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Abstract
Monkeypox (MPX), similar to both smallpox and cowpox, is caused by the monkeypox virus (MPXV). It occurs mostly 
in remote Central and West African communities, close to tropical rain forests. It is caused by the monkeypox virus in the 
Poxviridae family, which belongs to the genus Orthopoxvirus. We develop and analyse a deterministic mathematical model 
for the monkeypox virus. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are 
determined. It is shown that the model undergo backward bifurcation, where the locally stable disease-free equilibrium co-
exists with an endemic equilibrium. Furthermore, we determine conditions under which the disease-free equilibrium of the 
model is globally asymptotically stable. Finally, numerical simulations to demonstrate our findings and brief discussions 
are provided. The findings indicate that isolation of infected individuals in the human population helps to reduce disease 
transmission.

Keywords Monkeypox virus · Mathematical model · Stability · Backward bifurcation

Introduction

Monkeypox is a severe viral zoonotic disease (i.e., animal-
to-human infection) that occurs sporadically, primarily in 
rural areas in Central and Western Africa, near tropical rain-
forests. This is caused by the monkeypox virus within the 
Poxviridae family that belongs to the genus Orthopoxvirus 
(Durski et al. 2018; Jezek et al. 1988). The genus Orthopox-
virus also comprises variola virus (the origin of smallpox), 
vaccinia virus (used for the eradication of smallpox in the 
vaccine), and cowpox virus (used in the earlier vaccine). 

Monkeypox virus is mainly transmitted to humans from 
wild animals such as rodents and primates, but transmission 
often occurs from humans to humans. Human to human 
transmission has been linked to respiratory droplets and 
contact with bodily fluids, a contaminated patient’s environ-
ment or items, and a skin lesion on an infected individual 
(Alakunle et al. 2020). Monkeypox virus has emerged as 
the most common orthopox virus after the eradication of 
the smallpox (Kantele et al. 2016). Fever, headache, muscle 
aches, backache, swollen lymph nodes, chills, and weariness 
are some of the symptoms that some individuals who may 
have contracted monkeypox experience. Up to a tenth of 
those infected with monkeypox die, with the majority of 
deaths happening in children under the age of ten (Nguyen 
et al. 2021).

Monkeypox was identified in 1958 when two pox-like 
disease outbreaks occurred in monk colonies held for study, 
hence the term ’monkeypox. The first human case was 
reported in the Democratic Republic of Congo in 1970 dur-
ing a time of increased attempts to eradicate the smallpox. 
Among other Central and Western African countries like 
Cameroon, Gabon, Cote d’Ivoire, Liberia, Central African 
Republic, Congo, South Sudan and Sierra Leone, monkey-
pox has since been identified in humans. The first proof of 
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monkeypox outbreaks in humans outside of Africa was a 
2003 outbreak in the US. Monkeypox importation was later 
recognized in the United Kingdom and Israel. Mortality 
rate ranged from 1 percent to 10 percent in occurrences, 
with most deaths arising in younger populations (Ladnyj 
et al. 1972; CDC 2003). Monkeypox’s incubation period is 
typically about 6–16 days but can vary from 5 to 21 days. 
There are two facets of the contagious era, with an initial 
intrusive duration in the first 5 days, where the main signs 
are fever, lymphadenopathy (lymph node swelling), back 
pain, extreme headache, myalgia (muscle ache) and seri-
ous asthenia (energy shortage). A maculopapular rash (flat-
based skin lesions) occurs 1–3 days after the onset of fever, 
and grows into small fluid-filled blisters (vesicles), which 
are pus-filled and then crust over in about ten days (Hutson 
et al. 2013).

Presently, there are no clear treatments available for mon-
keypox infection, though numerous novel antivirals, such as 
Brincindofovir, Tecovirimat and vaccinia immue globulin 
can be used to control the spread of the disease. There has 
been a significant increase in monkeypox in the last decade, 
associated with the decrease in herd immunity to smallpox. 
Vaccination against smallpox has been shown to be suc-
cessful at 85 percent in the prevention of monkeypox but 
is no longer regularly available since global eradication of 
smallpox. The post-exposure vaccine can help prevent or 
decrease the severity of the disease (Rimoin et al. 2010; 
Meyer et al. 2020).

