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A B S T R A C T   

The development of cost-effective, feasible, and advanced wastewater treatment techniques remains critical to 
the availability and sustainability of scarce water resources. Advanced oxidation processes (AOPs) based on non- 
thermal plasma processes such as dielectric barrier discharges (DBDs) have recently been employed to combat 
biologically recalcitrant organic substances in water and wastewater streams. This is mostly due to their capa
bility to generate in-situ UV light as well as numerous free radicals’ reactive oxygen species (ROS) such as ozone 
(O3), hydrogen peroxide (H2O2), atomic oxygen (O.), ozone radical ion (O3

− ), hydroperoxyl radical (HO2
. ), and 

superoxide anion (O2
.− ) amongst others. OH., O3, and O2

.− react directly or indirectly with complex organic 
pollutants in aqueous solutions while H2O2, O., O3

− and HO2
. mineralise organic toxins in water and in most cases 

act as the principal precursors for either OH., O3, or O2
.− species during plasma treatment processes. This review 

primarily describes the principal reaction mechanism pathways of reactive oxygen species, and organic pollut
ants in DBD technologies. The pattern of RNS, methods for their quantification and the cause of their formation 
in DBD configurations have also been discussed. The outcomes of this review sustain that the optimisation of 
catalyst additives and critical parameters such as pH in DBD methods could efficiently promote the decompo
sition and mineralisation of water toxins. The review further highlights the superiority of double cylindrical DBD 
over single cylindrical and conventional DBD designs.   

1. Introduction 

From the time life began on planet Earth, oxygen (O2) has been one 
of the most abundant and essential elements mostly used in photosyn
thesis and respiratory phenomena that sustain humans, plants, animals, 
and other living organisms’ lives [1]. Conversely, oxygen generates 
poisonous metabolites known as reactive oxygen species (ROS) which 
also include reactive nitrogen species (RNS) [2]. These ROS could be 
advantageous or sometimes toxic to living organisms [3]. For instance, 

in signalling practices, the superoxide anion (O2
.− ), or nitric oxide (NO.), 

etc. play a crucial role as regulatory mediators [1]. The mediated re
sponses of ROS shield the cells from oxidative stress and restore the 
redox process. On the contrary, the excessive production of ROS may 
induce endocrine cell damage (ECD). Besides these biomedical in
teractions, ROS have extensively been employed as non-toxic and 
environmentally friendly oxidants for surface cleaning, mostly in air and 
water purification [4]. Water is an unconditional vital source of survival 
not only for human consumption or household activities but for 
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industrial applications and sustainability of the surrounding ecosystems 
[5,6]. The proliferation of pollutants such as endocrine disrupting 
compounds (EDCs), pharmaceuticals and personal care products 
(PPCPs) and microbes, etc., in water streams has become a global dis
tressing state of emergency for consumers, aquatic ecosystems and the 
environment that requires urgent remediation [7–9]. The establish
ments of effective recovery processes for drinking water and water reuse 
have become a worldwide contest in research. Several conventional 
separation methods such as sedimentation, flocculation, filtration, 
electrocoagulation, etc. have been employed for the removal of organic 
contaminants from water and wastewater [1,10–12]. Although, these 
procedures have been found effective in water purification, they pro
duce a large amount of poisonous slurry that requires extended pro
cessing as biological digestion methods have been found futile in this 
regard. Likewise, Yang et al. [13]. sustained that pollutants, recalci
trance in water during conventional applications is probably due to their 
chemical stability, low biodegradability, and their resilience. Chemical 
oxidation processes including chlorination and ozonation have become 
known as complementary water treatment systems. Nevertheless, they 
have been found ineffective in the removal of total organic carbon (TOC) 
[14]. The remediation of industrial wastewater contaminated with dyes, 
pharmaceuticals, and personal care products has been widely studied 
[15–18]. In this regard, various treatment methods such as adsorption 
on activated carbon, ozonation, and reverse osmosis, ion exchange on 
synthetic adsorbent resins, flocculation, and decantation have been 
developed [19–21]. Yet, the elevated operational costs of these pro
cedures and the complexity of the aromatic structures of chemicals often 
limit their application [21]. Advanced oxidation processes (AOPs) 
majorly producing powerful oxidants hydroxyl radicals (OH.) have been 
deemed as efficient methods for the decomposition of pollutants in 
water and wastewater and their conversion into harmless end-products 
with no need of post-treatment protocols [22,23]. Though, the extreme 
use of chemicals, UV loss, deterioration of catalyst supports, ozone leaks 
and AOPs overall costs constrain their use in water and wastewater 
treatment. Recently, advanced oxidation processes (AOPs) induced by 
non-thermal plasma processes through the production of non-selective 
hydroxyl radicals have been established [24,25]. For example, dielec
tric barrier discharges (DBDs) have recently been acknowledged as 
efficient non-thermal plasma AOPs that generate UV-light and numerous 
ROS including O3, H2O2, OH., and RNS such as NO, NO2, N2O5 amongst 
others which contribute to the decomposition and mineralisation of the 
targeted contaminants [26]. Hence, the oxidative potentials of ROS and 
their potent effects on organic pollutants and microorganisms have 
emerged as promising technologies for water purification [1,27–30]. 
Mouele et al. [1] reviewed the degradation of organic pollutants and 
microorganisms using dielectric barrier discharge systems. In their in
vestigations, the authors discussed in detail the most common DBD 
configurations reported in the literature [31] claiming that double cy
lindrical DBD has not been widely used for water and wastewater 
treatment and could be a promising remediation technology. However, 
it can be pointed out that a comparison in terms of efficiency between 
single cylindrical DBD, double cylindrical DBD and planar DBDs was not 
provided in Mouele et al. [1]. Next, Mouele et al. [32] reviewed the 
quantification of ROS in DBD technologies and highlighted that the 
principal reactive species including O3, could be measured in DBD 
configurations by indigo method, H2O2 by Eisenberg method using per 
titanyl sulphate, while OH can feasibly be quantified using terephthalic 
acid probe. Nonetheless, their study lacks information on the measure
ment of RNS, and the interruption of their formation in DBD configu
rations. Furthermore, Mouele et al. [33] reviewed the global occurrence 
of pharmaceuticals and their removal in aqueous media using DBD 
technologies. Their investigation indicates that various DBD configura
tions have been employed for the degradation of pharmaceuticals and 
their efficiency could be evaluated using their energy yield G50 (g/kW h) 
required to decompose half of the pollutant concentration as earlier 
suggested by Malik [34] and recently endorsed by Tang et al. [35] Still, 

it can be observed that in these reviews, the expanded production of O3 
and its disintegration in the presence or absence of catalysts in DBD 
geometries were not detailed. Also, the reaction mechanisms between 
O3 and co-species, and/with pollutants were not fully explored. There
fore, the main goal of this review is to assimilate the production 
mechanisms of ROS in DBD systems and their interaction mechanistic 
pathways with targeted pollutants in the presence or absence of catalyst. 
In addition, this assessment highlights the superior benefits of double 
cylindrical DBD over single cylindrical and normal DBDs. The produc
tion and quantification of RNS and their disruption in DBD configura
tions are also discussed. These aspects facilitate the understanding of 
ROS selectivity towards organic pollutants in DBD electrode geometries. 
This, in turn, offers researchers working on water and wastewater 
treatment by non-thermal plasma systems an insight into the type of 
chemical additives that should be incorporated in the reactor and clear 
ideas on which working parameters should be optimised to boost the 
production of non-selective OH free radicals that directly mineralise the 
contaminant into CO2, H2O and harmless inorganics (without any 
interference with aqueous additives). The review further suggests that 
double cylindrical dielectric barrier discharge (DCDBD) could be used as 
adequate integrative AOPs for the complete removal of refractory con
taminants in water and wastewater treatment plants. 

