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Introduction
Real life datasets can be fitted by utilizing a lot of existing 

statistical distributions. However, most of these real-world datasets 
does not follow these existing statistical distributions. Hence, the 
need to propose/develop new distributions that could describes some 
of these situations better and can also provide a better flexibility in 
the modelling of real-world data sets compared with the baseline 
distributions. As a result of this fact, researchers have developed many 
statistical families of distributions and study most of their properties. 
These include: The Transmuted Weibull lomax distribution by Afify 
et al.,1 kumaraswamy Marshal-olkin family by Afify et al.,2 Lomax 
generator by Cordeiro et al.,3 the weibull exponential by Oguntunde 
et al.,4 kumaraswamy-pareto by Bourguignon et al.,5 weibull-G family 
by Bourguignon et al.,6 the weibull-dagum distribution by Tahir et al.,7 
the generalized transmuted-G family of distributions by Nofal et al.,8 
among others. Recently, a lot of extensions of distributions have been 
proposed and studied based on the Weibull-G family of distributions 
by Bourguignon et al.,6 Among them is the Tahir, Merovci, Afify, 
Yousof, and  Oguntunde et al.9-12,4 to mention but few.

Inverse Lomax distribution is a member of Beta-type distribution. 
Other members of the family include Dagum, lomax, Fisk or log-
Logistics, Singh maddala, generalized beta distributions of the second 
kind among others, as in Kleiber et al.13 If a random variable say Z has 
a Lomax distribution, then has an Inverse Lomax distribution (ILD). 
It has been utilized to get the Lorenz ordering relationship among 
ordered statistics;.14 Apart from this, it has also many applications 
in economics, actuarial sciences, and stochastic modeling Kleiber C, 
Kotz S & Kleiber C13,14  have applied this model on geophysical data, 
specifically on the sizes of land fires in California state of US. Rahman 
et al.15  have discussed the estimation and prediction challenges for 
the inverse Lomax distribution via Bayesian approach. Yadav et al.16  

have used this distribution for reliability estimation based on Type 
II censored observations. Some details about the Inverse Lomax 
distribution including its applications are available in Reyad and 
Othman, Falgore et al., Maxwell et al., and Hassan and Mohamed.17-23

The main aim of this paper is to provide an extension of the 
Inverse-Lomax distribution using the Weibull-G generator by 
Bourguignon et al.6 Therefore, we propose the Weibull-Inverse lomax 
(WIL) distribution by adding two extra shape parameters to the 
Inverse Lomax distribution.

The Inverse-Lomax distribution and Weibull G family

The probability density function (pdf) and cumulative distribution 
function (cdf) of ILD are given by the following equations as define 
by Yadav et al.16 as:
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where x > 0, γ, λ > 0 are scale and shape parameters respectively.

( ) ( );  ;Let g x and G xη η denote the probability density function 
(pdf) and cumulative distribution function (cdf) of a baseline with 
parameter vector η and also consider the Weibull Cumulative Density 
Function (cdf) ( ) ( ) ( )  1    0pF x exp dx for x= − − >  with positive 
parameters d and p . Based on this cdf, Bourguignon et al.6  replaced 
the argument x by ( ) ( ); / 1 ;G x G xη η− ,  and defined the cdf and the 
pdf of the Weibull-G family by:
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where G(x;η) is any baseline cdf which depends on a parameter 
vector η.
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The interpretation of the family of distribution above as in Cooray21 
is as follows. Let L be a lifetime random variable having a continuous 
cdf G(x;η), then the odds ratio that an individual (component) 
following the lifetime L will fail(die) at time x is ( ) ( ); / 1 ;G x G xη η−
. Let’s consider that the variability of this odds is represented by the 
random variable X and assume that it follows Weibull model with β as 
shape and α as scale, then

       

( ; )
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as given in equation 1 b.

A random variable X with density function in 1a is denoted by 
X∼Weib G(α,β,η). The extra parameters induced by the Weibull 
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generator are sought just to increase the flexibity of the distribution. 
If β = 1, it corresponds to the Exponential-Generator by Gupta and 
Kundu.22

In this context, we proposed and study the WIL distribution based 
on equations 1a and 1 b.

The Weibull Inverse Lomax (WIL) Distribution

By inserting equation 1 in equation 1b yields the WIL cdf below:
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The pdf corresponding to 5 is given by
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where α > 0, β > 0 and λ are the shape parameters while γ is the 
scale parameter. Henceforth, we denote a random variable X having 
pdf 6 by X∼WIL(α, β, γ, λ).The hazard function h(x), cumulative 
hazard function H(x), survival function s(x),and reversed hazard rate 
r(x) of X are given by
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Shapes of the Weibull-Inverse Lomax PDF, CDF, 
hazard and survival functions

The graphs below shows the shapes of the WIL density at various 
selected parameter values (Figure 1).