The disease has been given little attention in the past 
and this has contributed to insufficient knowledge on its 
mechanisms of transmission. Nevertheless, few studies 
have tried to research dynamics of monkeypox virus using 
a mathematical modelling technique. Study in Bhunu and 
Mushayabasa (2011) provides the basis for transmission 
analysis of pox-like dynamics of monkeypox virus as a 
case study. In Bhunu et al. (2009), the authors have shown 
that with the planned treatment intervention, the disease 
will be eradicated from both human and non-human pri-
mates in due time. The dynamics of monkeypox virus in 
human host and rodent with the stability analysis is stud-
ied in Usman and Adamu (2017). Other significant con-
tributions can be found in TeWinkel (2019), Somma et al. 
(2019), Bankuru et al. (2020), Grant et al. (2020). Having 
gone through several works on the monkeypox virus and 
its mechanisms of transmission, we found that none con-
sidered the combination of isolated, exposed compartments 
in the human subpopulation and the effects of that contact 
rate with rodent population. Our aim is to investigate the 
various factors that could lead to reduction in the disease 

transmission and the effects of such factors on the basic 
reproduction number.

The rest of this paper is structured as follows: 
Method which includes model formulation and analy-
sis are described in “Method” section. Next, “ Back-
ward bifurcation” section consists of the numerical 
simulations and results, discussion of results is given in 
“Results”, “Discussion”  sections. Finally, in “Conclu-
sion” section, we have provided conclusions of this arti-
cle. Table 1 shows a detailed description of the param-
eters, while the model’s compartmental flow diagram 
is shown in Fig. 1.

Method

We propose a deterministic compartmental model on 
the transmission dynamics of monkeypox consisting of 
two populations that is, humans and rodents. The human 
population is further subdivided into five compartments, 
susceptible humans Sh(t) , exposed humans Eh(t) , infected 
humans Ih(t) , isolated humans Qh(t) and recovered 
humans Rh(t) . The rodent population is subdivided into 
three compartments, susceptible rodents Sr(t) , exposed 
rodents Er(t) and infected rodents Ir(t) . Recruitment into 
human population is at a rate �h . �1 is the effective con-
tact rate with the probability of human been infected with 
the virus per contact with an infected rodent and �2 is the 
product of effective contact rate and the probability of 
human been infected with monkey pox virus after get-
ting in contact with infectious human. The proportion 
of exposed individuals moving to highly infected class 
is �2 while the proportion identified is �1 . After medical 
diagnosis, some suspected cases are confirmed, where 
others were not detected and returned back to suscep-
tible humans a rate � . The suspected cases are treated 
and moved to recovered class at a rate � . The recovery 
rate for human is at a rate � . Natural death occurs in 
the humans and rodents population at the rates �h and �r 
respectively. �3 is the effective contact rate with the prob-
ability of rodent been infected per contact with infected 
rodent. The infected rodent population decreased by natu-
ral mortality rate �r or by disease induced death rate �r . 
The transition among various compartments considered 
in the model is illustrated in Fig. 1, the model is governed 
by the following set of nonlinear differential equations 
below:
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Fig. 1  Schematic representation 
of the model

Table 1  Parameter values used for the simulations

Parameter Value, Year−1 Source Description

�h 0.029 Bhunu et al. (2009) Recruitment rate for humans
�r 0.2 Bhunu et al. (2009) Recruitment rate for rodents
�1 0.00025 Bhunu and Mushayabasa (2011) Rodent contact rate to humans
�2 0.00006 Bhunu and Mushayabasa (2011) Human to humans contact rate
�3 0.027 Bhunu and Mushayabasa (2011) Rodent to rodent contact rate
�1 0.2 Assumed Proportion of exposed human to infected humans
�2 2.0 Estimated Proportion identified as suspected case
� 2.0 Estimated Proportion not detected after diagnosis
� 0.52 Assumed Progression from isolated to recovered class
� 0.83 Bhunu et al. (2009) Humans recovery rate
�h 1.5 Bhunu and Mushayabasa (2011) Natural death rate of human
�r 0.002 Bhunu and Mushayabasa (2011) Natural death rate of rodents
�r 0.5 Assumed Disease induced death rate for rodents
�h 0.2 Odom et al. (2009) Disease induced death rate for humans
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The model analysis

