Cp(4)

ISN N 2n:23jes 15S564 2m1:32123

AYMP(1):1512 HOMNVHPOBOMHETHY?

Cobpini पeरy 0 :

Программа VIII Международной конференции «Аморфные и микрокристаллические полупроводники»

2 июля

Пленарное заседание

10:00 Открытие конференции. Председатель оргкомитета Е.И. Теруков Со-председатель оргкомитета К.Д. Цэндин

10:05 Коломийцевская лекция. В.И. Иванов- Омский
Наноструктура воды и вода в наноструктурах
10:45 J.O. Oelerich, D.Huemmer, and S.D. Baranovskii How to find out the DOS in disordered organic semiconductors

11:15 А.Г. Казанский

Основные направления и перспективы развития тонкопленочных солнечных элементов

11:45 A.V. Kolobov, P. Fons, J. Tominaga
Local structure of layered $\mathrm{Ge}-\mathrm{Sb}-\mathrm{Te}$ phase-change alloys and the mechanism of phase change
12:15-13:30 обед

13:30 Г.Л. Пахомов, П.А. Стужин
Новые фталоцианиновые материалы в органической электронике:
субфталоцианины и тиапорфиразины

14:00 А. Б. Певцов

Фотонные кристаллы на основе халькогенидных стеклообразных полупроводников

14:30 Ehsanollah Fathi and Andrei Sazonov
Flexible thin film silicon solar cells

Секция А
 Аморфный гидрогенизированный кремний и сплавы на его основе

15:00 A. Kosarev, I. Koudriavtsev, I. Cosme
SIMS characterization of $\mathrm{Ge}-\mathrm{Si}: \mathrm{H}$ films and device structures
15:20 А.П. Авачев, С.П. Вихров, Н.В. Вишняков, В.Г. Мишустин Контактные явления в барьерных структурах металл - неупорядоченный полупроводник

> 15:40-16:00 кофе

16:00 А.С. Гудовских, К.С. Зеленцов, Д.А. Кудряшов, А.С. Абрамов, Е.И. Теруков

Phase Change Memory: Achievements, Problems and Perspectives
Е26. Д.А. Явсин, В.М. Кожевин, С.А. Яковлев, М.А. Яговкина, Б.Т. Мелех, А.Б. Певцов Получение аморфных пленок $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ методом лазерного электродиспергирования

E27. A.P. Odrinski, V.F. Gremenok, E.P. Zaretskaya Investigation of electrically active defects of $\mathrm{Cu}(\operatorname{InGa})\left(\mathrm{S}_{1-y} \mathrm{Se}_{\mathrm{y}}\right)_{2}$ thin films absorbers

Секция F: Технические приложения

F01. А.В. Медведев, А.Б. Певцов, Д.А. Курдюков, В.Г. Голубев, В.Г. Карпов Индуцированная электрическим полем нуклеация и эффект переключения в пленках VO2 и композитах опал-VO2

F02. С.С. Карпова, С.В. Мякин, В.А Мошников, Н.Е. Казанцева, А.А. Бобков, К.В. Воронцова

Исследование особенностей адсорбционных центров газочувствительных наноструктур на основе оксидов металлов

F03. A. Smirnov, A. Stsiapanau, E. Mukha, Abubakar Saddiq Mohammed, J.Garcia, A. Hubarevich J. Solovjov

Sponge like porous silicon formation for integrated electroluminescence light emitting devices

F04. А.А. Шерченков, С.А. Козюхин, А.В. Бабич
Исследование кинетики процесса кристаллизации в тонких пленках материалов системы $\mathrm{Ge}-\mathrm{Sb}-\mathrm{Te}-\mathrm{Bi}$

F05. A. Kosarev, A. Torres, I. Cosme, F. Temoltzi
Ge-Si:H films deposited by LF PECVD at low temperatures for device applications
F06. О.Я. Березина, Д.А. Кириенко, Г.Б. Стефанович
Гибкие электронные устройства на основе оксидов переходных металлов

F07. B.M. Лебедев

Количественное определение концентрации элементов с малым атомным номером в полупроводниковых пленках на пучках ионов

F08. Ю.В. Ануфриев, Е.М.Еганова, А.И. Попов, С.М. Сальников Изучение конструктивно-технологических особенностей современных ячеек PRAM-памяти

F09. В.M. Кашкаров, А.С. Леньшин, П.В. Середин, Б.Л. Агапов, В.Н. Ципенюк Модификация оптических свойств пористого кремния химической обработкой в ТЭОС

F10. А.X. Абдуев, А.ШІ. Асваров, А.К. Ахмедов, Д.А. Свешникова Формирование нанопорошков ZnOx при механоактивации смеси порошков ZnO и Zn
 flurerde concecenbere results. Moreover, the addition of H 3 PO 4 allows to control the ions ethanol to this solution allows to moisten the hydrophobic silicon surface and to get In our experiments we were using $\mathrm{NH}_{4} \mathrm{~F}: \mathrm{H}_{3} \mathrm{PO}_{4}: \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ solution. The addition of tribution. Note, that very high porosities can be achieved at low current densities this value because of local gas burble agitanting Anodizing process can be unstable near volume of hydrogen can be dissolved in solution and doesn't form burbles. The critical
current is $4.3 \mathrm{~mA} / \mathrm{cm} 2$ at ambient bles. At low current densities value of emitted gas is smaller and practically the whole
volume of hydrogen can be dissle declines. This increasing is determined by break off solution agitate by emitted gas bur-diffu-sion layer thickness increasing from 30 to about 500 microns while current density sponge like structure (at lower current densities) at $10 \mathrm{~mA} / \mathrm{cm}$. porous silicon changes from regular vertical holes (at higher current densities) to a anomaly versus current density is absolutely evident. The plot turns and morphology of $\mathrm{cm},\left\langle 100>\right.$ orientation) in 1:2:1 $\mathrm{HF}: \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ was published [3]. The porosity porosity structure versus anodizing current density for high doped silicon (0.01 Ohm Schottiky junction fabrication, so this material is under our investigation [2]. Change of tion in novel ammonium fluoride solution.
High doped single crystal Si substrate we are describing the stable and reproducible method for high porosity silicon formaiences we propose to use a solution with low fluorine ions concentration. In this paper hydrofluoric acid which destroy aluminum interconnections. To avoid these inconventime (few seconds for thin porous layers formation), toxic for operators and aggressive acid solution [1]. But this method has some inconveniences such as short anodizing as functional layer for light emitting devices is electrochemical etching in hydrofluoric A standard technological method of high porosity nanostructured silicon formation meaning that it normally can not produce light. Si chip is a light emitting device because Si is an indirect band gap semiconductor, Integration of electronic and optoelectronic components on a silicon chip is the task Belarus "Transistor Plant, RPC "Integral", 16 Korzhenevskogo St, 220108 Minsk, Republic of Singapore Camino de Vera s/n $8 \mathrm{~F}, 46022$ Valencia, Spain ${ }^{2}$ Valencia Nanophotonics Technology Center, Universidad Politecnica de Valencia,
${ }^{1}$ Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki St.,
${ }^{220013 M i n s k, ~ R e p u b l i c ~ o f ~ B e l a r u s, ~ s m i m o v @ b s u i r . b y ~}$