Mixture representation

By inserting equations 2 and 1 in 1a we have

1
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Let E be the last term of equation 11, by expanding E using power 
series
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By inserting this expansion in equation 11 and after some algebra, 
we have
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After simplifications and some algebra, we have
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Equation 12 reduces to
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is the Inverse

Lomax density. By integrating Equation 13, the cdf of X can be 
given in the mixture form

  
, ( 1)

, =0
( ; , , , ) = ( )i j i j

i j
F x U H xβα β γ λ

∞

+ +∑           (14)

Equation 13 above is the major result of this section.

Statistical Properties

Quantile function and median

Quantile function is used in drawing a sample from a particular 
distribution function. The quantile function of the WIL distribution is 
the inverse of 5 and is given by
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where u∼ uniform(0,1) and random numbers can easily be 
generated from the WIL distribution using
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The median of the WIL distribution can be derived by setting u = 
0.5 in 16 to be
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Moments

Must of the basic features and characteristics of a distribution 
can be studied through moments (for example kurtosis, tendency, 
skewness and dispersion). Theorem 4.1 If X∼WIL (α, β, γ, λ) then 
the rth moments of X is given as
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Proof.

Let start the prove with the well known definition of the rth 
moment of the random variable X with probability density function 
f(x;α,β,γ,λ) given by
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(4) and some simplifications, we have equation 17.

The mean and the variance of the WIL distribution are:
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Moment generating function

Theorem4.2 If X∼WIL (α,β,γ,λ) then the moment generating function 
(mgf) of X is given as
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Proof

By definition, the mgf of a random variable X with density f(x) is 
given
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Order statistics

Order statistics are used in many areas of statistical theories and 
practices, for instance, detection of outlier in statistical quality control 
processes. In this section, we derive the closed form expressions 
for the pdf of the ith order statistic of the Weibull Inverse Lomax 
distribution. Suppose is a random sample from a distribution with pdf 
f(x) and Let denotes the corresponding order statistics obtained from 
this sample. Then
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Where f(x) and F(x) are the pdf and cdf of Weibull Inverse Lomax 
distribution. Using the binomial expansion on 
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By expanding the last term and further simplifications and algebra, 
we have
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denotes the Inverse lomax density function with parameters     
  ( ) 1  and i n j pγ λ β + + + +  
Entropy

Rényi Entropy

The entropy of a random variable X is a measure of uncertain 
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variation. we defined Rényi entropy by
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By replacing f(x) with equation (13) we have
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q-entropy
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Figure 1 1a: Is the pdf of WIL which is unimodal and right skewed, 1b:Is the cdf of WIL which is J-shape which approaches each of the orthogonal axes 
asymptotically, 1c: Is the hazard function (bathtub curve) of WIL which is a decreasing failure rate function and lastly,1d: Is the survival function which shows that 
the probability that a subject will survive beyond time t, and its also a decreasing function.

Estimation

Many parameter estimation techniques have been advocated in the 
literature, but the maximum likelihood method is the most frequently 
used. Furthermore, the MLEs have desirable properties and can be 
used to establish confidence intervals. The estimate of normality for 
these estimators is readily treated either numerically or analytically in 
the theory of large sample distribution. In this section, we determine 
the maximum likelihood estimates (MLEs) of the parameters of the 
Weibull Inverse Lomax distribution from complete samples only. Let

1 2 3, , ,......, nx x x x be the observed values from the WIL distribution 
with parameter space ( ) ,  ,  ,  Tθ α β γ λ= be the 1r ×  parameter 
vector. The log-likelihood function for θ is given by

=1 =1 =1
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x x

λγ γ
θ αβγλ λ β −− − + + + − +∑ ∑ ∑

      
=1 =1

(1 )
( 1) (1 (1 ))

