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Abstract 
This paper explores the need for exploiting auxiliary variables in sample survey and utilizing asymptotically optimum 
estimator in double sampling to increase the efficiency of estimators. The study proposed two types of estimators with 
two auxiliary variables for two phase sampling when there is no information about auxiliary variables at population 
level. The expressions for the Mean Squared Error (MSE) of the proposed estimators were derived to the first order of 
approximation. An empirical comparative approach of the minimum variances and percent relative efficiency were 
adopted to study the efficiency of the proposed and existing estimators. It was established that, the proposed estimators 
performed more efficiently than the mean per unit estimator and other previous estimators that don’t use auxiliary 
variable and that are not asymptotically optimum. Also, it was established that estimators that are asymptotically 
optimum that utilized single auxiliary variable are more efficient than those that are not asymptotically optimum with 
two auxiliary variables.  
Keywords: auxiliary variable, asymptotically optimum estimator, efficiency, double sampling. 
1. Introduction 
In survey research, there are times when information is available on every unit in the population. If a variable that is 
known for every unit of the population is not a variable of interest but is instead employed to improve the sampling plan or 
to enhance estimation of the variables of interest, it is called an auxiliary variable. The auxiliary variable about any study 
population may include a known variable to which the variable of interest called the study variable is approximately 
related. This information may be used at the planning stage of the survey, in the estimation procedure, or at both phases.  
The estimation of population parameters with greater precision is an unrelenting issue in sampling theory and the 
precision of estimates can be improved by increasing the sampling size, but doing so tend to sabotage the benefits of 
sampling. Therefore, the precision may be increased by using an appropriate estimation procedure that utilizes some 
auxiliary information which is closely related to the study variable and employing estimators that are asymptotically 
optimum.  
Laplace (1820) was the first to use auxiliary information in ratio type estimator. Watson (1937) used regression method 
of estimation to estimate the average area of the leaves on a plant. Cochran (1940) used auxiliary information in 
single-phase sampling to develop the ratio estimator for estimation of population mean. In the ratio estimator, the study 
variable and the auxiliary variable have high positive correlation and the regression line passes through the origin. 
Robson (1957) and Murthy (1964) worked independently on usual product estimator of population mean. General 
intuitive variable of interest, can be improved if the information supplied by a related variable (auxiliary variable, 
supplementary variable, or concomitant variable).When two or more auxiliary variables are available; many estimators 
may be defined by linking together different estimators such as ratio, product or regression, each one of them exploiting 
a single variable. These mixed estimators have been seen performing better as compared with individual estimators. 
Mohanty (1967), used this methodology for the first time to propose mixed estimator using two auxiliary variables.  
Many other contributions are present in sampling literature and, recently, some new estimators appeared that found the 
asymptotical expression for the mean square error. Here we mention, among others, Upadhyaya et al (1992), Tracy and 
Singh (1999), Radhey et al (2002), Singh and Espejo (2007), Samiuddin and Hanif (2007) and Singh et al (2010). Also, 
estimators, with no information case and that utilize two auxiliary variables includes: Samiuddin and Hanif (2007) and 
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Swain (2012). Motivated by these recent proposals, in this paper we propose, when two auxiliary variables are available, 
some new estimators obtained from the Mohanty (1967), Mukerjee et al (1987), and Singh and Espejo (2007).  
This paper explores the need for exploiting auxiliary variables and asymptotically optimum estimator to increase 
efficiency of estimators in double sampling. The paper is organized as follows: Section 2 introduces methods and 
estimators considered in the study. In Section 3, we present the notations and two proposed estimators and obtained, up 
to the first degree of approximation, the approximate expressions for mean square errors. Section 4 is devoted to the 
empirical study of the efficiency of the proposed estimators. Section 5 is on discussion of the results from the empirical 
analysis. Section 6 is on conclusion and recommendations. 
2. Method and Estimators 
2.1 Research Design 
Consider a finite population 𝑈 = (𝑈1,𝑈2,− −−,𝑈𝑁𝑁) of size N with the triple characters (𝑦𝑦, 𝑥𝑥, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧, ), taking values 
𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝑖𝑖 respectively on the unit 𝑈𝑖𝑖(𝑖𝑖 = 1,2,− − −,𝑁). The purpose is to estimate the population mean of a 
study variable ‘𝑦𝑦’ in the presence of two auxiliary variables ′𝑥𝑥′ and  ′𝑧𝑧′. The population means 𝑋𝑋� and 𝑍̅𝑍 of 𝑥𝑥 and 𝑧𝑧 
respectively are not known, therefore, there is the need to adopt a double sampling technique. Assuming simple random 
sampling without replacement (SRSWOR) at each phase, the two phase sampling scheme runs as follows: A first phase 
sample 𝑠𝑠′(𝑠𝑠′ ⊂ 𝑈) of fixed size 𝑎𝑎1 is drawn from U to observe both 𝑥𝑥 and 𝑧𝑧 in order to find estimates of  𝑋𝑋� and 𝑍̅𝑍. 
Given  𝑠𝑠′, a second phase sample 𝑠𝑠(𝑠𝑠 ⊂ 𝑠𝑠′) of fixed size 𝑎𝑎2 is drawn from 𝑠𝑠′ to observe  𝑦𝑦 in order to estimate the 
population mean of 𝑌𝑌�.  

Now, define the population means of 𝑦𝑦, 𝑥𝑥 and 𝑧𝑧  respectively as: 𝑌𝑌� = 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,𝑋𝑋� = 1

𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1  and  𝑍̅𝑍 = 1

𝑁𝑁
∑ 𝑧𝑧𝑖𝑖      𝑁𝑁
𝑖𝑖=1  

The finite population variances of  𝑥𝑥,𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎  𝑧𝑧 respectively are: 

𝑆𝑆𝑦𝑦2 = 1
𝑁𝑁−1

∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1 ,       𝑆𝑆𝑥𝑥2 = 1

𝑁𝑁−1
∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2𝑁𝑁
𝑖𝑖=1    and  𝑆𝑆𝑧𝑧2 = 1

𝑁𝑁−1
∑ (𝑧𝑧𝑖𝑖 − 𝑍̅𝑍)2𝑁𝑁
𝑖𝑖=1  

More so, the covariance between 𝑦𝑦 and 𝑥𝑥,   𝑦𝑦 and 𝑧𝑧, and 𝑥𝑥 and 𝑧𝑧  are  given by: 