For the human population, Nh = Sh + Eh + Ih + Qh + Rh , 
the differential equation is given as:

Also, for the rodent population
Nr = Sr + Er + Ir , and the corresponding differential 

equations is given as:

Theorem 1 Let 
(
Sh,Eh, Ih,Qh,Rh, Sr,Er,R

)
 be the solution 

of 1 with the initial conditions in a biologically feasible 
region Γ = Γh × Γr with:

and

Then Γ is non-negative invariant
Following the approach of Somma et al. (2019), we 

have that:

also

(1)

dSh

dt
= �h −

(�1Ir + �2Ih) Sh

Nh

− �h Sh + �Qh

dEh

dt
=

(�1Ir + �2Ih) Sh

Nh

− (�1 + �2 + �h ) Eh

dIh

dt
= �1 Eh − (�h + �h + �) Ih

dQh

dt
= �2 Eh − (� + � + �h + �h ) Qh

dRh

dt
= �Ih + �Qh − �h Rh

dSr

dt
= �r −

�3 Sr Ir

Nr

− �r Sr

dEr

dt
=

�3 Sr Ir

Nr

− (�r + �3)Er

dIr

dt
= �3 Er − (�r + �r)Ir

(2)(dNh)∕dt = �h − �h Ih − �h Nh

(3)(dNr)∕dt = �r − (�r + �r)Nr

(4)Γh = Sh,Eh, Ih,Qh,Rh ∈ R5

+
∶ Nh ≤

�h

�h

(5)Γr = Sr,Er,Rr ∈ R3

+
∶ Nr ≤

�r

�r

(6)0 ≤ Nh (t) ≤ Nh (0)�
−�h (t) +

�h

�r

(
1 − �

−�h (t)
)

Hence, the set Γ is positive invariant and for t.

Monkeypox‑free equilibrium state

This occurs in the absence of disease. Thus, in the absence 
of infection, we set Eh, Ih,Qh,Rh,Er and Ir to zero in 1 and 
the resulting solution gives the monkeypox-free equilibrium 
states given as:

Endemic equilibrium

This occurs when the infection persist in the population rep-
resented by ΦMEE

(
S∗h,E

∗
h, I

∗
h,Q

∗
h,R

∗
h, S

∗
r,E

∗
r, I

∗
r

)
 . Thus,

w h e r e  k1 = �1 + �2 + �h  ,  k2 = �h + �h + � , 
k3 = � + � + �h + �h  ,  k4 = �r + �3  ,  k5 = �r + �r  , 
�h =

�1 I∗r+�2 I∗h

Nh

 , �r =
�3 I∗r

Nr

.

Basic reproduction number

In our proposed model 1, compartments Sh , Rh and Sr are the 
disease free states whereas the compartments Eh, Ih,Qh,Er 
and Ir are the infection class.

Hence the monkeypox-free equilibrium state can be given 
as:

(7)Nr (t) ≤ Nr (0)�
−(�r+�)t +

�r

�r

(
1 − �

−(�r+�)t
)

(8)ΦMFE (Sh
∗,Eh

∗, Ih
∗,Qh

∗,Rh
∗, Sr

∗ Er
∗, Ir

∗)

(9)

S∗h =
k1k3�h

�hk1k3 − �2��h + k1k3�h

E∗
h =

k3�h�h

�hk1k3 − �2��h + k1k3�h

I∗h =
k3�1�h�h

k2(�hk1k3 − �2��h + k1k3�h)