1 (1 )

n n
i

i ii

i

xlog
x

x

βγ
γβ α γ

 + 
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Differentiating ( )l θ with respect to each parameter , ,   andα β γ λ
and setting the result equals to zero, we obtain maximum likelihood 
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estimates (MLEs). The partial derivatives of ( )l θ with respect to each 
parameter or the score function is given by:
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Application
In this section, we illustrate the applicability of the WIL distribution 

to the monthly remission of the 128 bladder cancer patients as reported 
by Maxwell et al.23 We estimated the parameters of each model by the 
method of Maximum Likelihood Estimation (MLE) using Simulated 
ANNealing (SANN) method. The goodness of fit statistics used in 
comparing the performances are Akaike Information Criterion AIC 
and Bayesian Information Criterion. Smaller values of the AIC and 
BIC statistics indicates better model fittings. Throughout the analysis, 
we used log-likelihood (- ll) value to derive the AIC and BIC by 
using the following relations: AIC = −2(−ll) + 2p and BIC = −2(−ll) + 
plog(n) where p is the number of parameters and n is the sample size. 
The data is given below:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 
6.97,

9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 
3.64,

5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 
26.31,

0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 
10.34,

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 
2.69, 4.23 , 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 
7.63, 17.12, 46.12, 1.26 ,

2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 
11.64, 17.36,

1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 
19.13 , 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 
12.03, 20.28 ,

2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 
22.69. Firstly, it is usual to begin the analysis with plots of empirical 
distribution function and the histogram (density plot), as in figure 2a 
and Table 1. The left-hand plot is the histogram on a density scale and 
the right-hand plot is the empirical cumulative distribution function 
(CDF). While figure 2b is the skewness-kurtosis plot as proposed by 
Cullen & Aral et al.,24,25 in which the values for common distributions 
are displayed in order to guide the researcher for the choice of 
distributions to fit the data set. As in our case, Weibull distribution 
is suggested. For this data, we fit Weibull-Inverse Lomax (WIL) 
distribution defined in equation (6). Its fit is also compared with the 
Weibull-Lomax distribution by Tahir et al.,9 Weibull-Frechet by Atify 
et al.,11 Odd generalized exponential inverse lomax distribution by 
Falgore et al.,18 and Inverse lomax distribution as in Rahman et al.15 
with the pdfs given below:

Figure 2 2a is the empirical and cdf plots of the data set and 2b is the 
Skewness-kurtosis plot for a bladder cancer patients data set.

https://doi.org/10.15406/bbij.2019.08.00289


The Weibull-Inverse Lomax (WIL) distribution with Application on Bladder Cancer 201
Copyright:

©2019 Falgore et al.

Citation: Falgore JY, Doguwa SI, Isah A. The Weibull-Inverse Lomax (WIL) distribution with Application on Bladder Cancer. Biom Biostat Int J. 
2019;8(6):195‒202. DOI: 10.15406/bbij.2019.08.00289

                          

11

( ; , , , ) = 1 1 1 exp 1 1x x xf x

λ λλα α α
γλα

α β γ λ α
β β β β

−− −                 + − + − + −           
                

     

1exp exp
x

λβαγ

−        × − −           

                      

1
121

2( ; , , , ) = 1 1 1 1
1 1 1 1

f x exp exp x
x x

x x

α

α α

α α
β λ λ βα β γ λ αβγλ

β β

−

−
−

    
                + − × + −                        − + − +             

                                                    

                   
(1 )

2( ; , ) = 1f x
xx

λγλ γγ λ
− +

 + 
 

for 0    , ,   0.x and andα β γ λ< < ∞ >  

Table 1 Summary Statistics of the Cancer patients’ data set

Minimum Maximum Median Mean Est. Sd Est.Skewness Est.Kurtosis

0.08 79.05 6.395 9.3656 10.5083 3.325 19.1537

Concluding remarks
We have successfully proposed a flexible WIL distribution by 

extending the weibull-G family of Bourguignon et al.6 We have 
derived and studied some properties of this distribution including 
mean, variance, quantile, moments, moment generating function, 

entropies and order statistics. The parameters of the distribution were 
estimated by employing the method of maximum likelihood. Finally, 
an application of the WIL distribution to real data set is presented to 
show the importance and flexibility of the distribution. The AIC and 
BIC in Table 2 shows that the WIL distribution is the best model fitted.

Table 2 MLEs of the parameters, log-likelihood function, AIC and BIC of the models

Estimates - ll AIC BIC

Model α β γ λ

WIL(α,β,γ,λ) 38.6899 0.0932 4.1773 15.7365 -353.4222 714.8443 726.252

WL(α,β,γ,λ) 13.2986 1.3366 0.2175 10.4948 -410.4509 828.901 840.309

WFr(α,β,γ,λ) 2.3452 0.3144 0.7016 26.8016 -621.6075 1251.215 1262.62

OGE-IL(α,β,γ,λ) 0.8749 2.5967 1.4153 15.8219 -412.9428 833.8856 845.293

IL(γ,λ) - - 2.0036 2.4603 -424.6757 853.3514 868.759
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