2. Historical background of free radicals 

The concept of the free radical and its history began with Denham 
[36] who postulated that free radicals might be crucial in the aging 
process. A few years later Arnold et al. [37] demonstrated that the hy
droxyl radical (OH•) may stimulate guanylate cyclase which may 
generate cyclic guanosine monophosphate (cGMP) referred to as “the 
second messenger”. From that moment on, biologists discovered that 
free radicals are produced in most living systems and may be involved in 
several physiological functions. Hence, several expressions have been 
utilised to denote hydroxyl species. For instance, the interchangeable 
terms “free radical” has been widely used in the literature. Indeed, 
reactive species with an unpaired electron are conventionally illustrated 
with a superscript dot (•). Besides, the term “free” was literally used by 
chemists to differentiate the free “radical” R. and the bonded “radical” R. 

in (R.-X.). Halliwell [38] reported that a free radical was defined as an 
atomic or molecular species (such as oxygen or nitrogen) that may exist 
independently and may carry at least one unpaired electron in its 
valence electron shell. Therefore, two categories of free radicals 
including reactive oxygen species (ROS) and reactive nitrogen species 
(RNS) have been considered [39]. The unpaired electron in ROS or RNS 
free radicals produced in non-thermal plasma electrode geometries may 
confer selective or unselective reactive properties. 

In recent decades, advanced oxidation processes (AOPs) have been 
established as principal methods to produce strong non-selective hy
droxyl radicals (OH.) that have been employed in various applications 
including air purification, surface cleaning and water purification 
[39–41]. In terms of water treatment, OH. decomposes and mineralises 
water contaminants to H2O, dissolved CO2, and harmless inorganics [32, 
33]. In this regard, the conversion of organic pollutants to non-toxic 
inorganic and organic remains does not require any separation and 
post-treatment processes. The main AOPs including UV disinfection 
(photolysis) and photolytic combinations such as UV/H2O2, UV/O3, 
UV/H2O2/O3 photocatalysis, supercritical water oxidation, 
electron-beam, wet air oxidation, water sonolysis and ultrasound cavi
tation, plasma technologies, electrochemical advanced oxidation pro
cesses (EAOPs), microwave, plasma-based AOPs reported in the 
literature, have been highlighted by Mouele et al. [1] and Saracino et al. 
[14]. Even if these practices use different approaches, they all focus on 
the production of robust but short-lived non-toxic and non-selective 
hydroxyl radicals (OH.) that degrade and mineralise water pollutants 
into amenable by-products. Li et al. [42] showed that OH can success
fully be produced during supercritical oxidation of water and could 
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enhance the process of removing nitrogen-containing organics and 
ammonia as recently sustained by Wei et al. [43]. Next, the generation of 
OH in electrochemical advanced oxidation processes (ECAOPs) was 
documented by Oturan and Brillas [44] and Sirés et al. [45], and further 
reinforced by Jing et al. [46]. On the other hand, Badmus et al. [47] 
successfully determined the concentration of OH generated in a soni
cator using a terephthalic acid chemical probe. Furthermore, the pro
duction of OH in an ultrasonic-microwave system was proved by Liu 
et al. [48] during rapid synthesis of spindle-like Ag/ZnO nanomaterials 
featuring enhanced photocatalytic and antibacterial properties. Ghatak 
[22] emphasised/reported that various AOPs technologies producing 
OH have been employed widely in water treatment facilities for the 
remediation of bio recalcitrant substances to prevent their escape to the 
environment during discharge processes. The authors further clarified 
that the majority of AOPs do not only produce OH., but related oxidative 
and reducing species such as atomic oxygen (O.), atomic hydrogen (H.), 
and/or solvated electrons which are also produced. These later radicals 
boost the efficiency of chemical processes that are often referred to as 
advanced redox methods. However, excessive use of chemicals, corro
sion of the catalyst supports, wasted UV, ozone escape, and the cost 
associated with AOPs often restrict their application for the decontam
ination of water and wastewater effluents. Beyond these aspects, plasma 
technologies that are often viewed as sources of UV radiations, high 
energetic electrons, various free radicals, ions, and neutral species have 
emerged as potent AOPs in recent decades. The principal categories of 
plasma processes include thermal plasma and non-thermal plasmas that 
depend on temperature effects [49]. Non-thermal plasma operated at 
room temperature is often more solicited than thermal plasma that re
quires high temperature [33]. The supremacies of dielectric barrier 
discharges (DBDs) over other types of non-thermal plasma have been 
reviewed by Mouele et al. [1] and Mouele et al. [33]. The efficiency of 
DBDs depends on reactor configurations. Double cylindrical DBD 
(DCDBD) with only 1 eV generates energetic electrons, UV radiation and 
large amounts of reactive species mostly OH radicals supplemented by 
long-lived species such as O3 and H2O2 [1,33]. The advantages of 
DCDBD system are the fact that the high voltage electrode is protected at 
least by one dielectric material, the abundance of high energy electrons, 
also the fact that no chemical additives are needed, allowing effective 
dissociation of feed gas leading to several successive reaction chains that 
consequently yield abundant reactive species such as O3, O., H2O2, OH., 
HO2, etc., forming a chemical cocktail that efficiently enhances the 
removal of refractory water pollutants. So, for the past years, dielectric 
barrier discharges (DBDs) showing impeccable physical and chemical 
properties, have become part of the most explored plasma technologies 
for water and wastewater purification. Finally, the applications of the 
radical OH vary from air purification mostly in the deactivation of vi
ruses and bacteria, to the elimination of noxious gases such as carbon 
monoxide, formaldehyde and ammonia. Alternatively, the neutralisa
tion of allergens and odours through indoor spaces is also common. 

3. Ozone a primary oxidant, its origin, properties, and 
applications in various fields 

The discovery of ozone began in the 19th century with Van Marum, a 
Dutch chemist who for the first-time discovered ozone gas through its 
toxic smell during electrifier experiments [50,51]. At that time, the 
discovered gas was still known as decennia. Only in 1840, after 
Schönbein repeated the same experiment carried out by Van Marum 
when the same characteristic smell was noticed, the identified gas was 
named ozone that stands for ozein, the Greek term for scent. In addition 
to this, Schönbein remains the first scientist to investigate the effects of 
ozone on organic matter. Afterward, the first ozone producer was 
invented by Siemens [50,52] in Germany (Berlin). This resulted in 
multiple examinations towards the use of ozone as a disinfectant agent 
and its disinfection mechanisms. For instance, Marius Paul Otto, a 
French chemist was the first scientist to initiate an enterprise specialised 

in the installation of ozone production systems [53]. In this regard, an 
earlier technical-scale application of ozone was established in 1893, in 
Oudshoorn (Netherlands) and was fully examined by French scientists 
[50,51,53] and similarly, in 1906, a similar ozone installation was 
mounted in Nice. Since this later installation was continuously used for 
water purification, Nice became the centre of ozone production for 
drinking water treatment. At the time of World War, I, the number of 
ozone installations increased worldwide. For example, in 1916 about 49 
ozone installations were developed in Europe, and 29 were specifically 
located in France [50]. After that, the multiplication of ozone in
stallations faded because of toxic gas enquiry and this led to the dis
covery of chlorine as an alternative disinfectant. In this way, chlorine 
was considered as an appropriate substitute for ozone as it did not show 
critical limitations such as low yield of generation like in the case of 
ozone. After World War II the number of ozone installations started to 
increase again. Even then, the use of chlorine for water purification was 
still dominant over that of ozone. However, around 1973, tri
halomethanes (THMs) were detected as harmful disinfection 
by-products of the chlorine disinfection process, and thus, scientists 
started searching for new purifiers [50]. Besides the detection of THMs 
as disinfection by-products, scientists also experienced difficulties in 
removing organic micropollutants in surface waters. Moreover, this 
class of pollutants was found to be oxidised faster by ozone than chlorine 
and its derivatives. Ozone was also found capable of deactivating mi
croorganisms such as cryptosporidium that are resistant to sterilisers. 
Based on these benefits, ozone has been readmitted as a potent oxidant 
and its previously encountered limitations were ignored. Besides its 
advantages, ozone may also exhibit some drawbacks mainly related to 
its toxicity. Indeed, the breathing of a high concentration of ozone may 
result in health effects. Mucous membrane irritation and headaches are 
the most common symptoms often noticed after prolonged exposure to 
ozone. For instance, exposure to a concentration of more than 50 ppm 
for 30 min might be disastrous [54]. Likewise, apart from the decrease in 
lung capacity and lung diseases, the lasting effects of ozone exposure are 
still undetermined [54,55]. To preclude the health threats, a maximum 
concentration of 0,06 ppm of inhaled ozone has been established. This 
represents the maximum concentration of ozone that a human can be 
exposed to for about 30 min [54]. Based on this value, ozone concen
tration in each system should be controlled. With its scent threshold of 
about 0,02 ppm, ozone could only be sensed by its distinct smell near or 
above the maximum admitted concentration [54]. Despites being used 
as an excellent oxidant in water purification [56–58], O3 has widely 
been used in various fields such as biomedical applications including 
bacteria and virus inactivation [59], treatment of foot ulcers in patients 
with diabetes [60], ozonation of oils as antimicrobial systems in topical 
applications [61] among others. Ozone has extensively been used as a 
mediator in depolymerisation and solvolysis processes [62] and in food 
preservation [63–65] only name a few. Nevertheless, catalytic systems 
and non-thermal plasma technologies have been identified as the most 
common sources of ozone and have gained a wide application for 
environmental remediations [66–72]. Therefore, this current review 
focuses only on ozone generated in non-thermal plasma induced by DBD 
and its application for water and wastewater treatment. 