𝑆𝑆𝑦𝑦𝑥𝑥 = 1
𝑁𝑁−1

∑ (𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 𝑌𝑌�)(𝑥𝑥𝑖𝑖 − 𝑋𝑋�),         𝑆𝑆𝑦𝑦𝑧𝑧 = 1

𝑁𝑁−1
∑ (𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 𝑌𝑌�)(𝑧𝑧𝑖𝑖 − 𝑍̅𝑍)  and 𝑆𝑆𝑥𝑥𝑧𝑧 = 1

𝑁𝑁−1
∑ (𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 𝑋𝑋�)(𝑧𝑧𝑖𝑖 − 𝑍̅𝑍) 

Also, let 𝜌𝜌𝑦𝑦𝑥𝑥 = 𝑠𝑠𝑦𝑦𝑦𝑦
𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦

,  𝜌𝜌𝑦𝑦𝑧𝑧 = 𝑠𝑠𝑦𝑦𝑦𝑦
𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦

 and  𝜌𝜌𝑥𝑥𝑧𝑧 = 𝑠𝑠𝑦𝑦𝑦𝑦
𝑠𝑠𝑦𝑦𝑠𝑠𝑦𝑦

 denote the sample correlation between 

𝑦𝑦 and 𝑥𝑥,   𝑦𝑦 and 𝑧𝑧, and 𝑥𝑥 and 𝑧𝑧 respectively, 𝑏𝑏𝑦𝑦𝑥𝑥 = 𝑠𝑠𝑦𝑦𝑦𝑦
𝑠𝑠𝑥𝑥2

 and 𝑏𝑏𝑦𝑦𝑧𝑧 = 𝑠𝑠𝑦𝑦𝑦𝑦
𝑠𝑠𝑧𝑧2

 is the regression coefficient of 𝑦𝑦on 𝑥𝑥  and 

𝑦𝑦on 𝑧𝑧 respectively and 𝐶𝐶𝑦𝑦 = 𝑠𝑠𝑦𝑦
𝑦𝑦�

,𝐶𝐶𝑥𝑥 = 𝑠𝑠𝑦𝑦
𝑥̅𝑥

,and  𝐶𝐶𝑧𝑧 = 𝑠𝑠𝑦𝑦
𝑧̅𝑧

 denote the coefficient of variation of 𝑦𝑦, 𝑥𝑥 and 𝑧𝑧 respectively. 

2.2 Analytical Techniques 
The analytical technique adopted in this study is the relative efficiency. It is used where the comparison is made 
between a given procedure and a notional “best possible” procedure. 
Gupta (2011), defined Relative Efficiency as a statistical tool that is used to measure the efficiency of one estimator 
over another estimator. The percent relative efficiency of estimator “𝛼𝛼” to estimator “β” is expressed as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼𝛼𝛼 =
𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽)
𝑉𝑉𝑉𝑉𝑉𝑉(𝛼𝛼) ∗ 100% 

According to Singh et al (2010), the percent relative efficiency can also be calculated using, 

𝑃𝑃𝑅𝑅𝑅𝑅𝛼𝛼𝛼𝛼 =
𝑀𝑀𝑀𝑀𝑀𝑀𝛽𝛽
𝑀𝑀𝑀𝑀𝑀𝑀𝛼𝛼

∗ 100% 

Therefore, in this research the Percent Relative Efficiency (PRE) is a statistical tool that will be used to measure the 
efficiency of the proposed and previous estimators with respect to mean per unit estimator. 

Thus, the PRE = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇01)
𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑖𝑖𝑖𝑖�

∗  100 , for the none use of auxiliary variable (𝑖𝑖 = 0, 𝑗𝑗 = 1,2 ); for the use of one auxiliary 

variable (𝑖𝑖 = 1, 𝑗𝑗 = 1,2,3,4)  and for the use of two auxiliary variables (𝑖𝑖 = 2, 𝑗𝑗 = 1,2,3) and for the proposed 
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estimators (𝑖𝑖 = 𝑝𝑝, 𝑗𝑗 = 1,2) 
2.3 Estimators Used in Sampling Survey 
In this section we analyzed the performance of the proposed estimators and other existing estimators considered popular 
by means of a numerical evaluation of the first order mean square error (MSE) to the first order of approximation. For a 
fixed sample size, we considered the efficiency of the estimators with respect to: (i) without the use of any auxiliary 
variable; (ii) exploiting a single auxiliary variable; (iii) utilizing double auxiliary variables.  
2.3.1 Sampling without Auxiliary Variable 
The mean per unit estimator is perhaps the oldest estimator in the history of sample survey .The estimator for a sample 
of size n drawn from a population of size N is defined as: 

     𝑇𝑇01 = 1
𝑛𝑛
∑ 𝑦𝑦𝑖𝑖 = 𝑦𝑦�𝑛𝑛
𝑖𝑖=1                                       (2.1) 

The mean square error (variance; as estimator is unbiased) can be immediately written as: 
  𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇01) = 𝜃𝜃2𝑌𝑌�2𝐶𝐶𝑦𝑦2                                    (2.2) 

Searle (1964) presented a modified version of mean per unit estimator as given below 
 𝑇𝑇02 = 𝑘𝑘𝑦𝑦�                                         (2.3) 

where k is a constant which is determined by minimizing mean square error of  

𝑀𝑀𝑀𝑀𝐸𝐸(𝑇𝑇02) = 𝑌𝑌�2𝜃𝜃2𝐶𝐶𝑦𝑦2

1+𝜃𝜃2𝐶𝐶𝑦𝑦2
= 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇01)

1+𝑌𝑌�−2𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇01)
         (2.4) 

2.3. 2 Sampling with one Auxiliary Variable 
Auxiliary information is often used to improve the efficiency of estimators while using product, regression and ratio 
methods of estimation in survey sampling. 
Robson (1957), Introduced the idea of product estimator when there is highly negative correlation, the estimator is 
given as: 

  𝑇𝑇11 = 𝑦𝑦�2
𝑥̅𝑥2
𝑥̅𝑥1

                                          (2.5)  

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇11) = 𝑌𝑌�2�𝜃𝜃2𝐶𝐶𝑦𝑦2 + (𝜃𝜃2 − 𝜃𝜃1)�𝐶𝐶𝑥𝑥2 + 2𝐶𝐶𝑥𝑥𝐶𝐶𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥��                  (2.6) 
                                                  