Q∗
h =

�2�h�h

�hk1k3 − �2��h + k1k3�h

R∗
h =

(�1�k3 + �2k2�)�h�h

�hk2(�hk1k3 − �2��h + k1k3�h)

S∗r =
�r

�r + �r

E∗
r =

�r

k4(�r + �r)

I∗r =
�r�3�r

k4k5(�r + �r)

(10)ΦMFE =

(
�h

�h

, 0, 0, 0, 0,
�r

�r

, 0, 0

)

(1)
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The basic reproduction number is one of the critical param-
eters to examine the long-term behaviour of an epidemic. It 
can be defined as the number of secondary cases produced 
by a single infected individual in its entire life span as infec-
tious agent. We have used next-generation matrix technique 
explained in Diekmann et al. (2010), Peter et al. (2020), to 
obtain the expression of reproduction number R0 . It was first 
introduced by Driessche and Watmough van den Driessche 
and Watmough (2008), where this technique is discussed in 
detail for the estimation of R0 . Also, there are various arti-
cles available in literature where the next-generation matrix 
technique has been used to estimate the expression for the 
basic reproduction number (Samui et al. 2020; Kumar et al. 
2021).

The model system 1 can be written as:

Progression from Eh to Ih or Qh are not considered to be new 
infections, but rather the progression of infected individu-
als through various compartments. Hence, the transmissions 
matrix F and transitions matrix V can be given as :

For simplicity, let Υ1 = �1 + �2 + �h,Υ2 = �h + �h + � ,Υ3

= �� + �
h
+ �

h
 and Υ4 = �r + �r

Now:

(11)

dx

dt
=F(x) − V(x)

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

(
�1Ir+�2Ih

Nh

)Sh

0

0

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�h +
(�1Ir+�2Ih)Sh

Nh

+ �hSh − �Qh

(�1 + �2 + �h)Eh

−�1Eh + (�h + �h + �)Ih
−�2Eh + (� + � + �h + �h)Qh

−�Ih − �Qh + �hRh

−�r +
�3SrIr

Nr

+ �rSr

−
�3SrIr

Nr

+ (�r + �3)Er

−�3Er + (�r + �r)Ir

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F =

⎛⎜⎜⎜⎝

0 �2 0 �1
0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠

V =

⎛⎜⎜⎜⎝

�1 + �2 + �h 0 0 0

−�1 �h + �h + � 0 0

−�2 0 �� + �h + �h 0

0 0 0 �r + �r

⎞⎟⎟⎟⎠

Now, after much simplification we obtain:

Now, the basic reproduction number is defined as the largest 
eigenvalue (spectral radius) of the next generation matrix 
FV

−1 and can be obtained as:

Hence,

Stability of disease‑free equilibrium

To obtain the conditions for the global stability for E0 , we 
have used the approach set out in Castillo-Chavez and Song 
(2004), which states that if the model system can be written 
in the following form:

here X ∈ Rn are the uninfected individuals and Z ∈ Rm 
describes the infected individuals. According to this nota-
tion, the disease-free equilibrium is given by Q0 = (X0, 0) . 
Now, the following two conditions guarantees the global 
stability of the disease free equilibrium. 

K1 :  For dX
dt

= F(X, 0) , X0 is globally asymptotically stable.
K2 :  G(X,Z) = BZ − Ĝ(X,Z) where Ĝ(X,Z) ≥ 0 for 

X, Z ∈ Ω.

 here B = DzG(X0, 0) is a M-matrix and Ω is the feasible of 
the model. The following theorem then defines the global 
stability of E0.

Lemma 1 The equilibrium point Q0 = (X0, 0) is a globally 
asymptotically stable when R0 ≤ 1 and assumptions K1 and 
K2 are satisfied.