4. Non-thermal plasma 

Unlike other types of plasma atmospheric non-thermal plasma 
(ANTP) occurs at the temperature range of 300–50,000 K. According to 
Thagard [73], ANTP is characterised by its electron temperature (Te) 
which is much higher than the initial temperature (Ti) but is in turn 
approximately equal to gas temperature (Tg) that lies between 300 and 
1000 K (Te ≫ Ti > Tg ≈ 300⋅103 K) and a corresponding ionisation 
energy range of 1–10 eV [1]. Besides, ANTPs are also featured by their 
electron density (ne) estimated to about 109–1015 m− 3 (1010 ≤ ne ≤ 1015 

m− 3). For decades, electrical discharges (EDs) such as corona discharges 
(CD), dielectric barrier discharges (DBD), atmospheric pressure plasma 
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jet (APPJ), and micro hollow cathode discharges (MHCD) have been 
considered as the major types of ANTPs regardless of their characteristic 
properties and applications [74]. These discharge processes have 
emerged in recent years as effective methods for water decontamination. 
Therefore, water purification efficiency may depend on the type of ED 
configuration. The most common non-thermal plasma (NTP) configu
rations discussed in the literature [1,4,32,75] have been summarised in 
Section 4.1. Apart from electrode geometry, the electron density in EDs 
previously mentioned might play a crucial role in water treatment [76, 
77]. Although various AOPs have been widely used for effective removal 
of water organic pollutants, the incomplete degradation of pollutants 
leading to toxic intermediates can result in greater detrimental effects 
than from parent compounds; hence alternatives for total oxidation of 
targeted contaminants are highly sought. Non-thermal plasma (NTP) 
configurations have been utilised in various sectors for wastewater 
decontamination. For instance, NTP induced by corona discharge has 
been utilised for the removal of pharmaceutical toxins from water and 
wastewater and improved removal percentages between 87% and 
99.99% have been reported [78–82]. However, it can be remarked that 
in these corona discharge configurations the high voltage electrode (HV) 
is directly submerged in the effluents being remediated and could be 
depleted by aqueous oxidative species. Conversely, glow discharge 
plasma has been used for various purposes including sterilisation and 
surface decontamination [83] and food packaging [84], screening of 
contaminants in foodstuff [85], fabrication, modification, and treatment 
of nanomaterials with enhanced properties [86–88]. The reports indi
cate that these technologies are feasible, cost-effective, and appropriate 
for the cleansing of medical tools. Alternatively, air discharge plasma jet 
has been utilised for the treatment of textile wastewater [89,90] and in 
mass spectrometry analysis for direct detection of compounds from 
surfaces and complex matrices [91]. The outcomes of these in
vestigations highlighted that about 70% degradation of targeted pol
lutants was achieved while their total removal required prolonged 
treatment time. This behaviour was noticed at low pH and was attrib
uted to the recalcitrant behaviour of the degradation intermediate 
by-products in an acidic environment. 

Furthermore, dielectric barrier discharge configurations have been 
used for the decomposition of pharmaceutical contaminants and 
improved removal efficiencies between 73.7% and 99.9% have been 
recorded [92–96]. In these cases, the analyses of the treated effluents 
showed that pharmaceutical pollutants were oxidised into the dissolved 
CO2, and harmless inorganics. Although corona discharge electrode 
arrangement has been shown efficient for the remediation of polluted 
waters, direct exposure of the high voltage (HV) electrode to the solution 
being treated could result in undesired corrosion and hence the 
discontinuation of the treatment process and extended contamination of 
the treated effluent. Contrariwise, glow discharge and plasma jet have 
demonstrated an attractive capacity for surface cleansing, water, and 
wastewater purification to some level. Yet, the scalability of these 
electrode geometries to semi or industrial units for the treatment of 
thousands of litres of polluted water could be expensive and challenging. 
Despite the abundance of O3 and co-species generated in DBD technol
ogies, the prominence of DBDs over other configurations relies mainly 
on the abundance of high energy electrons freely circulating the 
dielectric barrier tube at minimal energy of 1 eV. Its feasibility at room 
temperature, scalability, and flexibility renders DBD potentially one of 
the most applicable treatment techniques for water and wastewater 
purification. These advantages of DBDs have therefore attracted 
worldwide attention for their use in water and wastewater treatment. 
Moreover, Nehra et al. [74] established a comprehensive comparison 
between CD, DBD, APPJ, and micro hollow cathode discharge (MHCD) 
processes. Nehra et al. [74] found that most physical and chemical 
properties of DBD configurations were superior especially in electron 
energy and density, break down voltage, scalability, and flexibility. This, 
therefore, makes DBD one of the most efficient, affordable, feasible, and 
environmentally safe plasma water treatment techniques. Furthermore, 

the DBDs treatment method encapsulates several electrode configura
tions that may depend not only on the electron density and other 
properties but on the operational ease at ambient conditions [97]. 
Nevertheless, the generally known DBD geometries have already been 
reported [1,98]. The single/double planar dielectric barrier discharges 
have been employed as effective ozone generator water treatment 
methods and significant toxin degradation efficiencies have been ach
ieved [76]. Likewise, single cylindrical DBD configurations consisting of 
one dielectric barrier have been used separately as efficient plasma 
water treatment techniques, in which higher removal efficiencies were 
also attained [99,100]. However, the double cylindrical dielectric bar
rier discharge (DCDBD) configuration made of two dielectric layers has 
not been widely explored for water purification. 

4.1. Description of dielectric barrier discharge configurations 

Dielectric barrier discharge (DBD) also referred to as a silent elec
trical discharge is characterised by thermodynamic properties and is a 
source of non-equilibrium atmospheric plasma. Various terminologies 
including, silent discharge, barrier discharge, normal pressure glow 
discharge, arc-discharge, display discharge and ozonizer discharge have 
been established to illustrate DBD plasma process [97]. The common 
DBD designs studied in the literature comprise of the anode (positive) 
and cathode (negative) probes. The anode also termed as high voltage 
electrode is enveloped by one or more dielectric barriers mainly quartz, 
ceramic or pyrex frequently used as insulators [1]. The insulator barriers 
are utilised to split the anode from the feed gas (single dielectric) or 
between two electrodes to create the gas discharge zone (double 
dielectric). The main purpose of non-thermal plasma induced by DBD is 
to continuously produce ozone gas that is promptly disseminated in the 
contaminated water being remediated or to the surface being cleaned up 
[97]. In conventional DBD configurations, both high voltage and cath
ode electrodes interact with the feed gas and plasma. This often stimu
lates electrode etching and leads to erosion during the plasma discharge 
procedure [74]. On the contrary, the presence of dielectric barrier in
sulators around the anode in innovative DBD electrode arrangements, 
reduces the possibility of electrode etching and corrosion and further 
strengthens the electric and magnetic fields, therefore enhancing the 
even dissemination of high energy electrons around the dielectric layers 
surrounding the anode [32]. In Lopez [101] and Valinčius et al. [197], it 
was reported that the discharge zone/ air gap (the region between 
dielectric barriers) could range from a few to several millimetres. In DBD 
electrode geometries, the dielectric barrier layers spread the charges 
carried by microdischarge (microplasma) over the whole surface of the 
anode electrode. Konelschatz et al. [102] underlined that the opera
tional conditions in non-thermal plasma are straightforward as 
compared to low-pressure discharges, pulsed high-pressure corona dis
charges and electron beam. The common DBD electrode configurations 
reviewed by Kogelschatz [103] include single or double planar and 
single/double cylindrical dielectric-barrier discharges as shown in  
Fig. 1. 