Sukhatme(1962), used auxiliary variable in his ratio type estimator for two-phase sampling as: 

  𝑇𝑇12 =  𝑦𝑦�2
𝑥̅𝑥1
𝑥̅𝑥2

          (2.7) 

                         𝑀𝑀𝑆𝑆𝑆𝑆(𝑇𝑇12) = 𝑌𝑌�2�𝜃𝜃2𝐶𝐶𝑦𝑦2 + (𝜃𝜃2 − 𝜃𝜃1)�𝐶𝐶𝑥𝑥2 − 2𝐶𝐶𝑥𝑥𝐶𝐶𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥��  (2.8) 
Srivastava (1971), developed a general ratio estimator: 

  𝑇𝑇13 = 𝑦𝑦�2 �
𝑥̅𝑥1
𝑥̅𝑥2
�
𝛼𝛼

                                                (2.9) 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇13) = 𝑌𝑌�2𝐶𝐶𝑦𝑦2�𝜃𝜃2 − (𝜃𝜃2 − 𝜃𝜃1)𝜌𝜌𝑥𝑥𝑥𝑥2 �                                     (2.10) 
Singh and Espejo (2007), developed a ratio-product estimator: 

             𝑇𝑇14 = 𝑦𝑦�2 �𝑘𝑘
𝑥̅𝑥1
𝑥̅𝑥2

+ (1 − 𝑘𝑘) 𝑥̅𝑥2
𝑥̅𝑥1
�               (2.11) 

where         𝑘𝑘 =
1
2
�1 +

𝐶𝐶𝑦𝑦
𝐶𝐶𝑥𝑥
𝜌𝜌𝑥𝑥𝑥𝑥�         and  0 ≤ 𝑘𝑘 ≤ 1 

 
                 𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇14) = 𝑌𝑌�2𝐶𝐶𝑦𝑦2�𝜃𝜃2�1 − 𝜌𝜌𝑥𝑥𝑥𝑥2 � + 𝜃𝜃1𝜌𝜌𝑥𝑥𝑥𝑥2 �                           (2.12) 

2.3.4 Sampling with Two Auxiliary Variables 
Various authors have proposed mixed type estimators, (that is, use of both ratio and regression estimators in some 
fashion). These mixed estimators perform better as compared with individual estimators. 
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Mohanty (1967) proposed a Regression Ratio estimator: 

          𝑇𝑇21 = �𝑦𝑦�2 + 𝑏𝑏𝑥𝑥𝑥𝑥(𝑥̅𝑥1 − 𝑥̅𝑥2)� 𝑧̅𝑧1
𝑧̅𝑧2

                                     (2.13) 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇21) = 𝑌𝑌�2 �𝜃𝜃2𝐶𝐶𝑦𝑦2 + (𝜃𝜃2 − 𝜃𝜃1) �𝜌𝜌𝑥𝑥𝑥𝑥2 𝐶𝐶𝑧𝑧2 − �𝜌𝜌𝑥𝑥𝑥𝑥𝐶𝐶𝑦𝑦 − 𝜌𝜌𝑥𝑥𝑥𝑥𝐶𝐶𝑧𝑧�
2 + �𝐶𝐶𝑧𝑧 − 𝐶𝐶𝑦𝑦𝜌𝜌𝑦𝑦𝑦𝑦�

2 − 𝐶𝐶𝑦𝑦2𝜌𝜌𝑦𝑦𝑦𝑦2 ��        (2.14) 

Mukerjee et al (1987), developed three regression type estimators. One was for the situation when no auxiliary 
information was available: 

 𝑇𝑇22 = 𝑦𝑦�2 + 𝑏𝑏𝑥𝑥𝑥𝑥(𝑥̅𝑥1−𝑥̅𝑥2) + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑧𝑧1̅−𝑧𝑧2̅ )                            (2.15) 
  𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇22) = 𝑌𝑌�2𝐶𝐶𝑦𝑦2�𝜃𝜃2 − (𝜃𝜃2 − 𝜃𝜃1)�𝜌𝜌𝑥𝑥𝑥𝑥2 + 𝜌𝜌𝑦𝑦𝑦𝑦2 − 2𝜌𝜌𝑥𝑥𝑥𝑥𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥��                   (2.16) 

Hanif et al (2010), proposed an estimator in two phase sampling given by: 

𝑇𝑇23 = �𝑦𝑦�2 + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑥̅𝑥1 − 𝑥̅𝑥2)� �𝑘𝑘 𝑧̅𝑧1
𝑧̅𝑧2

+ (1 − 𝑘𝑘) 𝑧̅𝑧2
𝑧̅𝑧1
�                         (2.17) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑘𝑘 =
1
2

+
1
2
𝐶𝐶𝑦𝑦
𝐶𝐶𝑧𝑧
𝜌𝜌𝑦𝑦𝑦𝑦 −

1
2
𝐶𝐶𝑦𝑦
𝐶𝐶𝑧𝑧
𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥 

    𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇23) = 𝑌𝑌�2𝐶𝐶𝑦𝑦2 �𝜃𝜃2 − (𝜃𝜃2−𝜃𝜃1) �𝜌𝜌𝑦𝑦𝑦𝑦2 + �𝜌𝜌𝑦𝑦𝑦𝑦 − 𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥�
2��                    (2.18) 

3. Notations and the Proposed Estimators  
The study is motivated by Mohanty (1967), Mukerjee et al (1987), and Singh and Espejo (2007), their estimators and 
Mean Square error are given in (2.12) and (2.13), (2.14) and (2.15) and (2.10) and (2.11) respectively. 
For notational purpose it is assumed that the mean of the estimated variable and auxiliary variables can be approximated 
from their population mean so that:  

𝑦𝑦�2 = 𝑌𝑌�(1 + 𝑒𝑒𝑜𝑜), 𝑥̅𝑥1 = 𝑋𝑋�(1 + 𝑒𝑒1′), 𝑥̅𝑥2 = 𝑋𝑋�(1 + 𝑒𝑒1), 𝑧𝑧1̅ = 𝑍̅𝑍(1 + 𝑒𝑒2′),   𝑧𝑧2̅ = 𝑍̅𝑍(1 + 𝑒𝑒2).             (i) 
Where: 𝑥̅𝑥ℎ and 𝑧𝑧ℎ̅ are the sample mean of the auxiliary variables 𝑋𝑋 and 𝑍𝑍 at h-th phase for ℎ = 1 and 2, for the 
variable of interest 𝑦𝑦�2 is the sample mean of the study variable 𝑌𝑌 for the second phase. 
Also: 