(12)

V−1 =
1

Υ1Υ2Υ3Υ4

⎛⎜⎜⎜⎝

Υ2Υ3Υ4 0 0 0

�1Υ3Υ4 Υ1Υ3Υ4 0 0

�2Υ2Υ4 0 Υ1Υ2Υ4 0

0 0 0 Υ1Υ2Υ3

⎞⎟⎟⎟⎠

(13)FV
−1 =

1

Υ1Υ2Υ3Υ4

⎛⎜⎜⎜⎝

�2�1Υ3Υ4 0 0 �1Υ1Υ2Υ3

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠

(14)R0 = �(FV−1) =
�2�1Υ3Υ4

Υ1Υ2Υ3Υ4

=
�2�1

Υ1Υ2

(15)R0 =
�1�2

(�1 + �2 + �h)(�h + �h + �)

(16)

dX

dt
= F(X, Z)

dZ

dt
= G(X, Z),G(X, 0) = 0



 Modeling Earth Systems and Environment

1 3

Now, the following theorem establishes the global sta-
bility of the disease free equilibrium E0 for our proposed 
model system.

Theorem 2 The DFE point E0 is globally asymptotically sta-
ble provided R0 ≤ 1.

Proof First, we will prove K1 as:

The characteristic polynomial of F(X, 0) is:

⇒ �1 = �2 = −�h , �3 = −�r and �4 = −�r − �3.
Hence, X = X0 is globally asymptotically stable.
Now, we have:

Here, one can easily observe that B satisfies all conditions 
explained in K2.   ◻

Stability of endemic equilibrium

We will use the Routh–Hurwitz criterion to prove the local 
stability of the endemic equilibria. Here, we will derive the 
conditions under which the endemic equilibria is locally 
asymptotically stable.

The Jacobian matrix about the endemic equilibria �MEE 
is given as :

F(X, 0) =

⎡⎢⎢⎢⎣

�h − �hSh
−�hRh

�r − �rSr
−(�r + �3)Er

⎤⎥⎥⎥⎦

(17)(� + �h)
2(� + �r)(� + �r + �3)

(18)G(X,Z) =BZ − Ĝ(X,Z)

(19)

=

⎡
⎢⎢⎢⎢⎢⎣

−(�1 + �2 + �h)
�2S

0
h

Nh

0
�1S

0
h

Nh

�1 − (�h + �h + �) 0 0

�2 0 − (� + � + �h + �h) 0

0 0 0 �r + �r

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

Eh

Ih

Qh

Ir

⎤
⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎣

(
�2(S

0
h−Sh)+�1(S

0
h−Sh)

Nh

)Eh

0

0

�3Er

⎤⎥⎥⎥⎥⎥⎦

Here,

The characteristic equation of J is given as:

which can be further written as:

where Ai ’s are the coefficients of x8−i ;i = 1, 2,… 8 after con-
verting the polynomial in standard form.

Note: To obtain the condition for the stability of �MEE 
we will made the following substitution:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 a13 a14 0 0 0 a18
a21 a22 a23 0 0 0 0 a28
0 a32 a33 0 0 0 0 0

0 a42 0 a44 0 0 0 0

0 0 a53 a54 a55 0 0 0

0 0 0 0 0 a66 0 a68
0 0 0 0 0 a76 a77 a78
0 0 0 0 0 0 a87 a88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a11 = −

(
�1Ir + �2Ih

Nh

)
− �h a13 = −

�2Sh

Nh

a14 = � a18 = −
�1Sh

Nh

a21 =
�1Ir + �2Ih

Nh

a22 = −(�1 + �2 + �h)

a23 =
�2Sh

Nh

a28 =
�1Sh

Nh

a32 = �1 a33 = −(�h + �h + �)

a42 = �2 a44 = −(� + � + �h + �h)

a53 = � a54 = � a55 = −�h

a66 = −(�r +
�3Ir

Nr

) a68 = −
�3Sr

Nr

a76 =
�3Ir

Nr

a77 = −(�r + �3)

a78 =
�3Sr

Nr

a87 = �3 a88 = −(�r + �r)

(20)