Although the upscaling of DBD configurations has been challenging, 
the DBD electrode geometries displayed in Fig. 1 have been utilised for 
water and wastewater remediation [33]. Despite the increasing use of 
DBD technologies in water treatment, the configuration shown in Fig. 1 
(e), referred to as double cylindrical dielectric barrier discharge 
(DCDBD) has restrictively been applied for the removal of organic pol
lutants from water and wastewater. Hence this review suggests that the 
physical and chemical properties of plasma produced in DCDBD can be 
explored further for water treatment. 

4.2. Ozone generation in non-thermal plasma 

Literature stipulates that ozone is often generated in situ due to its 
short lifetime. Corona-discharge and UV-light processes have been 
considered as the two main systems of producing ozone. However, based 

E.S.M. Mouele et al.                                                                                                                                                                                                                            



Journal of Environmental Chemical Engineering 9 (2021) 105758

5

on the higher ozone production, the sustainability of the generation 
system, and the reasonable cost of the production unit, generating ozone 
by corona-discharge mode is more advantageous than UV-light systems 
that are preferred when only minute concentrations of ozone are needed 
[104,105]. In electrical discharges based on plasma generation such as 
corona, dielectric barrier discharges, etc., the common gases used are 
often oxygen or normal air. In these discharge systems, ozone is pro
duced by the dissociation of the oxygen molecule into atomic oxygen 
radicals. These later recombine with oxygen molecules to produce 
ozone. In ozone production systems, dielectric materials are often used 
to monitor the flow of charged particles while water solutions are often 
used to cool electrodes [106] as shown in Fig. 2. 

The main factors that might impede ozone production include the 
humidity and purity of the feed gas, oxygen concentration in the inlet 
gas, cooling water temperature, and electrical parameters. Therefore, 
for the generation of a significant amount of ozone, these parameters 
should be optimised. The ozone generated is further decomposed to 
yield more atomic oxygen radicals which, by side reactions, might result 
in the formation of other free radicals such as H2O2, O2

.¡, and OH. which 
may contribute largely to the decontamination of water effluents [107]. 
The decomposition of ozone leading to various free radicals is usually 

accelerated by the addition of catalysts, while the principle and reaction 
mechanisms of the catalytic decomposition of ozone have been suc
cinctly discussed in the following sections of this paper. Furthermore, 
the rapid decomposition of ozone, often indicated by its short lifetime, is 
due to its instability. Consequently, the life span of ozone in water ap
pears to be shorter than in air. Literature sustains that the rapid decay of 
ozone mostly occurs in drinking water conditions where the pH value 
lies between 6 and 8.5 and is often a result of side interaction with OH 
radicals. In this way, systems in which OH radicals dominate are usually 
referred to as advanced oxidation processes (AOP). Moreover, the pre
dominance of OH radicals in ordinary water is usually identified by the 
drastic decrease of ozone concentration [104]. So, the lifetime of ozone 
(often in seconds or minutes) may depend on the type of water quality. 
For instance, Hoigné [108] reported that in wastewater contaminated 
with sulphite, nitrite, olefinic aliphatic hydrocarbons, phenols, poly
aromatic hydrocarbons, organic amines and sulphides, the estimated 
lifetime of ozone at a concentration of 0.5 mg/l is within less than 10 s. 
In addition, the author recalled that in wastewater containing chlor
osubstituted olefins (chlorinated solvents), benzene, saturated hydro
carbons, or tetrachloroethylene, it can require days for ozone to initiate 
their significant oxidation. Furthermore, Hoigné [108] endorsed that in 

Fig. 1. Most common dielectric barrier discharge systems used in water and wastewater treatment; a = single planar DBD, b and c = Double planar DBD; d and e =
single and double cylindrical DBD [32,100]. 

Fig. 2. Principal schematic of non-thermal plasma generator [74,75].  
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standard drinking water, the lifetime of ozone could vary from 1 to 
20 min. Therefore, catalyst additives and solution pH are a critical pa
rameters that should be carefully monitored during remediation of 
water effluents. 

4.3. Catalytic ozonation process for water and wastewater remediation 

Catalytic ozonation is an efficient advanced oxidation procedure for 
wastewater purification that mostly involves the use of nano/catalysts 
such as Ti, Mn, Fe, Ni, Co, Zn, Cr, Ag zero valent metals or in the form of 
oxides and nanocomposites or suspended on metal supports (e. g. 
meshes and membranes) [109,110]. Catalytic ozonation in the presence 
of nano-catalysts or ordinary catalyst are mainly induced by 
oxidation-reduction processes [111]. Various authors endorsed that 
from the reaction mechanisms and kinetics trends, followed by possible 
interaction of nano-catalysts, it could be inferred that nano-catalysts 
such as MgO, SiO2, TiO2, ZnO, Mn2+, and MgO-ZnO/carbon nano
composites are employed to promote ozonation method for the demo
lition of wastewater pollutants [112–119]. Numerous studies focusing 
on the removal of organic pollutants from water and wastewater using 
the combination of catalysts and ozone have been conducted [120–123]. 
In these investigations, the mechanisms of catalytic ozonation process 
have been of great interest. During remediation of contaminated water 
by catalyst-ozone systems the rate of pollutant decomposition directly 
depends on ozone reaction, indirectly dependent on the interactions of 
OH and the catalysts used. Indeed, the assimilation of reaction mecha
nisms of catalyst and ozone, ozone and pollutants or 
catalyst-ozone-pollutant is crucial to define the synergic potential of 
targeted catalysts and pollutants. Consequently, Guo et al. [120] and 
Khuntia et al. [121] sustained that the decomposition of pollutants may 
follow two distinct mechanisms including homogeneous and heteroge
neous catalytic ozonation. 

4.3.1. Homogeneous nano-catalytic ozonation 
The homogeneous nano-catalytic ozonation is usually initiated by 

the nano-metals such as nano-Ag2+, Fe2+, Mn2+, Co2+, and Zn2+ that are 
often used as nanocatalysts during treatment of water and wastewater 
[124,125]. The mechanisms of homogeneous catalytic ozonation in
volves the decomposition of ozone leading to the production of powerful 
OH oxidants [126]. In this regard, the efficiency, and the rate of ho
mogeneous catalytic ozonation systems may also depend on the direct 
production of O3 and OH. oxidants via interactions of nano-metals. Ac
cording to Dang et al. [110], the main reaction mechanisms involved in 
this process could be illustrated in Eqs. (1) and (2) as follows:  

Contaminant + O3 → by-products                                                      (1)  

Contaminant + OH → by-product                                                      (2) 

Hence the rate and kinetics of homogeneous catalytic ozonation 
could summarised according to Eqs. (3) and (4). 

−
dCp
dt

= Cp
(

k1CO3 + k2COH
)

(3)  

− ln
Cp

Cp, 0
= Cp (k1CO3 + k2COH)t (4)  

where Cp, CO3 and COH are the concentrations of pollutants, O3 and OH., 
respectively. On the other hand, k1 represents the kinetic constant of 
direct reaction of O3 with the pollutants (kO3/pollutant), while k2 is the 
kinetic constants of reaction of OH. with the pollutant (kOH

. /pollutant). 
These mechanisms were recently reviewed and clarified by Li et al. 
[127] and Malik et al. [128]. 

To recall, the homogeneous catalytic ozonation process is often 
initiated to improve the decomposition of water pollutants [129]. 
However, Guo et al. [120] highlighted that the lack of control of 

nano-ions or ions in solution could lead to secondary pollution and 
might become problematic. 

