

Development of a Conceptual Decision Support System for Drinking Water Treatment Process

Animashaun, I. M¹, Ibibie, C.E^{1*}, Otache, M.Y¹ Mohammed, A. S.¹ & Jeje, I. A² ¹ Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna Niger State, Nigeria

² Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife Osun State, Nigeria
 *Corresponding author email: emmanueleberechukwu833@gmail.com , +2349035685703

ABSTRACT

Drinking Water Decision Support System (DW-DSS) model is an integration of knowledge based information and programming tool aimed at tackling the overwhelming task of providing water under the condition of poor raw water quality and limited financial capacity. Visual Basic 6.0 was selected for the development due to its event driven ability, its capability of object oriented programming and a user-friendly interface. DW-DSS was developed to help water resource technical personnel and manager in acquiring information on the processes of drinking water treatment plant. Examples of data types, Graphical User Interface (GUI) and simulation results were presented. The simulation result demonstrates the use of DW-DSS model and an algorithm for the process design for drinking water treatment plant in Kachia, Kaduna State. It also estimates coagulation and flocculation detention time, amount of bags of alum needed for treating water of different turbidity, pumping cost of machine and it efficiency with a summary of the treatment plant.

Keywords: Decision Support System, Kachia Water Treatment Plant, Kaduna State, Modeling, Visual Basic

1 INTRODUCTION

Consumption of water of low quality is often accompanied with significant problems ranging from chronic detrimental health effects, retard economic development and loss of thousands of lives (Animashaun et al., 2015; United Nation, 2005). Ensuring good water quality for the developing nation amidst limited financial capability is thus becoming a topical issue. To achieve the goal of save drinking water for all, the use of a simulator or model is being adopted in recent time. With the growing pressure on drinking water demand, there is a greater need to optimize water treatment plant; so as to whether increase the throughput, reduce operational costs, or minimize capital expenditure (Luuk and Jeremy, 2006)). However, making decision concerning complex systems often pose a challenge to our cognitive capabilities and thus, human initiative judgment and decision making can be far from optimal (Marek et al., 2002; Adeogun and Nwude, 2016). A tool that can be of great assistance in decision making is a Decision Support System (DSS) model (Luuk and Jeremy, 2006).

A number of DSS models used in drinking water treatment has been developed over the years (Luuk and Jeremy, 2006). They are either used to simulate individual treatment process or the whole treatment plant, to enable process engineers and plant operators to optimize the response of the works to changes in raw water quality, plant throughput or process operating conditions (Luuk and Jeremy, 2006). The two main components of DW-DSS are Knowledge based information and Programming Tool.

The process of building knowledge-based system is called

knowledge engineering. It has a great deal in common with software engineering and is related to many computer science domain such as artificial intelligence, databases, data mining, expert system, decision support systems and geographic information system (Negnevitsky, 2004). Though, there are varieties of programming languages, Visual Basic 6.0 (VB) programming language which is an event driven programming language has proved effective. It allows programmers to easily create simple graphical user interface application and as well to develop fairly complex application (Mckeown, 2004). In this study, Drinking Water Decision Support System (DW-DSS) was designed to ease appropriate selection of vital procedure for water treatment in order to save cost and time

2 METHODOLOGY

The method adopted in this study is similar to that of Hong (2006), though with a little modification. The choice of the data type for developing DSS for drinking water treatment process was informed by the importance of the data and also as available in literature (Adeogun and Nwude, 2016). As compared to Hong (2006) fewer parameters which can reflect the status of the water were considered. The main focus of this work is the process design of the water treatment plant. As part of the process design, password and username are required in other to enhance security for the software in a user friendly interface.

2.1 Graphical User Interface Decision Support System with a Simulation study

The DW-DSS (Figure 2) was developed having 13 forms (1 to 13) which were created using Visual Basic 6.0. Each of the forms except the welcome, summary and appreciation form is for data entry. The Password and Username are entered into form1 and a welcome screen (form 2) is displayed. The water quality parameters are imputed into the parameter input form (form 3) for simulation. On this form (form 3), Nigeria established standard (Table 1) for drinking water quality parameter is displayed. Various treatment processes are being suggested for those inputs. Other responses such as Alum jar test, Aeration, Coagulation and flocculation, Sedimentation, Chemical Demand, Filtration, Disinfection, Pump horsepower and efficiency were entered into respective forms with parameters imputed for simulation (Figure 1). The last form being summary form showed the water parameter capturing the whole treatment process with decision on each parameter to allow for conclusion to be drawn (Figure 2). It has its input parameter from the Parameter Input form.