𝜃𝜃𝑖𝑖 = 1
𝑛𝑛𝑖𝑖
− 1

𝑁𝑁
                                             (ii) 

Where, 𝑖𝑖 = 1,2 and   𝜃𝜃2 > 𝜃𝜃1 
𝐸𝐸(𝑒𝑒0)= 𝐸𝐸(𝑒𝑒1) = 𝐸𝐸(𝑒𝑒1′) = 𝐸𝐸(𝑒𝑒2) = 𝐸𝐸(𝑒𝑒2′) = 0 
𝐸𝐸(𝑒𝑒02)=𝜃𝜃2𝐶𝐶2𝑦𝑦 , 𝐸𝐸(𝑒𝑒1′2) =𝜃𝜃1𝐶𝐶2𝑥𝑥 , 𝐸𝐸(𝑒𝑒12)=𝜃𝜃2𝐶𝐶2𝑥𝑥 , 𝐸𝐸(𝑒𝑒2′2)=𝜃𝜃1𝐶𝐶2𝑧𝑧 , 𝐸𝐸(𝑒𝑒22)=𝜃𝜃2𝐶𝐶2𝑧𝑧 
𝐸𝐸(𝑒𝑒0𝑒𝑒1′) = 𝜃𝜃1𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑥𝑥 , 𝐸𝐸(𝑒𝑒0𝑒𝑒1) = 𝜃𝜃2𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑥𝑥 , 𝐸𝐸(𝑒𝑒0𝑒𝑒2′) = 𝜃𝜃1𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑧𝑧, , 
𝐸𝐸(𝑒𝑒0𝑒𝑒2) = 𝜃𝜃2𝜌𝜌𝑦𝑦𝑦𝑦𝐶𝐶𝑦𝑦𝐶𝐶𝑧𝑧 , 𝐸𝐸(𝑒𝑒1′𝑒𝑒1) = 𝜃𝜃1𝐶𝐶2𝑥𝑥 , 𝐸𝐸(𝑒𝑒1′𝑒𝑒2′ ) = 𝜃𝜃1𝜌𝜌𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝐶𝐶𝑧𝑧,  𝐸𝐸(𝑒𝑒1′𝑒𝑒2) = 𝜃𝜃1𝜌𝜌𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝐶𝐶𝑧𝑧 
𝐸𝐸(𝑒𝑒1𝑒𝑒2′) = 𝜃𝜃1𝜌𝜌𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝐶𝐶𝑧𝑧 , 𝐸𝐸(𝑒𝑒1𝑒𝑒2) = 𝜃𝜃2𝜌𝜌𝑥𝑥𝑥𝑥𝐶𝐶𝑥𝑥𝐶𝐶𝑧𝑧 , 𝐸𝐸(𝑒𝑒2′𝑒𝑒2) = 𝜃𝜃1𝐶𝐶2𝑧𝑧                           (iii) 
Therefore, the proposed estimators are: 

(a)  𝑇𝑇𝑝𝑝1 = �𝑦𝑦�2 + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑧𝑧1̅ − 𝑧𝑧2̅)� �𝛼𝛼 𝑥̅𝑥1
𝑥̅𝑥2

+ (1 − 𝛼𝛼) 𝑥̅𝑥2
𝑥̅𝑥1
�                                       (3.1) 

(b)  𝑇𝑇𝑝𝑝2 = �𝑦𝑦�2 + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑥̅𝑥1 − 𝑥̅𝑥2) + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑧𝑧1̅ − 𝑧𝑧2̅)� �𝛽𝛽 𝑧̅𝑧2
𝑧̅𝑧1

+ (1 − 𝛽𝛽) 𝑧̅𝑧1
𝑧̅𝑧2
�                                 (3.2) 

where 𝛼𝛼 and 𝛽𝛽 are suitable constants, 0 ≤ 𝛼𝛼 ≤ 1 and 0 ≤  𝛽𝛽 ≤ 1 
To obtain the MSE (𝑇𝑇𝑝𝑝1) to the first degree of approximation, express equation(3.1), in terms of  𝑒𝑒’𝑠𝑠, we have:  

𝑇𝑇𝑝𝑝1 = �𝑌𝑌�(1 + 𝑒𝑒0) + 𝑏𝑏𝑦𝑦𝑦𝑦[𝑍̅𝑍(1 + 𝑒𝑒2′) − 𝑍̅𝑍(1 + 𝑒𝑒2)]� �𝛼𝛼 𝑋𝑋��1+𝑒𝑒1
′�

𝑋𝑋�(1+𝑒𝑒1)
+ (1 − 𝛼𝛼) 𝑋𝑋�(1+𝑒𝑒1)

𝑋𝑋��1+𝑒𝑒1
′�
�             (3.3) 

𝑇𝑇𝑝𝑝1 = �(𝑌𝑌� + 𝑌𝑌�𝑒𝑒0) + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑍̅𝑍𝑒𝑒2′ − 𝑍̅𝑍𝑒𝑒2)�{𝛼𝛼(1 + 𝑒𝑒1′)(1 + 𝑒𝑒1)−1   + (1 − 𝛼𝛼)(1 + 𝑒𝑒1)(1 + 𝑒𝑒1′)−1}       (3.4) 
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The negative exponential of (3.4) is expanded using the method of indeterminate coefficients 
𝑇𝑇𝑝𝑝1 = �(𝑌𝑌� + 𝑌𝑌�𝑒𝑒0) + 𝑏𝑏𝑦𝑦𝑦𝑦(𝑍̅𝑍𝑒𝑒2′ − 𝑍̅𝑍𝑒𝑒2)}{𝛼𝛼(1 + 𝑒𝑒1′)(1 − 𝑒𝑒1 + 𝑒𝑒12 … … ) 

+(1 − 𝛼𝛼)(1 + 𝑒𝑒1)(1 − 𝑒𝑒1′ + 𝑒𝑒1′2 … … . )}                              (3.5) 
Expanding the right hand side of (3.5), substituting (i) and retaining terms in first degree of  𝑒𝑒’𝑠𝑠, we have: 