4.3.2. Heterogeneous nano-catalytic ozonation 
To enhance the decomposition of O3 leading to the production of OH. 

and to assimilate the regeneration process of the catalysts used during 
water and wastewater remediation, the comprehension of heteroge
neous nano-catalytic ozonation mechanisms is a crucial step. Kasprzyk- 
Hordern et al. [130] and Zhao et al. [131] conveyed that heterogeneous 
nano-catalytic ozonation could be summarised in three distinctive sce
narios presented below. The first scenario involves the chemisorption of 
ozone onto catalyst surface resulting in the generation active species 
such as OH. and O2

. , that interact with non-chemisorbed organic mole
cules and agrees with Moussavi et al. [132]. The second process refers to 
the associative or dissociative chemisorption of organic molecules onto 
the catalyst surface and interaction with dissolved ozone or aqueous 
gases [133]. The last step involves the chemisorption of O3 and pollutant 
and their interaction. The effectiveness of heterogeneous catalytic 
ozonation for wastewater remediation may depend on various factors 
including the selected pollutants, catalysts, their surface characteristics, 
and the operational experimental conditions [134]. A typical example of 
heterogeneous catalytic ozonation occurring at the surface of nano-MgO 
during the degradation of phenol has been reported in Dang et al. [110]. 
The radical type of catalytic oxidation occurring at the surface of the 
catalyst is expressed in Eqs. (5)–(7) as follows:  

MgO-s + O3 → MgO-so–
–o–o                                                            (5)  

MgO-so–
–o–o → MgO-so⋅ + O2                                                          (6)  

MgO-so⋅ + phenol → H2O + CO2 + by-products                                 (7) 

In addition, the direct oxidation of phenol by catalyst-O3 molecules is 
highlighted as shown in Eqs. (8) and (9)  

MgO-so–
–o–o + phenol → CO2 + H2O + by-products                           (8)  

MgO-phenol + O3 → CO2 + H2O + by-products                                 (9) 

Furthermore, the direct oxidation of phenol by O3 molecules in the 
bulk solution is shown in Eq. (10).  

O3 + phenol → CO2 + H2O + by-products                                       (10) 

In case the contaminant is adsorbed onto the surface of the catalyst, 
Khuntia et al. [121] and Sable et al. [135] reported that the rate of 
adsorption could be approximated according to Eq. (11). 

−
dCp
dt

= k3CpCcat (11)  

where Cp and Ccat represent the pollutant and catalyst concentrations, 
correspondingly. Various studies involving the catalytic-ozonation for 
the removal or organic contaminants from wastewater have been con
ducted [136–139]. However, it should be emphasised that for powder 
catalysts used in catalytic-ozonation processes, post-treatment separa
tion is often involved and could be a cost related limitation to some 
extent. Alternatively, some researchers have suggested that suspensio
n/immobilisation of the catalysts on appropriate supports could be 
promising to boost the degradation of pollutants in catalytic ozonation 
during water and wastewater treatment [11,12,100]. In this case, the 
study published by Pana et al. [140] could be useful to overcome any 
corrosion constraint that might be encountered during the remediation 
process. 

4.4. Effect of pH on catalytic ozonation 

Various authors [141–143] conveyed that the solution pH is an 
extremely sensitive parameter in chemical reactions such as ozonation 
and catalytic ozonation methods. Its alteration can result in strong 
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modification of solution chemistry and decomposition efficiencies/
rates. Therefore, its optimisation at an early stage of these treatment 
processes is mandatory [138]. Depending on the catalyst used and their 
properties, model pollutants and their solution pKa values, Amat et al. 
[144]; Barik and Gogate [145] and Barik and Gogate [146] emphasised 
that optimal removal of contaminants can happen either in acidic or 
basic conditions. In this regard, Sanz et al. [147] and Martins et al. [148] 
endorsed that wastewater consisting of pollutants of acidic nature such 
as alkylsulfonic acids could optimally remediated at low acidic pH. 
While Ma et al. [141] and Boczkaj et al. [149] sustained that improved 
removal efficiencies could be achieved during ozonation treatment of 
wastewater in basic conditions having a high density of hydroxyl radi
cals. In addition, Buffle et al. [142] and Patil et al. [138] supported that 
the variation of pH can impact on the properties of the catalysts surface, 
mineralisation of contaminant, reactivity of ozone or production of free 
radicals. Nevertheless, numerous investigations have demonstrated that 
the reaction rate of ozone on selected pollutants could be significant in 
acidic and alkaline pH media [147,148,150–153]. Indeed, the decom
position of ozone is favoured in basic pH because of the presence of 
hydroxyl ions and often results in improved efficacy. Likewise, Martins 
et al. [148] stated that catalytic ozonation can be improved in acidic 
conditions because of the enhanced adsorption and subsequent surface 
interactions recalling that surface reactions are impeded in basic media 
because of electrostatic repulsions. Furthermore, in complex mixed ef
fluents, the occurrence of scavenging ions at different pH can signifi
cantly obstruct the generation and reactivity of reactive species. Similar 
trends on the impact of pH during ozonation and catalytic ozonation 
have been outlined by Alinejad et al. [134]. It can be highlighted that 
solution pH is a complicated factor that deeply depends on the nature of 
the pollutants and hence the composition of wastewater. Hence, water 
temperature and pH, concentrations of dissolved matter and UV light 
and catalyst dose have been considered as factors that influence the 
decomposition of ozone in aqueous media [107]. The development of 
adequate non-thermal plasma technologies based on dielectric barrier 
discharge has attracted attention in the past decades. The drive of using 
DBD systems focuses on finding an effective configuration in which O3 
and related oxygen species could be abundantly produced at low cost 
and environmentally safe experimental conditions. For instance, Mouele 
et al. [1] reported that a double cylindrical dielectric barrier discharge 
plasma configuration could still be explored to produce ozone and 
co-oxidants for the detoxification of polluted water. 

4.5. General description of single and double cylindrical dielectric barrier 
discharge configurations 

Dielectric barrier discharge configurations aim at the generation of 
various molecular and radical species such as O3, H2O2, O., O2

.¡, OH, 
etc., electrons, and UV photons that directly or indirectly decompose 
hazardous compounds. The priority of DBDs is the production of the 
non-selective hydroxyl radical that is an exceptionally effective oxidant, 
with an oxidising potential of 2.8 V higher than that of ozone 2.07 V 
[154]. The OH radical is the most dominant oxidative species that 
non-selectively attacks recalcitrant contaminants and converts them 
into dissolved CO2, H2O, and harmless substances. Among the most 
common DBD electrode configurations earlier reviewed in Section 4.1 
single and double cylindrical dielectric-barrier discharges (SCDBD and 
DCDBD) have been used in wastewater recovery [98,154]. Therefore, 
the current review focuses on SCDBD and DCDBD systems as effective 
methods for the treatment of contaminated water/wastewater. These 
configurations consist of one or more insulating layers often referred to 
as a dielectric barrier between/around metal electrodes and discharge 
gap(s). The presence of more dielectric boundaries in DBD configura
tions intensifies the existence of electric and magnetic fields to ensure 
the even distribution of highly energised electrons around the dielectric 
materials even though the upscaling of these configurations has always 
been challenging. A typical schematic comparison of single and double 

cylindrical DBDs is presented in Fig. 3. 
In Fig. 3a, the following scenarios can be encountered: 
Scenario 1: The feed gas (air) bubbled in the system is directly in 

contact with the effluent being treated. In this case, the air components 
(N2 and O2) dispersed in the liquid might not immediately reach the high 
energy electrons around the dielectric barrier to induce air dissociation 
that leads to the formation of gaseous species. So, the fact that the 
dielectric barrier is in contact with the pollutant being remediated, 
might decrease the abundance of high energy electrons as these latter 
become randomly dispersed and solvated and could be involved in 
parallel slow reactions occurring in the solution. This consequently de
celerates the dissociation of the feed gas and declines the density of 
gaseous and secondary aqueous species and could therefore retard the 
treatment process. 