1

NhNr

[(
−x − �h

)
(−��2

(
Ir�1 + Ih�2

)
(
x + � + �h + �h

)
+
(
−x − � − � − �h − �h

)
(
Sh�1�2

(
x + �h

)
−
(
x + �1 + �2 + �h

)
(
x + � + �h + �h

)(
Ir�1 + Ih�2 + Nh

(
x + �h

))))

(
Sr�3�3

(
x + �r

)
−
(
x + �3 + �r

)
(
Ir�3 + Nr

(
x + �r

))(
x +

(
�r + �r

)))]
= 0

(21)
x8 + A1x

7 + A2x
6 + A3x

5 + A4x
4

+ A5x
3 + A6x

2 + A7x + A8 = 0
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Hence, we can conclude this section by the following 
theorem:

Theorem 3 The endemic equilibrium point �MEE is locally 
asymptotically stable provided R0 > 1 and following condi-
tions are satisfied:

Backward bifurcation

The analysis conducted in the previous section on the 
occurrence of endemic equilibrium E∗ suggests the prob-
ability of backward bifurcation. It can be defined as the 
state when a stable endemic equilibrium coexist with 
with a stable disease-free equilibrium when the associ-
ated reproduction number is less than unity. We use the 
center manifold based result (theorem 4.1) given in Cas-
tillo-Chavez and Song (2004), to check the occurrence of 
backward bifurcation.

Let:

Consider, U =
(
y1, y2, y3, y4, y5, y6, y7, y8,

)T , then the given 
system (1) can be written as:

P =
A1A2 − A0A3

A1

, Q =
A1A4 − A0A5

A1

,

R =
A1A6 − A0A7

A1

, S = A8,

P∗ =
pA3 − A1Q

P
, Q∗ =

PA5 − A1R

P
,

R∗ =
PA7 − A1S

P
, M =

P∗Q − PQ∗

P∗
,

N =
P∗R − PR∗

P∗
, T =

P∗S

P∗
,

M∗ =
MQ∗ − P∗N

M
, N∗ =

MR∗ − P∗T

M
,

X =
M∗N −MN∗

M∗
.

(22)

A1 > 0.

A1A2 > A3.

A1A2A3 + A0A1A5 > A0A
2

3
+ A2

1
A4

P∗Q > PQ∗ MQ∗ > P∗N M∗N > MN∗ XN∗ > TM∗

Sh = y1, Eh = y2, Ih = y3, Qh = y4,

Rh = y5, Sr = y6, Er = y7, Ir = y8.

(23)
dU

dt
=
(
f1, f2, f3, f4, f5, f6, f7, f8

)T

where,

From the expression of R0 , we can observe that R0 is highly 
influenced by �2 , the product of effective contact rate and the 
probability of human been infected with monkey pox virus 
after getting in contact with infectious human. Therefore, we 
will consider �2 as our bifurcation parameter.

Hence , when R0 = 1 , we have:

Now, the above system at monkeypox-free equilibrium state 
�MFE is given by:

Clearly, ‘0’ is an eigenvalue of J0(�MFE, �
∗
2
) . Let 

W =
(
w1,w2,w3,w4,w5,w6,w7,w8

)
 be the associated right 

eigenvector corresponding to zero eigenvalue, and can be 
attained by simplifying:

On evaluation, W can be given as:

(24)

f1 = �h −
(�1y8 + �2y3)Sh

Nh

− �hy1 + �y4

f2 =
(�1y8 + �2y3)Sh

Nh

− (�1 + �2 + �h)y2

f3 = �1y2 − (�h + �h + �)y3

f4 = �2y2 − (� + � + �h + �h)y4

f5 = �y3 + �y4 − �hy5

f6 = �r −
�3y6y8

Nr

− �ry6

f7 =
�3y6y8

Nr

− (�r + �3)y7

f8 = �3y7 − (�r + �r)y8

(25)�∗
2
=

(�1 + �2 + �h)(�h + �h + �)

�1

J0(�MFE, �
∗
2
) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�h 0 − �2 0 0 0 0 − �1
0 − A1 �2 0 0 0 0 �1
0 �1 − A2 0 0 0 0 0