𝑇𝑇𝑝𝑝1 = {𝑌𝑌�𝛼𝛼 − 𝑌𝑌�𝛼𝛼𝑒𝑒1 + 𝑌𝑌�𝛼𝛼𝛼𝛼1′ + 𝑌𝑌� − 𝑌𝑌�𝑒𝑒1′ + 𝑌𝑌�𝑒𝑒1 − 𝑌𝑌�𝛼𝛼 + 𝑌𝑌�𝛼𝛼𝛼𝛼1′  
−𝑌𝑌�𝛼𝛼𝑒𝑒1 + 𝑌𝑌�𝛼𝛼𝑒𝑒0 + 𝑌𝑌�𝑒𝑒0 − 𝑌𝑌�𝛼𝛼𝑒𝑒0 + 𝑍̅𝑍𝛼𝛼𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2′ + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2′  

−𝑍̅𝑍𝛼𝛼𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2′ + 𝑍̅𝑍𝛼𝛼𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2 + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2 − 𝑍̅𝑍𝛼𝛼𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2� 
𝑇𝑇𝑝𝑝1 = �(𝑌𝑌� + 𝑌𝑌�𝑒𝑒0 + 𝑌𝑌�𝑒𝑒1 − 𝑌𝑌�𝑒𝑒1′ − 2𝛼𝛼𝑌𝑌�𝑒𝑒1 + 2𝛼𝛼𝑌𝑌�𝑒𝑒1′) + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒2′−𝑒𝑒2)�          (3.6) 

Subtracting 𝑌𝑌� from both sides of (3.6), squaring both sides and then taking expectations of both sides we get MSE of 
the estimator  𝑇𝑇𝑝𝑝1, up to the first order of approximation as 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇1 − 𝑌𝑌�)2 = 𝑀𝑀𝑀𝑀𝐸𝐸( 𝑇𝑇𝑝𝑝1) = 𝐸𝐸�(𝑌𝑌�𝑒𝑒0 + 𝑌𝑌�𝑒𝑒1 − 𝑌𝑌�𝑒𝑒1′ − 2𝑌𝑌�𝛼𝛼𝑒𝑒1 + 2𝑌𝑌�𝛼𝛼𝛼𝛼1′) + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒2′−𝑒𝑒2)�2 

𝑀𝑀𝑆𝑆𝑃𝑃�𝑇𝑇𝑝𝑝1� = 𝑃𝑃�(𝑌𝑌�2(𝑒𝑒0 + 𝑒𝑒1 − 𝑒𝑒1′ − 2𝛼𝛼𝑒𝑒1 + 2𝛼𝛼𝑒𝑒1′)2 + 𝑍̅𝑍2𝑏𝑏𝑦𝑦𝑧𝑧2 (𝑒𝑒2′−𝑒𝑒2)2

                     +2𝑌𝑌�𝑍̅𝑍𝑏𝑏𝑦𝑦𝑧𝑧(𝑒𝑒2′−𝑒𝑒2)(𝑒𝑒0 + 𝑒𝑒1 − 𝑒𝑒1′ − 2𝛼𝛼𝑒𝑒1 + 2𝛼𝛼𝑒𝑒1′)�
                (3.7) 

Expanding the right hand side of (3.7) and applying the notations of (ii) and (iii) we have:   
𝑀𝑀𝑀𝑀𝐸𝐸( 𝑇𝑇𝑝𝑝1) =𝑌𝑌�2�𝜃𝜃2𝐶𝐶𝑦𝑦2 + (𝜃𝜃2 − 𝜃𝜃1)𝐶𝐶𝑥𝑥2 + (𝜃𝜃2 − 𝜃𝜃1)4𝛼𝛼2𝐶𝐶𝑥𝑥2 + (𝜃𝜃2 − 𝜃𝜃1)2𝜌𝜌𝑦𝑦𝑥𝑥𝐶𝐶𝑦𝑦𝐶𝐶𝑥𝑥 

−(𝜃𝜃2−𝜃𝜃1)4𝛼𝛼𝜌𝜌𝑦𝑦𝑥𝑥𝐶𝐶𝑦𝑦𝐶𝐶𝑥𝑥 − (𝜃𝜃2−𝜃𝜃1)4𝛼𝛼𝐶𝐶𝑥𝑥2 − (𝜃𝜃2 − 𝜃𝜃1)𝜌𝜌𝑦𝑦𝑧𝑧2 𝐶𝐶𝑦𝑦2 

                    −(𝜃𝜃2−𝜃𝜃1)2𝜌𝜌𝑦𝑦𝑧𝑧𝜌𝜌𝑥𝑥𝑧𝑧𝐶𝐶𝑦𝑦𝐶𝐶𝑥𝑥 + (𝜃𝜃2−𝜃𝜃1)4𝛼𝛼𝜌𝜌𝑦𝑦𝑧𝑧𝜌𝜌𝑥𝑥𝑧𝑧𝐶𝐶𝑦𝑦𝐶𝐶𝑧𝑧�                         (3.8) 
The optimum value of “𝛼𝛼”  is obtained by differentiating (3.8), which gives it minimum value as: 

𝛼𝛼 = 1
2
�1 + 𝐶𝐶𝑦𝑦

𝐶𝐶𝑥𝑥
𝜌𝜌𝑦𝑦𝑦𝑦 −

𝐶𝐶𝑦𝑦
𝐶𝐶𝑥𝑥
𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥�                             (3.9) 

Substituting equation (3.9) in (3.8) and simplifying, the Mean Square Error of (3.1) we have: 

𝑀𝑀𝑀𝑀𝐸𝐸( 𝑇𝑇𝑝𝑝1) = 𝑌𝑌�2𝐶𝐶𝑦𝑦2 �𝜃𝜃2 − (𝜃𝜃2−𝜃𝜃1) �𝜌𝜌𝑦𝑦𝑦𝑦2 + �𝜌𝜌𝑦𝑦𝑦𝑦 − 𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥�
2��               (3.10) 

Similarly, to obtain the MSE (𝑇𝑇𝑝𝑝2), from (3.2) above to the first degree of approximation, substituting (i), we have: 
𝑇𝑇𝑝𝑝2 = �𝑌𝑌�(1 + 𝑒𝑒0) + 𝑏𝑏𝑦𝑦𝑦𝑦�𝑋𝑋�(1 + 𝑒𝑒1′) − 𝑋𝑋�(1 + 𝑒𝑒1)� + 𝑏𝑏𝑦𝑦𝑦𝑦�𝑍̅𝑍(1 + 𝑒𝑒2′) − 𝑍̅𝑍(1 + 𝑒𝑒2)�� 