Scenario 2: The feed gas (air) is often passed through direct contact 
with the high voltage electrode (HV) in the dielectric barrier tube [100]. 
This could result in electrode deterioration after long periods of exper
imental runs. 

Scenario 3: If the electrolyte is introduced into the inner dielectric 
tube, this could amplify the intensity of UV generated [155]. However, 
this might result in scenario 1 as the dissociation of feed gas dispersed in 
the water might become a slow process and could decelerate the pro
duction of active species. 

Scenario 4: If the electrolyte and the feed gas are fed into the inner 
tube of the electrolyte and both are in contact with HV, this could 
therefore result in scenarios 1 and 2. 

On the other hand, in Fig. 3(b) the common scenario susceptible to 
occur in the DCDBD system can be highlighted as follows: 

Scenario 1: The feed gas is passed through between the first and 
second dielectric layers. The presence of electric and magnetic fields in 
the plasma zone (the region between the first and second dielectric 
layers) in Fig. 3b ensures free circulation of high energy electrons 
around the surface of the inner (first dielectric) tube that largely par
ticipates in the dissociation of the feed gas (air in this case) and effec
tively contributes to the abundant production of gaseous species mainly 
O3, N*, and others in the air gap. These in return, are directly circulated 
and dispersed into the polluted water and further induce the generation 
of secondary species such as H2O2 and OH. radicals in the water being 
treated. These hence boost the density of both gaseous and aqueous 
species that enhance the degradation of targeted pollutants. During 
these scenarios, the HV is protected by the inner dielectric tube. 

Scenario 2: The introduction of the electrolyte solution in the inner 
dielectric tube improves the UV intensity and accelerates the dissocia
tion of air gas which increases the amount of gaseous and liquid species. 
These consequently improve the decomposition of selected 
contaminants. 

Therefore, the addition of a second dielectric barrier in DBD 
configuration (Fig. 3b) allows the focus of a magnetic field that facili
tates the bending motion of gaseous elements around the first dielectric 
tube, while the electric field facilitates their acceleration in the plasma 
zone. This validates the superiority of double cylindrical DBD configu
ration over the single cylindrical DBD electrode geometry. Hence double 
cylindrical DBD configuration can still be explored for the remediation 
of recalcitrant organic pollutants in water and wastewater. The differ
ences between single and double cylindrical describes in this text were 
summarised and is presented in Table 1. 

4.5.1. Degradation of organic pollutants by single dielectric barrier 
discharge 

Single cylindrical dielectric barrier discharge (SCDBD) has been used 
for the remediation of organic pollutants in water and wastewater. For 
instance, Mok et al. [156] investigated the decomposition of orange II 
(O. II) azo dye using SCDBD reactor that generates UV light and reactive 
species mainly ozone that effectively destroyed the model pollutant O.II 
dye. Their study conducted at the working parameters displayed in  
Table 2 showed that the removal efficiency of O. II with SCDBD alone 
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was up to 90% after 60 min of plasma experiment. However, addition of 
powder TiO2 catalyst in the system enhanced the efficacy of UV radia
tion and hence the degradation efficiency of O.II to 99.9% after 20 min 
of plasma exposure though the degradation intermediate by-products 
showed recalcitrance behaviour during oxidation process with SCDBD 
alone. The authors showed that dye initial concentration influences its 
removal and better TOC removal was achieved with pure O2 feed gas 
than in air-SCDBD system. Conversely, Kim et al. [100] conducted the 
treatment of wastewater simulated by various antibiotics including 
lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline, oxytetracy
cline, sulfathiazole, sulfamethoxazole, sulfamethazine, and trimetho
prim using SCDBD configuration at experimental conditions recorded in 
Table 2. During their investigations, the impact of pollutant initial 
concentration, feed gas (air, O2) and discharge power on the removal 
efficiency of antibiotics were discussed. Their results indicate that the 
degradation of antibiotics depended on the energy yield, though 
different degradability were observed. Their report sustains that at an 
initial concentration of 5 mg L− 1, the energy required to degrade 60% of 
antibiotics was in the range of 0.26–1.49 kJ mg L− 1 and 
0.39–2.06 kJ mg L− 1 for pollutants with degradation efficiency of 90%. 
The authors further claimed that the SCDBD configuration used in their 
study is a promising technology for wastewater remediation. Compa
rably, Tichonovas et al. [157] studied the plasma oxidation of 13 in
dustrial textile dyes using a pilot single cylindrical dielectric barrier 
discharge (SCDBD) at experimental factors reported in Table 2. The 
results of their study demonstrated that when the discharged power was 
varied from 3 to 33 W, the concentration of ozone fluctuated between 
0.19 mg/s and 0.46 mg/s with a corresponding energy in the range of 
18.7–866 kJ/g. In addition, the authors showed that the decomposition 
of 10 out of 13 dyes reached 95% after 5 min of the start of the plasma 
experiment and the main degradation by-products comprised of amines 
and amides, carboxylic acids, and nitrates and the treated effluent had a 
toxicity of near-zero values. Their investigation further claimed that the 
SCDBD reactor used in their research is a competitive technology that 
effectively remedies recalcitrant dye simulated textile wastewater. A 
similar investigation carried out by Reddy et al. [158] who assessed the 
degradation of the aqueous pesticide endosulfan in an aqueous single 
cylindrical dielectric barrier discharge reactor at the experimental 
conditions shown in Table 2. Their report highlights that the degrada
tion percentage of endosulfan reached 65% after 30 min of plasma time 

Fig. 3. (a) Photograph of the UV light produced in a single dielectric barrier discharge with the aqueous electrolyte solution (plus 1.5 mm silver rod in an electrolyte 
solution), and (b) silver rod in an electrolyte in the inner tube compartment of the double cylindrical DBD [155]. 

Table 1 
Summary of the difference between single and double cylindrical DBDs.  

Properties/ 
benefits 

Single cylindrical DBD Double cylindrical 
DBD 

Ref. 

Number of 
dielectric 
barriers 

1 2 or more  

High energy 
electrons 
distribution & 
diffusion 

Low abundance, 
randomly distributed and 
dispersed in liquid 

High abundance, 
highly distributed and 
effectively dispersed 
in polluted water 

[74] 

High voltage 
electrode 
corrosion 
protection 

Exposed to feed gas and 
may result in corrosion 
that may limit its 
usability 

Well protected from 
feed gas and polluted 
water and can be used 
in prolonged 
experimental runs 

[1] 

Electrical and 
magnetic fields 
strength 

Could be weak around 
the dielectric barrier due 
to polluted water 
surrounding 

Strong between the 
first and second 
dielectric barriers 
leading to effective 
acceleration and 
bending of gaseous 
free radicals 

[98, 
103] 

Feed gas 
dissociation & 
diffusion 

Directly and randomly 
diffused in solution and 
may retard its contact 
with high energetic 
electrons, hence 
decelerating the 
formation of active 
species 

Well dissociated to 
gaseous active species 
and efficiently 
diffused in solution 

[6] 

Introduction of 
electrolyte 
solution in the 
inner dielectric 
barrier 

Electrolyte might 
intensify UV radiation 
generation but the 
diffusion of flow gas in 
electrolyte might limit 
the production of active 
species and retard the 
decontamination process 

This intensifies the 
circulation of high 
energy electrons 
around the inner 
dielectric, improves 
the dissociation of 
feed gas and amplifies 
the production of UV 
radiation and active 
species, and hence 
accelerate the 
depollution of water 
effluents 

[11, 
12, 
32, 
33, 
90]  
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Table 2 
Energy yield G50 of conventional DBDs, single/double cylindrical DBD (SCDBD and DCDBD) configurations used for the degradation of organic pollutants.  

Type/name of 
pollutant 

Initial concentration 
(mol/L) 

Solution 
pH 

Type of DBD 
configuration 

Power 
(kW) 

Reaction time 
(min) 

Degradation efficiency 
(%) 

Rate constant Kr (min− 1) Half-life 
(min) 

Energy Yield (G50) (g/ 
kW h) 

Ref. 