TABLE 1: THE PARAMETERS OF NIGERIAN STANDARD FOR DRINKING WATER QUALITY (NSDWQ)

Parameter	Units(SI)	NSDWQ	
Aluminum(Al)	mg/L	0.2	
Chloride(Al)	mg/L	250	
Hardness	mg/L	150	
Lead(Pb)	mg/L	0.01	
Mercury(Hg)	mg/L	0.001	
Nitrate	mg/L	10	
рН	-	6.5-8.5	
Turbidity	NTU	0 -5.0	
Color	TCU	15	
Ammonia	mg/L	1.5	
Copper	mg/L	1.0	
Fluoride	mg/L	0.4 -0.6	
Iron	mg/L	0.3	

For a particular water process, certain data are required so as to achieve the set objective (Table 2). For a better appreciation of the developed DW-DSS, the system was applied on data obtained from a water treatment plant.

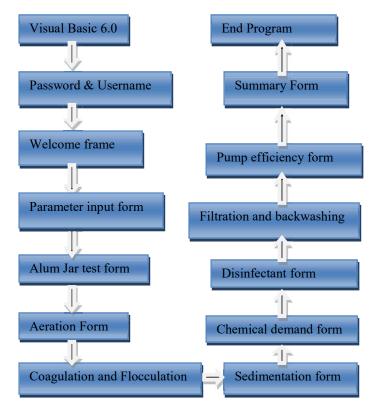


Figure1: Flow Chart of the Decision Support System (DW-DSS)

≫ •5•1 ≈	Debug Run Query Diagram Iools Add-Ins Window Help : 🗟 🗛 🗠 억 🕨 🚛 😸 📾 🗄 🎖 🛠 🔂 🔊
X	Project Group - Group1
General	
k 🔛	문-화 Project1 (My Project.vbp)
A abl	- C Form01 (Password and Username Form.frm) C Form02 (Welcome Frame.frm)
	- D. Form04 (Treatment Process.frm)
<u> </u>	-C. Form05 (Alum Jar Test Form.frm) -C. Form06 (Aeration Form.frm)
	Form07 (Coagulation and Flocculation Form.fm)
1 년 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- C Form08 (Sedimentation Form.frm) - C Form09 (Chemical Demand Form.frm)
å 🔤	- D. Form1 (Disinfectant Form.frm)
<u>v = </u>	
	
1	C Form13 (Appreciation Form.fm)

Figure 2: Graphical User Interface of the DW-DSS

TABLE 2: NECESSARYDATAFORWATERTREATMENTPROCESS

Water	Data	Benefit/Objective
Treatment	2	Denena Objecu (e
process		
Alum jar test	Volume of alum solution, low lift pump capacity, alum pump capacity, percentage concentration of alum and time of pumping	To know the part per million of alum solution needed, the chemical demand, the number of bags of alum per day and the stroke setting of alum pumping machine
Aeration	Parameter inputs (Physical, inorganic, metals)	To check what happens after aeration has been carried out
Coagulation and Flocculation	Length, Width and height of the coagulation and Flocculation tank	To calculate the tank volume and detention time for flash mixer and flocculation basin
Sedimentation	Length, Width and height of the sedimentary tank, flow rate of plant	To calculate the sedimentary tank volume and detention time for sedimentary basin, surface loading rate, weir loading rate
Filtration	Total gallon of water filtered, backwash flow rate, backwash time, filter run and filter surface area	For the purpose of knowing the Unit Filter Run Volume (UFRV), setting backwash pumping rate and percentage effluent water used
Disinfection	Flow rate of water, alum dose, volume of water pumped and time of pumping	For the purpose of calibration of feeders (for dry and solution chemical) and the chemical usage
Fluoridation	Plant capacity, Available fluoride ion (AFI), chemical purity, drop	For the purpose of calculating the chlorination break point, hypochlorite feed rate and the fluoride dosing
Plant pumping Horse power and Efficiency	Pump efficiency, total plant head, pump power, cost of power and overall time of operation	For the purpose knowing pump horsepower, efficiency and pumping cost

Source: Hong 2006

2.3 A case Study

Data on water treatment plant was obtained from Kachia Water-board, Kaduna State to evaluate the workability of the developed DW-DSS for selection of appropriate treatment processes.

Using the developed system on the available data of the State Water works Plant having an intake pump capacity of 1246000 liters, alum pump capacity of 7650 liters, plant capacity of 27 million liters per day and using alum concentration of 10%. These specifications were used in the alum jar test calculations to determine (simulate) the part per million of alum concentration, chemical demand, number of bags of alum and the stroke setting of the alum pumping machine. Also, the model was used in the calibration of chemical feeder (dry or solution form). Some 1.608Ib/day was used for dry chemical feed setting, while 15.7708ml/min was used for solution chemical feed setting calibration. Having a water flow rate of the plant as 10 million gallons per day, volume of chemical pumped of 1500 ml and time pumped of 1000 minutes. Furthermore, the model was used to simulate the sedimentation calculations, pump horse power and efficiency estimation and parameter input page respectively. In other to do these, the length (60ft), width (40ft), depth (20ft), the weir length (20ft) and diameter of 15ft for cylindrical sedimentation tank. For the pump horse power, pumping cost and efficiency estimation, the flow rate of the plant (15000gpm), plant head (10ft), pump efficiency (85%) and pumping operation time (500hours) were considered. The physicochemical parameters (such as 5.86NTU, 20TCU and 6.6 for turbidity, colour and pH respectively) of the raw water to be treated are inputted into parameter input form.