�𝛽𝛽
𝑍̅𝑍(1 + 𝑒𝑒2′)
𝑍̅𝑍(1 + 𝑒𝑒2)

+ (1 −  𝛽𝛽)
𝑍̅𝑍(1 + 𝑒𝑒2)
𝑍̅𝑍(1 + 𝑒𝑒2′)

� 

𝑇𝑇𝑝𝑝2 = �𝑌𝑌�(1 + 𝑒𝑒0) + 𝑏𝑏𝑦𝑦𝑦𝑦�𝑋𝑋�(1 + 𝑒𝑒1′) − 𝑋𝑋�(1 + 𝑒𝑒1)� + 𝑏𝑏𝑦𝑦𝑦𝑦�𝑍̅𝑍(1 + 𝑒𝑒2′) − 𝑍̅𝑍(1 + 𝑒𝑒2)�� 
{𝛽𝛽(1 + 𝑒𝑒2′)(1 + 𝑒𝑒2)−1 + (1 − 𝛽𝛽)(1 + 𝑒𝑒2)(1 + 𝑒𝑒2′)−1}                          (3.11) 

The negative exponential of (3.11) is expanded using the method of indeterminate coefficients 
 𝑇𝑇𝑝𝑝2=�(𝑌𝑌� + 𝑌𝑌�𝑒𝑒0) + 𝑋𝑋�𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒1′ − 𝑒𝑒1) + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒2′ − 𝑒𝑒2)� 

       {(𝛽𝛽 + 𝛽𝛽𝑒𝑒2′)(1 − 𝑒𝑒2 + 𝑒𝑒22 … … ) + (1 + 𝑒𝑒2 − 𝛽𝛽 −  𝛽𝛽𝑒𝑒2)(1 − 𝑒𝑒2′ + 𝑒𝑒2′2 … … . )}      (3.12)  
Expanding the right hand side of (3.12) and retaining terms of first degree of  𝑒𝑒’𝑠𝑠, we have: 

 𝑇𝑇𝑝𝑝2={𝑌𝑌�𝑘𝑘 − 𝑌𝑌�𝛽𝛽𝑒𝑒2′ + 𝑌𝑌�𝛽𝛽𝑒𝑒2 + 𝑌𝑌� − 𝑌𝑌�𝑒𝑒2 + 𝑌𝑌�𝑒𝑒2′ − 𝑌𝑌�𝛽𝛽 + 𝑌𝑌�𝛽𝛽𝑒𝑒2 − 𝑌𝑌�𝛽𝛽𝛽𝛽2′  
+𝑌𝑌�𝛽𝛽𝑒𝑒0 + 𝑌𝑌�𝑒𝑒0 − 𝑌𝑌�𝛽𝛽𝑒𝑒0 + 𝑋𝑋�𝛽𝛽𝑏𝑏𝑦𝑦𝑥𝑥𝑒𝑒1′ + 𝑋𝑋�𝑏𝑏𝑦𝑦𝑥𝑥𝑒𝑒1′ − 𝑋𝑋�𝛽𝛽𝑏𝑏𝑦𝑦𝑥𝑥𝑒𝑒1′  
+𝑋𝑋�𝛽𝛽𝑏𝑏𝑦𝑦𝑥𝑥𝑒𝑒1 − 𝑋𝑋�𝑏𝑏𝑦𝑦𝑥𝑥𝑒𝑒1 + 𝑋𝑋�𝛽𝛽𝑏𝑏𝑦𝑦𝑥𝑥𝑒𝑒1 + 𝑍̅𝑍𝛽𝛽𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2′ + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2′  

−𝑍̅𝑍𝛽𝛽𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒2′ −  𝑍̅𝑍𝛽𝛽𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒1 − 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒1 + 𝑍̅𝑍𝛽𝛽𝑏𝑏𝑦𝑦𝑧𝑧𝑒𝑒1� 
 𝑇𝑇𝑝𝑝2 = �(𝑌𝑌� + 𝑌𝑌�𝑒𝑒0 + 𝑌𝑌�𝑒𝑒2′ − 𝑌𝑌�𝑒𝑒2 − 2𝛽𝛽𝑌𝑌�𝑒𝑒2′ + 2𝛽𝛽𝑌𝑌�𝑒𝑒2) + 𝑋𝑋�𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒1′−𝑒𝑒1) + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒2′−𝑒𝑒2)�         (3.13) 

Subtracting 𝑌𝑌� from both sides of (3.13), squaring both sides and then taking expectations of both sides we:   

𝑀𝑀𝑀𝑀𝑀𝑀� 𝑇𝑇𝑝𝑝2 − 𝑌𝑌��2 = 

𝑀𝑀𝑀𝑀𝑀𝑀�  𝑇𝑇𝑝𝑝2�=𝐸𝐸�(𝑌𝑌�𝑒𝑒0 + 𝑌𝑌�𝑒𝑒2′ − 𝑌𝑌�𝑒𝑒2 − 2𝛽𝛽𝑌𝑌�𝑒𝑒2′ + 2𝛽𝛽𝑌𝑌�𝑒𝑒2) + 𝑋𝑋�𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒1′−𝑒𝑒1) + 𝑍̅𝑍𝑏𝑏𝑦𝑦𝑦𝑦(𝑒𝑒2′−𝑒𝑒2)�2 
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𝑀𝑀𝑀𝑀𝑀𝑀�  𝑇𝑇𝑝𝑝2� = 𝐸𝐸�𝑌𝑌�2(𝑒𝑒0 + 𝑒𝑒2′ − 𝑒𝑒2 − 2𝛽𝛽𝑒𝑒2′ + 2𝛽𝛽𝑒𝑒2)2 + 𝑋𝑋�2𝑏𝑏𝑦𝑦𝑥𝑥2 (𝑒𝑒1′−𝑒𝑒1)2 
+2𝑋𝑋�𝑌𝑌�𝑏𝑏𝑦𝑦𝑥𝑥(𝑒𝑒1′−𝑒𝑒1)(𝑒𝑒0 + 𝑒𝑒2′ − 𝑒𝑒2 −  2𝛽𝛽𝑒𝑒2′ + 2𝛽𝛽𝑒𝑒2) 

+𝑍̅𝑍2𝑏𝑏𝑦𝑦𝑧𝑧2 (𝑒𝑒2′−𝑒𝑒2)2 + 2𝑌𝑌�𝑍̅𝑍𝑏𝑏𝑦𝑦𝑧𝑧(𝑒𝑒2′−𝑒𝑒2)(𝑒𝑒0 + 𝑒𝑒2′ − 𝑒𝑒2 −  2𝛽𝛽𝑒𝑒2′ + 2𝛽𝛽𝑒𝑒2) 