Pentoxifylline 3.59 × 10− 4 NA DBD with falling liquid 
film 

0.001  60 100 1 4.2 × 10− 2 16.5 0.6055 [165] 

Carbamazepine 8.46 × 10− 5 NA Ex situ DBD system 0.012  60 90 3.8 × 10− 2 18.23 0.0045 [166] 
Sulfadiazine 

antibiotics 
3.99 × 10− 5 9 Water falling film DBD 0.15  30 87 6.8 × 10− 2 10.19 0.0003 [77] 

Oxacillin 2.49 × 10− 4 NA DBD with falling liquid 
film 

0.002  30 100 3.83 × 10− 1 1.81 2.761 [166] 

Carbamazepine 9.98 × 10− 5 NA DBD rotating drum 
reactor 

0.75  60 94 4.68 × 10− 2 14.81 0.0010 [167] 

Amoxicillin 2.7 × 10− 4 NA DBD rotating drum 
reactor 

0.75  10 100 3.32 × 10− 1 2.08 0.0316 [167] 

Atrazine 1.39 × 10− 7 5.06 Atmospheric pulsed 
DBD 

0.0017  45 61 2.09 × 10− 1 3.31 0.0002 [168] 

Azo dye Orange II 7.14 × 10− 5 5.3 SCDBD 0.0168  60 99.9 1.15 × 10− 1 6 0.06 [156] 
Endosulfan pesticide 3.68 × 10− 5 NA SCDBD 0.0026  30 65 2.1 × 10− 2 33 0.08 [158] 
13 industrial textile 

dyes 
2.25 × 10− 5 7–8 DCDBD 0.033  5 95 5.89 × 10− 1 1.63 0.18 [157] 

Veterinary antibiotics 1.04 × 10− 5 NA SCDBD 0.0089  30 90 7.3 × 10− 2 9.5 0.03 [100] 
Various 

micropollutants 
6.70 × 10− 4 NA SCDBD 0.04–0.09  30 90–99.5 7.3 × 10− 2–1.76 × 10− 1 13.19–5.47 0.30–0.50 [159] 

3 micropollutants 3.37 × 10− 6 NA SCDBD 0.0397  20 99.8 3.10 × 10− 1 3.10 0.004 [160] 
Alachlor pesticide 3.70 × 10− 6 NA SCDBD 0.04  30 90 7.3 × 10− 2 13.19 0.0005 [161] 
Tetracycline 

antibiotic 
4.50 × 10− 5 NA DCDBD NA  5 82 3.03 × 10− 1 3.17 0.0002 [164] 

Sulfadiazine 
antibiotic 

3.99 × 10− 5 9.10 DCDBD 0.100  30 99.99 3.07 × 10− 1 2.14 0.0016 [77] 

Diclofenac 3.37 × 10− 5 6.15 DCDBD 0.050  10 99.99 9.21 × 10− 1 1.04 0.0096 [162] 
Methylene Blue dye 3.10 × 10− 5 2.5 DCDBD 0.060  12 99.99 7.67 × 10− 1 1.25 0.098 [90] 
Bisphenol-A 4.38 × 10− 5 3 DCDBD 0.125  80 67.90 9.0 × 10− 3 107 0.0009 [11] 
2-nitrophenol 7.20 × 10− 5 3 DCDBD 0.125  60 58.60 5.7 × 10− 3 168 0.0003 [12] 
Methyl orange dye 3.05 × 10− 4 3 DCDBD 0.117  18 99.90 3.83 × 10− 1 2.51 0.034 [163]  
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on stream. Likewise, the decomposition of endosulfan followed a 
first-order kinetic trend and its rate of degradation depended on the 
initial concentration and input power. The study further conveyed that 
the addition of cerium oxide catalysts in the plasma reactor improved 
the mineralisation of recalcitrant endosulfan. Another study focusing on 
the degradation of various micropollutants (atrazine, alachlor, diuron, 
dichlorvos and pentachlorophenol, carbamazepine and 1, 
7-α-ethinylestradiol, and bisphenol A) using a continuous flow pulsed 
single dielectric barrier discharge (DBD) configuration with falling 
water film was conducted by Wardenier et al. [159]. During their 
assessment, the effect of multiple parameters including the type of feed 
gases and their flow rates, discharged power and energy efficiency on 
the removal of pollutants were examined. At optimum conditions 
specified in Table 2, the degradation percentages of micropollutants 
were in the range of 90–99.5% with a corresponding energy range of 
2.42–4.25 kW h/m3 achieved after 30 min of time on stream. The au
thors further asserted that the SCDBD reactor used in their study is a 
promising AOP that can be used for the efficient remediation of indus
trial wastewater. The extended use of SCDBD plasma configurations in 
the degradation of micropollutants including atrazine (ATZ) and ala
chlor (ALA), bisphenol A (BPA) and 1,7-a-ethinylestradiol (EE2) has 
been reported in the literature [160,161]. From these investigations, it 
can be observed that the degradation of organic pollutants with SCDBD 
alone resulted in reasonable removal efficiencies but somehow the 
degradation by-products of targeted pollutants showed resistance 
behaviour. However, the addition of catalysts improved the removal 
processes and boosted the mineralisation of recalcitrant degradation 
intermediate by-products. 

4.5.2. Degradation of organic pollutants by double cylindrical dielectric 
barrier discharge 

Rong et al. [77] studied the degradation of diclofenac (DF) using a 
double cylindrical dielectric barrier discharge (DCDBD) reactor at the 
applied conditions shown in Table 2. In their study, the authors assessed 
the impact of various working parameters on the removal of DF. The 
outcomes show that at concentration 10 mg/L of pH 6.15, and a 
discharge power of 50 W, diclofenac was totally removed (99.9%) 
within 10 min of time on stream. Rong and colleagues showed that the 
supplement of Fe2+ in the DCDBD system boosted the decomposition of 
DF toxin. The authors showed that O3 and OH. were the major reactive 
species involved in the decomposition of DF that resulted in 5 degra
dation intermediate by-products whose mineralisation was futile due to 
the recalcitrance of their aromatic rings. Nevertheless, DF and its 
degradation intermediates were fully detoxified. These results indicate 
that in DCDBD systems producing both O3 and OH., the by-products 
resulting from the interaction of OH with DF might appear to be con
verted to H2O, dissolved CO2, and simpler inorganics. The reaction of O3 
with unsaturated pollutants such as DF results in more bulky and stable 
intermediates whose total conversion might require prolonged treat
ment time. Soon after, Rong et al. [162] examined the decomposition of 
sulfadiazine antibiotic using the same DCDBD reactor. They showed that 
at a discharge power of 100 W, 99.9% removal of 3.99 × 10− 5 mol/L 
sulfadiazine (10 mg/L) was reached at pH 9.10 within 30 min time on 
stream. The degradation of sulfadiazine resulted in eight degradation 
intermediate by-products that were successfully transformed to H2O and 
CO2. Double cylindrical DBD was also used by Tijani et al. [11] for the 
degradation of 2-nitrophenol (2-NP) pollutant simulated wastewater at 
conditions indicated in Table 2. The results showed that after 120 min 
time of stream, about 58.8% removal of 2-NP was achieved in acidic 
conditions at pH 3 and nine degradation intermediates by-products were 
detected and were further transformed to dissolved CO2 and H2O. The 
64% removal achieved in this study inferred that 2-NP and its degra
dation by-products were recalcitrant but afterward got totally decom
posed. Likewise, Tijani et al. [12] used the same DCDBD configuration to 
decompose bisphenol-A (BP-A) at the corresponding conditions recor
ded in Table 2. The outcomes showed that 67.9% of BPA removal was 