3.0 RESULTS AND DISCUSSION

Drinking Water Decision System was developed. Using the developed system, a case study on the Kaduna State water works was carried out for the system evaluation.

A graphical user interface algorithm was used for the evaluation of the various treatment processes with parameters from Kaduna State Water Works Plant. Figure 3 to 7 show various results simulated by DW-DSS. The result of the alum jar test indicated that the part per million of alum solution should be 90mg/L. The chemical demand of 113.76kg/hr, number of bags of alum per day needed is approximately 55 bags and the stroke setting of alum pumping machine is 3 (Figure 3). The chemical feeder setting calibration for dry and solution chemicals were 2.132Ib/min and 15ml/min respectively (Figure 4). The result of the sedimentation calculation showed detention time of 29.92 and 2.20 hours for a rectangular and cylindrical sedimentation basin respectively, surface loading rate of 15gpm/ft², tank volume of 359,040 and 26,423gallons for rectangular and cylindrical volume and weir loading rate of 600gpm/ft (Figure 5). The simulated results shows that the brake horse power (44.56hp), water

horse power (37.88hp), motor efficiency (75.75%), overall efficiency (89.12%) and the cost of operation (#373,000) within that time frame were estimated (Figure 6). The decisions needed to be taken on each of the water quality parameters inputted were displayed on decision parameter input form (Figure7). Colour for instance having a value (28 TCU) higher than the established standard (15 TCU), it is recommended that coagulation and filtration be done.

			Forr	n5		
Allum Jar Test Form						
Jar Number	1	2	3	4	Turbidity of Jar 1	25
Volume of Water used (ml)	1000	1000	1000	1000	Turbidity for Jar 2	24
Volume of allum Solution [mi]	0.6	0.7	0.8	0.9	Turbidty for Jar 3	23
PPM	60	70	80	90	1	
рН	7.2	7.2	7.2	7.2	Turbidly for Jar 4	25
Turbidity after treatment	2.5	2.4	2.3	2.5	X Allum Concentration	0.1
Low lift Pump Capacity in litres		*				
Volume of allum solution in ml		0.9	- 11	Chemical Demand in kg/hr		
ow lift Pump Capacity in litres		1264000		Chemical Dem	and in kg/hr	113.76
		1264000		Chemical Dem Number of ba		113.76
fass of a bag of allum in kg	ĩ	1		Number of b		54.6048
fass of a bag of allum in kg Nant Cpacity in millions per day)	50		Number of b	ags per day	54.6048
Aass of a bag of allum in kg Plant Cpacity in millions per day Alum pump capacity in itres	i.	50 27		Number of b	ags per day	54.6048
fass of a bag of allum in kg Yant Cpacity in millions per day Ukun pump capacity in Itres		50 [27 [7650		Number of b	ags per day	54.6048
Mass of a bag of allum in kg Plant Cpacity in millions per day Num pump capacity in Kres Number of hours of operation	, emical De	50 27 7650 24	Number	Number of b	ags per day	

8				Form8	×
Sedimenta	ation Form				
Tank Vo	olume calculate				Quasim 2000 define sedimentation as a physical treatment process that utilizes gravity
Lenght	60 ft	Re	ctangular Vol	ume	to separate suspended solid from water
Width	40 ft	1 14	59040	gal	Factor that that affect sedimentation
Depth	20 ft		lindrical Volur 6423.1		*Particles size
Diametre	15 ft	14	5423.1	gal	*Rise Rate
Detenti	on Time Calculi	ation.			*Weir loading rate
Rectangular ¹	Volume 359040	gal		me(Rectangle	*Water Temperature
Cylindrical Vo	lume 26423.1	gal	29.92	hr(s)	*Detention Time
Flow Rate	12000	gpm	Dentention Tim	e (Cylindrical) h(s)	
Curfor	e Loading Rati		k		
1			e Loading Rate		Detention Time Surface Loading
Width	20 #			pm/ft^2	Tank Volume
Length	40 #				
Weir L	oading Rate C	alculation			Print Clear Screen
Flow Rate	12000	qpm	Weir Loading		
Weir Lenght	20	ft	600	gpm/ft	Previous Next
					Detail Treatment