+2𝑋𝑋�𝑍̅𝑍𝑏𝑏𝑦𝑦𝑥𝑥𝑏𝑏𝑦𝑦𝑧𝑧(𝑒𝑒1′−𝑒𝑒1)(𝑒𝑒2′−𝑒𝑒2)�                                (3.14) 
Expanding the right hand side of(3.14) and applying the notations of (𝑖𝑖𝑖𝑖) we have: 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇𝑝𝑝2� = 𝑌𝑌�2�𝜃𝜃2𝐶𝐶𝑦𝑦2 +  (𝜃𝜃2 − 𝜃𝜃1)𝐶𝐶𝑧𝑧2 + (𝜃𝜃2 − 𝜃𝜃1)4𝛽𝛽2𝐶𝐶𝑧𝑧2 
−(𝜃𝜃2 − 𝜃𝜃1)4𝛽𝛽𝐶𝐶𝑧𝑧2 − (𝜃𝜃2 − 𝜃𝜃1)𝜌𝜌𝑦𝑦𝑥𝑥2 𝐶𝐶𝑦𝑦2 

+(𝜃𝜃2 − 𝜃𝜃1)2𝜌𝜌𝑦𝑦𝑥𝑥𝜌𝜌𝑥𝑥𝑧𝑧𝐶𝐶𝑦𝑦𝐶𝐶𝑧𝑧 − (𝜃𝜃2 − 𝜃𝜃1)4𝛽𝛽𝜌𝜌𝑦𝑦𝑥𝑥𝜌𝜌𝑥𝑥𝑧𝑧𝐶𝐶𝑦𝑦𝐶𝐶𝑧𝑧                      (3.15) 
−(𝜃𝜃2 − 𝜃𝜃1)𝜌𝜌𝑦𝑦𝑧𝑧2 𝐶𝐶𝑦𝑦2 + (𝜃𝜃2 − 𝜃𝜃1)2𝜌𝜌𝑦𝑦𝑥𝑥𝜌𝜌𝑦𝑦𝑧𝑧𝜌𝜌𝑥𝑥𝑧𝑧𝐶𝐶𝑦𝑦2 

The optimum value of “𝛽𝛽” is obtain by differentiating (3.15), which gives it minimum value as: 

𝛽𝛽 = 1
2
�1 + 𝐶𝐶𝑦𝑦

𝐶𝐶𝑧𝑧
𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥�                                 (3.16) 

Substituting equation (3.16) in (3.15) and simplifying the Mean Square Error of (3.2) is:   

 𝑀𝑀𝑀𝑀𝑀𝑀�  𝑇𝑇𝑝𝑝2� = 𝑌𝑌�2𝐶𝐶𝑦𝑦2 �𝜃𝜃2 − (𝜃𝜃2−𝜃𝜃1) �𝜌𝜌𝑦𝑦𝑦𝑦2 + �𝜌𝜌𝑦𝑦𝑦𝑦 − 𝜌𝜌𝑦𝑦𝑦𝑦𝜌𝜌𝑥𝑥𝑥𝑥�
2��                      (3.17) 

4. Empirical Study 
To analyze the performance of various estimators of population mean 𝑌𝑌�of study variable y, we considered the 
following two data sets: 
Data 1. [Source: Perry (2007), page 63] 
𝑦𝑦= Household net disposal income, 𝑥𝑥= the household consumption and 𝑧𝑧 =the number of household income-earners  

𝑁 = 8011, 𝑎𝑎1 = 700, 𝑎𝑎2 = 250, 𝑌𝑌� = 28229.427,𝑋𝑋� = 20418.618, 𝑍̅𝑍 = 1.6897, 𝐶𝐶𝑦𝑦 = 0.787, 
 𝐶𝐶𝑥𝑥 = 0.668, 𝐶𝐶𝑧𝑧 = 0.4596, 𝜌𝜌𝑥𝑥𝑦𝑦 = 0.74, 𝜌𝜌𝑦𝑦𝑧𝑧 = 0.458, 𝜌𝜌𝑥𝑥𝑧𝑧 = 0.348 

Data 2. [Source: Perry (2007), page 63] 
𝑦𝑦= The sale area (in square metres), 𝑥𝑥= the number of employees and 𝑧𝑧 = the amount of soft drinks sales (in 1000 
euros in a year)  

𝑁 = 2376, 𝑎𝑎1 = 200, 𝑎𝑎2 = 70, 𝑌𝑌� = 1701.946,𝑋𝑋� = 40.617, 𝑍̅𝑍 = 615.637, 𝐶𝐶𝑦𝑦 = 1.285, 
 𝐶𝐶𝑥𝑥 = 2.35, 𝐶𝐶𝑧𝑧 = 1.651, 𝜌𝜌𝑥𝑥𝑦𝑦 = 0.898, 𝜌𝜌𝑦𝑦𝑧𝑧 = 0.861, 𝜌𝜌𝑥𝑥𝑧𝑧 = 0.773 

Therefore, in this study the Percent Relative Efficiency (PRE) is used to measure the performance of the proposed and 
previous estimators with respect to mean per unit estimator. 
Table 4.1. Percent relative efficiency of different estimators compared to mean per unit estimator 

Estimators  Auxiliary  MSE of      MSE of         PRE  of          PRE  of 
           Variable   Population I  Population II    Population I       Population II 
            Used                                    
  𝑇𝑇01                  𝑎𝑎𝑜𝑎𝑎𝑒𝑒     1912690      66315.13        100                     100 
  𝑇𝑇02                  𝑎𝑎𝑜𝑎𝑎𝑒𝑒     1908110      64830.9         100.24            102.2894 
  𝑇𝑇11        𝑜𝑎𝑎𝑒𝑒      4421459      360731          43.25925          18.38354 
  𝑇𝑇12        𝑜𝑎𝑎𝑒𝑒      1232701      68978.73        155.1625            96.13852 
 𝑇𝑇13                   𝑜𝑎𝑎𝑒𝑒      1217679      30500.06        157.0767            217.4262 
  𝑇𝑇14        𝑜𝑎𝑎𝑒𝑒      1217679      30500.06        157.0767            217.4262 
  𝑇𝑇21                   𝑡𝑤𝑤𝑜      1353340      84774.87        141.331           78.22499 
  𝑇𝑇22                  𝑡𝑤𝑤𝑜      1250836      50664.25        152.9129          130.8914 
  𝑇𝑇23                  𝑡𝑤𝑤𝑜      1166667      29263.7         163.9447            226.6122 
  𝑇𝑇𝑝𝑝1                 𝑡𝑤𝑤𝑜      1218594      30990.89        156.9587              213.9827 
  𝑇𝑇𝑝𝑝2                 𝑡𝑤𝑤𝑜      1166667       29263.7        163.9447              226.6122 

