S − (μ2 + ε1) − (φ + u2))

− λ3((1 − ρ)(1 − u1)(β1S + (1 − u2)φ − λ5ε1 − A1,

λ
′

3= − λ1(− (1− u1)β2S)− λ2(1− u1)ρβ2S− λ3((1− ρ)(1− u1)(β2S− (μ3+ε2)

− (u3+δ)) − λ4(u3+δ)− λ5ε2 − A2,

λ
′

4 = − λ4(− μ4),

λ
′

5 = − λ5μb − λ1((1 − u1)β3S,

With boundary conditions 

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0 

Therefore, the optimal u*
1, u*

2, u*
3 are given by, 

u*
1 = max

{

0, min
(

1,
S(β1Ic + β2I + β3W)(λ3(1 − ρ) + ρλ2 − λ1

K1

)}

u*
2 = max

{

0, min
(

1,
(λ2 + λ3φ)Ic

K2

)}

u*
3 = max

{

0, min
(

1,
(λ3 − λ4)I

K3

)}

Proof. Using the results of Fleming and Rishel, [23] accordingly to 
obtain the adjoint variables, we differentiate the Hamiltonian H in (4) 
with respect to each variables that is, S(t), Ic(t), I(t), R(t), W(t) such that, 

Fig. 3. Simulation result showing effect of using optimal screening along with 
early treatment as the only control strategy. 
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dλ1

dt
=

− ∂H
∂S

= − λ1(− μ1 − (β1Ic + β2I + β3W)(1 − u1)) − λ2(ρ(1 − u1)(β1Ic

+β2I + β3W)) − λ3((1 − ρ)(1 − u1)S(β1Ic + β2I + β3W))

dλ2

dt
=

− ∂H
∂Ic

= − λ1(− (1 − u1)β2S) − λ2((1 − u1)ρβ1S − (μ2 + ε1) − (φ + u2))

− λ3((1 − ρ)(1 − u1)(β1S + (1 − u2)φ − λ5ε1 − A1

dλ3

dt
=

− ∂H
∂I

= − λ1(− (1 − u1)β2S) − λ2(1 − u1)ρβ2S − λ3((1 − ρ)(1 − u1)

(β2S − (μ3 + ε2) − (u3 + δ)) − λ4(u3 + δ) − λ5ε2 − A2

dλ4

dt
=

− ∂H
∂R

= − λ4(− μ4)

dλ5

dt
=

− ∂H
∂W

= − λ5μb − λ1((1 − u1)β3S 

Also, to find the optimal control of the control variables set u1, u2,

u3using partial differential equation 

∂H
∂ui

= 0 : i = 1, 2, 3 

For u*
1 

∂H(S, Ic, I, R, W)

∂u1
= 0 

Therefore 

u*
1 =

S(β1Ic + β2I + β3W)(λ3(1 − ρ) + ρλ2 − λ1

K1 

For u*
2 

∂H(S, Ic, I, R, W)

∂u2
= 0  

u*
2 =

(λ2 + λ3φ)Ic

K2 

Fig. 4. Simulation result showing effect of using optimal educational campaign and prevention with sanitation as control strategy.  
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For u*
3 

∂H(S, Ic, I, R, W)

∂u3
= 0  

u*
3 =

(λ3 − λ4)I
K3 

Therefore, 

u*
1 = max

{

0, min
(

1,
S(β1Ic + β2I + β3W)(λ3(1 − ρ) + ρλ2 − λ1

K1

)}

u*
2 = max

{

0, min
(

1,
(λ2 + λ3φ)Ic

K2

)}

u*
3 = max

{

0, min
(

1,
(λ3 − λ4)I

K3

)}

Based on the prior boundedness of the state and adjoint variables, the 
uniqueness of the optimal control has been established. By standard 
control arguments which involves the bound on the control, we can say 
that 

Fig. 5. Simulation result showing effect of using optimal educational campaign and screening with early treatment as control strategies on carriers population.  
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u*
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
S(β1Ic + β2I + β3W)(λ3(1 − ρ) + ρλ2 − λ1

K1
< 0

(0, 1) if
S(β1Ic + β2I + β3W)(λ3(1 − ρ) + ρλ2 − λ1

K1
⩽1

1 if
S(β1Ic + β2I + β3W)(λ3(1 − ρ) + ρλ2 − λ1

K1
> 1  

u*
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
(λ2 + λ3φ)Ic

K2
< 0

(0, 1) if
(λ2 + λ3φ)Ic

K2
⩽1

1 if
(λ2 + λ3φ)Ic

K2
> 1  

Fig. 6. Simulation result showing effect of using optimal prevention with sanitation and early treatment with screening as control strategies on carriers’ population.  
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u*
3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
(λ3 − λ4)I

K3
< 0

(0, 1) if
(λ3 − λ4)I

K3
⩽1

1 if
(λ3 − λ4)I

K3
> 1  

Numerical Simulation of the optimal control 

We solve for the optimized system by using the values in the Table 1. 
The optimality system which consists of the state and adjoint equations. 
We use the forward-backwards sweep method and solve for the opti-
mized system numerically. The simulation was carried out by using the 

values in table 1 and with the help of Maple 18 software. The following 
values for the coefficients for the states and controls are used. A1 = 1,
A2 = 1.5, K1 = 1.5, K2 = 0.02, K3 = 0.15. 