0 �2 0 − A3 0 0 0 0

0 0 � � − �h 0 0 0

0 0 0 0 0 − �r 0 0

0 0 0 0 0 0 − A4 �3
0 0 0 0 0 0 �3 − A5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

−�hw1 − �2w3 − �1w8 = 0

−A1w2 + �2w3 + �1w8 = 0

�1w2 − A2w3 = 0

�2w2 − A3w4 = 0

�w3 + �w4 − �hw5 = 0

−�rw6 − �3w8 = 0

−A4w7 + �3w8 = 0

�3w7 − A5w8 = 0
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Now, let V =
(
v1, v2, v3, v4, v5, v6, v7, v8

)
 be the associated 

left eigenvector of J0 corresponding to zero eigenvalue and 
satisfying V .W = 0 . Then V can be given as :

As discussed in theorem 4.1 (Castillo-Chavez and Song 
2004), we have:

Algebraic calculations shows that:

Now, substituting all the above values in the expressions for 
‘a’ and ‘b’, we obtain:

w1 = −
A1A2

�1�h

w2 =
A2

�1
w3 = 1

w4 =
�2A2

�1A3

w5 =
1

�h

(
� +

��2A2

�1A3

)

w6 =
�3

�1�r

(
A1A2

�1
+ �2

)

w7 = −
A5

�3�1

(
A1A2

�1
+ �2

)
w8 = −

1

�1

(
A1A2

�1
+ �2

)

v1 = 0,

v2 =

�
A2

�1
+

�2

A2

− (

�
A1A3

�1
+ �2

�

.
1�

A4A5

�3
− �3

� ×

�
A5

�3
+

�2

A2

�⎞⎟⎟⎟⎠

−1

,

v3 =
�2

A2

.v2, v4 = v5 = v6 = 0,

v7 =
�1�

A4A5

�3
− �3

� .v2, v8 =
�2

A2

.v7

(27)a =

8∑
k,i,j=1

vkwiwj

�2fk

�yi�yj

(
�MFE, �

∗
2

)

(28)b =

8∑
k,i=1

vkwi

�2fk

�yi��2

(
�MFE, �

∗
2

)

�2f2

�x1x3
=
�2

Nh

=
�2f2

�x3x1

�2f2

�x1x8
=

�1

Nh

=
�2f2

�x8x1

�2f7

�x8x6
=

1

Nr

=
�2f7

�x6x8

(29)a =
2v2w1

Nh

(w3�2 + w8�1) + 2v7
w6w8

Nr

(30)b =v2.w2.
�

�hNh

Now, to persist backward bifurcation in the proposed model, 
both the values of ‘a’ and ‘b’ has to be simultaneously 
positive.

Results

A sensitivity analysis determines how different values of 
an independent variable affect a particular dependent vari-
able under a given set of assumptions (Kalyan et al. 2021; 
Victorr et al. 2020). The normalized forward sensitivity 
index of a variable to a parameter is the ratio of the rela-
tive change in the variable to the relative change in the 
parameter. When variable is a differentiable function of 
the parameter, the sensitivity index may be alternatively 
defined using partial derivatives. The parameter values 
have been taken from literature as given in Table 1.

Since the basic reproduction number R0 helps us to pre-
dict the future course of the disease, the sensitivity analy-
sis is performed to understand which parameters involved 
in the model effect the value of R0 relatively more. We 
have used the following expression of the sensitivity for 
R0 which depends upon parameter v.

A negative index of sensitivity shows that the parameter and 
R0 are inversely proportional. A positive sensitivity index, 
however, denotes that the value of R0 increases with an 
increase in the value of the parameter concerned.

The estimated sensitivity indices for R0 are presented in 
Table 2. From Table 2, we can see that an increase in the 
values of �2 , �h , �h and � will results in a decrease in the 
value of R0 . On the another hand, an increase in the value 
of �1 and �2 will increase the monkey-pox cases.