       Note: MSE=Mean Square Error; PRE=Percent Relative Efficiency 
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Table 4.2. Percent relative efficiency of non-asymptotical optimum and asymptotical optimum estimators compared to 
mean per unit Estimator         

Non-Asymptotical         MSE of        MSE of         PRE of            PRE of 
Optimum Estimators      Population I    Population II    Population I       Population II 
       𝑇𝑇01                            1912690        66315.13         100                  100 
        𝑇𝑇11                  4421459        360731              43.25925            18.38354 
        𝑇𝑇12                  1232701        68978.73         155.1625          96.13852 
        𝑇𝑇21                  1353340        84774.87         141.331           78.22499 
       𝑇𝑇22                     1250836        50664.25         152.9129             130.8914 
Asymptotical 
Optimum Estimators 
     𝑇𝑇02                   1908110         64830.9          100.24           102.2894 
     𝑇𝑇13                   1217679         30500.06         157.0767         217.4262 
𝑇𝑇14 = 𝑇𝑇13                1217679         30500.06         157.0767         217.4262 
    𝑇𝑇23                     1166667         29263.7          163.9447         226.6122 
    𝑇𝑇𝑝𝑝1                      1218594            30990.89         156.9587         213.9827 
𝑇𝑇𝑝𝑝2 = 𝑇𝑇23                1166667         29263.7          163.9447         226.6122 

5. Discussions of Results 
From table 4.1, in the first population, the estimators  𝑇𝑇11 𝑇𝑇12,𝑇𝑇13,𝑇𝑇14,𝑇𝑇21,𝑇𝑇22,𝑇𝑇23,𝑇𝑇𝑝𝑝1, and 𝑇𝑇𝑝𝑝2  that utilizes 
supplementary (auxiliary variable) information has established superiority over the two estimators (𝑇𝑇01 and 𝑇𝑇02) that 
do not use such information. Also, in the second population all the estimators with the exception of  𝑇𝑇11 and 𝑇𝑇12 
shown advantage over  𝑇𝑇01 and 𝑇𝑇02 that do not use the auxiliary variables. Probably, the discrepancy in the outcome 
of  𝑇𝑇11 and 𝑇𝑇12 is caused by the different types of populations considered. The population described in Data Set 2 
shows, as compared to that in Data Set 1, a higher variability and higher correlation between the variables. Particularly, 
the high variability in the auxiliary variables may affect the first order mean square error making it inaccurate. 
Therefore, there is always the need to ensure that the auxiliary variables is highly correlated with the study variable and 
the population under consideration is homogeneously distributed and where there is no correlation between the auxiliary 
and study variables the application of double sampling may be futile. Also, where there is correlation between the study 
and auxiliary variables and such population is not homogeneously distributed, stratified double sampling will be more 
appropriate. 
Furthermore, utilizing supplementary information to improve the performance of an estimator cannot be 
overemphasized, but it is worth to note that asymptotical optimum estimators performed better than non- asymptotical 
optimum estimators. In table 4.2, estimators 𝑇𝑇13 and 𝑇𝑇14 utilized only one auxiliary variable, but performed better than 
estimators 𝑇𝑇21 and 𝑇𝑇22 that used two auxiliary variables. The two mean per unit estimator considered in this study also 
shows that, the asymptotical optimum estimators 𝑇𝑇02  have advantage over the non-asymptotical optimum 
estimators 𝑇𝑇01. Therefore, the performance of the asymptotical optimum estimators and non- asymptotical optimum 
estimators is shown in table 4.3. It reveals that the asymptotical optimum estimators (𝑇𝑇13,𝑇𝑇14,𝑇𝑇23,𝑇𝑇𝑝𝑝1 and  𝑇𝑇𝑝𝑝2) 
perform better than the non-asymptotical optimum estimators (𝑇𝑇01,𝑇𝑇11,𝑇𝑇12,𝑇𝑇21 and 𝑇𝑇22), except for the mean per unit 
estimator  𝑇𝑇02.  
The estimator 𝑇𝑇13 performed equally well as 𝑇𝑇14 and the first proposed estimator 𝑇𝑇𝑝𝑝1 used the second auxiliary 
variable for the regression and the first auxiliary variable for the ratio-product estimator and it  performed better than 
the following estimators 𝑇𝑇01,𝑇𝑇02,𝑇𝑇11,𝑇𝑇12,𝑇𝑇21, and 𝑇𝑇22 .The second estimator 𝑇𝑇𝑝𝑝2  is regression-cum-regression and 
product-cum-ratio estimator and it gave a higher precision over all the estimators considered in this study, but gave an 
equal precision as  𝑇𝑇23. Though 𝑇𝑇23 is a regression and ratio-cum- product estimator and it uses the first auxiliary 
variable for the regression and the second auxiliary variable for the ratio-product estimator. Perry (2007), asserted that, 
when two or more auxiliary variables are available, many estimators may be defined by linking together different 
estimators such as ratio, product or regression, each one exploiting a single variable. 
6. Conclusions 
In the course of the research two asymptotical optimum estimators that utilize two auxiliary variables were proposed for 
increasing the efficiency of estimators in double sampling. 
The study reveals that, where there is correlation between the study and auxiliary variables and such population is not 
homogeneously distributed, stratified double sampling will be more appropriate. 
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The study also showed that, estimators that are asymptotically optimum and utilized single auxiliary variable are more 
efficient than those that non-asymptotically optimum with two auxiliary variables. Therefore, estimators that do not use 
auxiliary variable have high precision; however, estimators that use one or two auxiliary variables have higher precision 
and estimators that use one or two auxiliary variables and that are asymptotically optimum have highest precision. 
The study considered estimators with the no information case for the ratio and regression estimators. It is recommended 
that a study of estimators with the partial and complete information case and the stratified double sampling can be 
carried out. 
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