To examine the effect of the control interventions, we considered the 
following strategies  

(i) Applying educational campaign as the only control intervention 
u1 

(ii) Applying prevention via sanitation as the only control interven-
tion u2  

(iii) Applying screening with early treatment as the only control 
intervention u3  

(iv) Applying educational campaign and prevention via sanitation as 
control intervention u1 and u2 

Fig. 7. Figure simulation result showing effect of using optimal educational campaign, prevention via sanitation and screening along with early treatment control 
strategies on infected population. 
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(v) Applying educational campaign and screening along with early 
treatment as control intervention u1and u3  

(vi) Applying prevention via sanitation and screening along with 
early treatment as control intervention u2and u3  

(vii) Applying educational campaign, prevention via sanitation and 
screening along with early treatment as control intervention u1,

u2, u3respectively 

Discussion of results for the optimal control 

Control with prevention and sanitation 

In Fig. 1a and b, we applied the educational campaign intervention 
u1 ∕= 0 as the only control on the infected carrier and infected population 
while we set the other controlsu2and u3 to zero. We observed that this 
strategy has a positive effect on the infected carrier and infected popu-
lation by decreasing the population of both classes. Thus, there should 
be a need for public awareness mostly in typhoid fever prone 
communities. 

Prevention with sanitation 

We incorporate prevention with sanitation as the only intervention 
which includes, provision of safe drinking water, improved toilet facil-
ities, personal hygiene that is,u2 ∕= 0 while we set other controls to zero 
that is,u1and u3 Fig. 2a and b shows the rapid decrease in the population 
of the infected carrier and infected population. We conclude that, when 
prevention is combined with sanitation, this will reduce typhoid fever 
infection. 

Screening along with early treatment 

We applied screening with early treatment in this strategy to control 
the spread of typhoid fever. Fig. 3a and b show optimized screening with 
early treatment. Screening helps the asymptomatic carrier and the 
symptomatic infected individuals to know their status and when this is 
done and early treatment is implemented, this will drastically reduce the 
population of the asymptomatic carrier and the symptomatic infected 
population as shown in Fig. 3a and b. 

Control with educational campaign and prevention via sanitation 

In these strategies, we applied educational campaign and prevention 
combined with sanitation. Fig. 4a and b shows the effect of these con-
trols. Public awareness is a vital tool in controlling the spread of infec-
tious disease. When this is combined with sanitation as in the case of 
typhoid fever, this will have a positive impact in controlling the spread 
of typhoid fever. 

Control with educational campaign and screening with early treatment 

Fig. 5a and b show the effect of educating the carrier infected and 
infected populations and how an individual could prevent carriers from 
contracting typhoid fever together with screening of asymptomatic 
carrier of typhoid and early treatment of infected individuals will reduce 
the spread of typhoid fever. 

Prevention with sanitation and screening with early treatment 

Fig. 6a and b show the effect of applying prevention with sanitation 
and screening with early treatment. In this case we set u2 = u3 ∕= 0 as 
control intervention. We conclude that applying prevention with sani-
tation and screening of asymptomatic individuals will reduce the 
infected carrier population. Also, when early treatment is implemented, 
on the infected individuals, this will reduce the infected population. 

Control with educational campaign, prevention via sanitation and 
screening along with early treatment 

In this strategy, we implemented all the three controls that is, control 
with educational campaign, control with prevention combined sanita-
tion and screening with early treatmentu1, u2, u3respectively as an 
intervention to control typhoid fever. Fig. 7a and b shows that after the 
implementation of the control, we achieved a better result as the pop-
ulation of the infected carrier and infected individuals reduced drasti-
cally. Therefore, we conclude that applying all three strategies is more 
effective in the control and containment of typhoid fever in typhoid 
fever prone communities over a given time period. Fig. 8 represents the 
control profile. 

Fig. 8. Figure showing control profile for educational campaign, prevention with sanitation and screening with early treatment with screening.  
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Conclusion 

In this paper, we analysed a deterministic model on typhoid fever. 
We further extend the model in (1) to optimal control problems by 
adding three control variables which are educational campaign, pre-
vention via sanitation and screening along with early treatment. By 
using the Pontryagin’s Maximum Principle, we formulate the optimal 
control problem by analysing the conditions for the optimal control of 
the disease spread. The optimized system is solved numerically; the 
corresponding uncertain problem is solved by proposing new tech-
niques. Numerical simulations are carried out to illustrate the analytical 
results. The numerical simulation of the model show that possible 
optimal control strategies become more effective in the control and 
containment of typhoid fever when educational campaign, prevention 
via sanitation and screening along with early treatment are combined 
optimally, these would reduce the spread of the disease. 
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