Figure5: Sedimentation Form Result

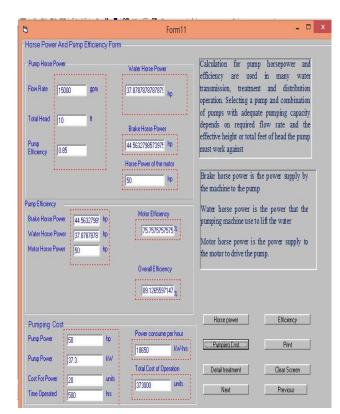


Figure 6: Horse Power and Pump Efficiency Result

Figure3: Alum Jar Test Result

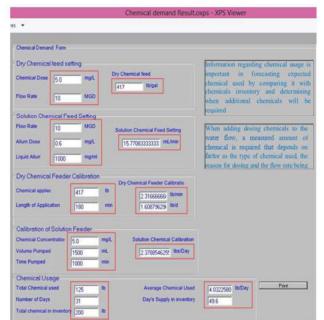


Figure 4: Chemical Demand Result

Parametre Input	Form		Fo	
aramere mpu	ronn	Check	Detail Treatment	Process Print Clear Screen Exit
Phyical				
Input (Raw Wa	ter)		Standard Value	Related Treatment Requirement
1 Turbidity	25	NTU	5 NTU	Aeration, coagulation, flocculation, sedimentation and filtration is required
2 Colour	28	тси	15 TCU	Aeration,Coagulation and Filtration is required
Chemical	*/		1. I.	
1 TDS	1200	mg/L	1000mg/L	Add coagulant to the water for the coagulation process
2 Manganese	0.3	mg/L	0.1mg/L	Aearate the water to oxidize dissolve manganesse then add cougulants
3 Ammonia	3.5	mg/L	1.5 mg/L	Add more of chlorine(1mg/L ammonia to 10mg/L chlorine
4 Nitrate	15	mg/L	10 mg/L	Aerate the water to remove dissolved gases
5 Iron	0.8	mg/L	0.3 mg/L	Aeration required to oxidize dissolved iron and coagulate
5 Flouride	0.7	mg/L	0.4-0.6mg/L	Stop flouride dosing,waiting dilution
7 Hardness	650	mg/L	500mg/L	Add appropriate amount of coagulant after the alum jar test
8 Alluminium	0.35	mg/L	0.2mg/L	proceed with coagulation
B Chlorine	270	mg/L	250mg/L	Check chlorine dossage
10 pH	5.9		6.9 - 9.0	pH adjustment is required using lime
11 Mercury	0.001	mg/L	0.001mg/L	no treatment is required
12 Asemic	0.002	mg/L	0.01mg/L	no treatment is required
13 Lead	0.025	mg/L	0.05mg/L	no treatment is required
14 Copper	0.59	mg/L	1.0mg/L	no treatment is required
Microbiologica	bl			
15 Feacal coliform	20	CFU/100mL	0.0 CFU/100mL	standard value exceed,hence Proceed with coagulation and disinfection

Figure7: Parameter Input and Decision Making

4 CONCLUSION

The DW-DSS was successfully developed using Visual Basic for water treatment process. The developed DW-DSS for drinking water treatment processes are decision making process via varied numbers of steps. The model succeeded in simulating results based on the plants and the quality status of raw water quality parameter. Hence, model proved suitable for simulating treatment process for treating drinking water and making decision on which water process is required for a particular parameter.

REFERENCE

- Adeogun, B. K. and Nwade, M. O. (2016): Development of Decision Support Systems for Water Supply and Sanitation in Developing Countries, Proceedings of the 7th International Conference, Nigeria Association of Hydrological Sciences pp 334 - 342
- Animashaun, I. M., Otache, M. Y., Ojodu, A. B., Kuti, I.
 A., Bisiriyu, M. T., and Garuba, A. O. (2015):
 Water Quality Assessment of Bosso Water
 Supply for potability using Weighted Arithmetic
 Water Quality Index Method Nigerian Institution
 of Agricultural Engineers, 16th International
 Conference
- Hong C.K. (2006). Development of a Decision Support System For Drinking Water Treatment Process Design (Water-DSS) MSc. Thesis, Collage of Engineering, Department of Environmental Management, University Technology, Malaysia.

- Marek J. Druzdzel and Roger R. Flynn (2002): Decision Support Systems, Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh available at http://www.pitt.edu/~druzdzel/abstracts/dss.html
 Mckeown P.G. (2004): Learning to program with VB.NET, John Willey & Sons, Inc. USA.
 Negnevitsky, M (2004): Artificial Intelligence: A Guide to Intelligent Systems. Addison Wesley
 Luuk R, and Jeremy D. (2006). Models for Drinking Water Treatment, Sixth Framework
 - Programmed, Sustainable Development, Global Change and Ecosystem Thematic Priority Area, European Union
 - United Nation (2005) Millennium Project goals report United Nation Department of Public information New York,