(31)�
R0

v =
v

R0

×
�R0

�v

Table 2  Sensitivity index of parameters

Parameter Expression of the sensitivity 
index

Value

�1
�2+�h

�1+�2+�h

0.945946
�2 −

�2

�1+�2+�h

−  0.540541

�2 1 1
�h −

�h(�+�1+�2+�h+2�h)
(�1+�2+�h)(�+�h+�h)

−  0.998291

�h −
�h

�+�h+�h

−  0.0790514

� −
�

�+�h+�h

−  0.328063
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Discussion

The basic reproduction number is a crucial parameter in 
disease dynamics which gives us major information about 
the disease. To understand the effect of various disease 
transmission parameters on the basic reproduction number, 
we have obtained the surface plots showing variation of R0 
with sensitive parameters. From Fig. 2, it can be observed 
that as the value of �2 increases, it leads to reduced disease 
transmission. Similarly, it can be easily seen from Fig. 3 
that contact rate with rodent population directly affects the 
transmission of monkey-pox. Similarly, the simultaneous 
effect of �2, �2,�h and � on the basic reproduction number 
has been shown in Figs. 4 and 5.

Further, we have performed numerical experiments to 
detect effect of change in sensitive parameters on the num-
ber of infected individuals. This has been investigated in 
Figs. 6, 7 and 8. Now we have incorporated a compartment 

Qh in the model, which consists of the isolated proportion 
of the infected humans. Through numerical simulations, 
we have shown how the infected population would behave 
in the absence of isolated interventions. In Fig. 9, we show 
that the isolation of infected individuals helps to reduce 
disease transmission.

Conclusion

A non-linear compartmental model has been proposed to 
understand the transmission of Monkey pox disease. The 
proposed model consist of eight mutually exclusive com-
partments. The human population has been divided into five 
compartments, where we has introduced the exposed (Eh) 
and isolated human (Qh) compartments along with standard 
compartments of exposed population (Eh) , infected humans 
(Ih) and recovered humans (Rh) . Similarly, the rodent pop-
ulation is also divided into three compartments; exposed 

Fig. 2  Surface plot showing 
simultaneous impact of �1 and 
�2 on R0

0
0.1

0.2
0.3

0.4

0
1

2
3

4
0

0.5

1

1.5

2

2.5
x 10−3

α2
α1

R
0

Fig. 3  Surface plot showing 
simultaneous impact of �1 and 
�2 on R0
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(Er) , susceptible (Sr) and infected rodents (Ir) . Further, we 
have established the fundamental properties of the proposed 
model.

Basic reproduction number has been estimated using 
next-generation matrix technique. The proposed model 
exhibit two equilibrium points; disease free equilibrium 

Fig. 4  Surface plot showing 
simultaneous impact of �2 and 
�2 on R0
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Fig. 5  Surface plot showing 
simultaneous impact of �h and 
� on R0
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Fig. 6  Variation in infected 
population over time for differ-
ent values of �1 ; proportion of 
humans exposed to infection
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point and endemic equilibrium point. We have obtained 
the stability conditions for both of the equilibrium points. 
Further, the existence of the endemic equilibrium implies 
the possibility of the backward bifurcation. We have also 
derived the condition for the existence of the backward 

bifurcation. Further we have shown the sensitivity of various 
parameters involved in the model. The sensitivity index has 
been provided in Table 2. We found that �2 , which is human 
to human contact rate is the most sensitive parameter in the 
transmission of the disease. Also, with the help of numerical 

Fig. 7  Variation in infected 
population over time for differ-
ent values of �h ; disease induced 
death rate of humans
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Fig. 8  Variation in infected 
population over time for differ-
ent values of � ; recovery rate of 
humans
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simulations, we have shown the simultaneous effect of vari-
ous parameters on the basic reproduction number R0 . Our 
analysis suggests that isolation of infected humans helps to 
reduce disease transmission. It is, therefore, realised from 
the simulation that isolation of the infected humans, is play-
ing significant roles in the management and control of mon-
keypox virus.
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