reached within 80 min of experiment. In total six recalcitrant degrada
tion intermediates were identified which further were transformed to 
H2O and CO2. Moreover, Tao et al. [163] investigated the decomposition 
of methyl orange using a DCDBD reactor at the applied conditions 
indicated in Table 2. Their outcomes showed that at a discharge power 
of 117 W about 99.9 of O.II removal was achieved at pH 3 within 18 min 
time on stream. Unfortunately, their report does not highlight any in
formation about O.II degradation intermediate by-products. Extended 
assessment of the efficiency of DCDBD configuration was performed by 
Mouele et al. [90] for the degradation of Methylene Blue (MB) dye at 
experimental conditions shown in Table 2. Their results demonstrated 
that with a discharge power of 60 W, 3.10 × 10− 5 mol/L (40 mg/L) MB 
was totally degraded at pH 2.5 within 12 min time on stream. The au
thors reported that the decay of MB resulted in four degradation inter
mediate by-products that were fully converted into H2O, CO2, and 
harmless inorganics. Thus, this review proposes that DCDBD could be an 
effective treatment method for the remediation of contaminated waters. 
Nevertheless, a short and succinct comparison between conventional, 
single, and double cylindrical DBD configurations in terms of their ef
ficiency during the removal of water pollutants has been summarised 
and presented in Table 2. Their energy yield (G50) was approximated 
according to Malik [34] and Tang et al. [164]. The outcomes recorded in 
Table 2 show that complete removal of pollutants with single cylindrical 
dielectric barrier discharges (SCDBD) was achieved within 60 min and 
the half-life (t1/2) required to decompose half of pollutant concentration 
was less than or equal to 33 min (t1/2 ≤ 33 min) with a corresponding 
energy yield G50 in the range of 0.0005–0.50 g/kW h. On the other 
hand, the total degradation of pollutants with double cylindrical 
dielectric barrier discharge (DCDBDB) configurations was reached 
within 30 min of plasma exposure except for Tetracycline antibiotic, 
Bisphenol-A and 2-nitrophenol that showed strong resistance and 
reduced degradation percentages of 82%, 67.90% and 58.6%, respec
tively due to the recalcitrance of their degradation by-products that 
required extended times to reach complete conversion to H2O, dissolved 
CO2 and harmless inorganics. It is worthwhile to recall that Tijani et al. 
[11,12] highlighted that 2-nitrophenol, Bisphenol-A and antibiotic such 
as Tetracycline are often listed as compounds of emerging concern 
because of their tenacity to be totally decomposed. Likewise, the mini
mal removal percentages obtained for the recovery of these three com
pounds could be because, the DCDBD configurations used were open 
systems which might have favoured the escape of O3 and related gaseous 
species that could majorly enhance the removal process if recirculated. 
Apart from Bisphenol-A and 2-nitrophenol whose half-lives 107 and 
168 min were required to degrade half of their initial concentrations, 
correspondingly, the data presented in Table 2 indicate that the 
decomposition of half of pollutant concentrations happened within 
3 min of plasma run (t1/2 ≤ 3 min) with corresponding energy yield 
(G50) range of 0.0016–0.098 g/kW h. These results together sustain the 
superiority of DCDBD configurations over SCDBD electrode geometries. 
Furthermore, since all G50 calculated in Table 2 are less than 50%, this 
indicates that DBD technologies are energy efficient treatment protocols 
for the recovery of polluted water. 

4.6. Dielectric barrier discharge working scheme: benefits of 
double dielectric barrier discharge configuration 

Double cylindrical dielectric barrier discharge (DCDBD) electrode 
geometry presents benefits over other DBD geometries. Its dominance is 
based on several aspects such as high electron density, even distribution 
of electrons around the inner tube (first dielectric material), minimum 
anode corrosion, and good stability. Similar advantages of this config
uration were explored by [6,162] during the degradation of dyes and 
pharmaceutical water contaminants. DBD involves the generation of 
non-selective hydroxyl radicals as a promising tool for effective degra
dation and mineralisation of target pollutants in water and wastewater 
[169,170]. Apart from the production of OH radicals, the DBD system 
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also generates UV light, O3, and H2O2 and their combination in aqueous 
media allows water and wastewater treatment without the addition of 
chemicals. Even though various DBD configurations have been 
employed in the decomposition of pharmaceuticals in aquatic media 
[32,77,165,166,170], their efficiency may depend on their electrode 
geometries. A typical DBD reactor described by Mouele [6] presented in  
Fig. 4 consists of the inner and outer quartz dielectric barriers/tubes and 
the region between the two tubes is often referred to as the air gap or 
discharge zone. The two tubes are sealed at the top of the outer part of 
the reactor. 

At the bottom of the airgap, the second barrier is sealed onto a porous 
sparging outlet. The inner tube diameter is often around 1 mm and that 
of the outer tube is about 7 mm. The DBD reactor (23–25 cm) long is 
with an inlet and outlet for air circulation and an air gap of about 2 mm. 
The simulated wastewater placed in the reactor is considered as the 
ground electrode and earthed to complete the circuit. The air 
compressor with a controllable flow rate (using an airflow metre) is 
connected to the gas inlet. The feed gas fed from the inlet freely circu
lates through the airgap or plasma zone and is uniformly spread as 
bubbles into the simulated wastewater via the porous sparging material 
to achieve maximum oxidation of the pollutant. The set voltage, airflow, 
pollutant volume, and other parameters are either varied or kept con
stant for optimisation purposes. A power supply set at a voltage deliv
ering a certain amount of current is directly connected to a high voltage 
electrode that is immersed in an electrolyte solution placed in the inner 
tube of the reactor. The interaction between the highly energised elec
trons around the inner tube and air gas (N2 and O2) or pure oxygen (O2) 
induced the formation of UV light and various exciting unstable species 
such as N*, O., O3, etc. in the plasma zone. The generated species in the 
air gap follow an avalanche of chemical reactions and are directly 
circulated into the polluted water, where secondary species such as 
H2O2, OH., etc. are subsequently produced. From the diagram presented 
in Fig. 4, the flow of about 1 eV current through the anode electrode is a 
source of high energy electrons that are evenly distributed around the 
first dielectric barrier governed by the electric and magnetic fields. So, 
the interaction of the highly energised electrons with feed gas such as 

air, oxygen, nitrogen, etc. in the plasma zone (b) is the driving force 
responsible for the generation of UV radiation, shock waves, and various 
types of reactive oxygen species (ROS). The primarily generated species 
in zone (b) are then circulated by continuous gas flow into the bulk 
solution where other species are subsequently formed. Beforehand, the 
dissociation of air gas described by Massima [6] and Magureanu et al. 
[165,166,171] in the region (b) occurs in four distinctive reactions 
among which excitation (Eq. (12)), dissociation (Eq. (13)), ionisation 
(Eqs. (13)–(16)) and electron capture (Eqs. (17) and (18)) occurs. M 
represents the third collision substrate such as O2, N2, etc.  

e-* + N2 → N2* + e-                                                                     (12)  

e-* + N2 → N⋅ + N⋅ + e-                                                                (13)  

e-* + O2 → O⋅ + O⋅ + e-                                                                (14)  

e-* + H2O → OH⋅ + H⋅ + e-                                                           (15)  

e-* + O2 → O2
+ + 2e-                                                                    (16)  

e-* + N2 → N2* + e-                                                                     (17)  

e-* + O2 + M → O2
- + M                                                               (18) 

Consequently, various reactive oxygen species such as H2O2, O., O2
.− , 

HO., HO2
. , H3O+, OH− , H2O, etc. are produced in the DCDBD configu

ration. The principal chemical reactions for their subsequent production 
as earlier discussed by Locke et al. [172] and Panicker [173] are pre
sented in Eqs. (19)–(33)  

2H2O → H3O + e-
eq + OH                                                             (19)  

H2O → OH⋅ + H                                                                           (20)  

H3O+ + OH- → 2H2O                                                                   (21)  

H⋅ + O2 → HO2                                                                            (22)  

H⋅ + H2O2 → H2O + OH                                                               (23)  

Fig. 4. Different reaction zones encountered in the DCDBD system. (a) High voltage electrode, (b) air gap/plasma zone, (c) ROS formed in plasma discharge zone, (d) 
sparger, (e–g) ROS discharged in polluted water, (h) magnetic stirrer [62]. 
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OH⋅ + H2O2 → H2O + HO2
§ (24)  

OH⋅ + H⋅ → H2O                                                                          (25)  

e-
eq + OH⋅ → OH-                                                                         (26)  

e-
eq + H⋅ + H2O → OH- + H2                                                         (27)  

e-
eq + H2O2 → OH⋅ + OH-                                                             (28)  

2 OH⋅ → H2O2                                                                              (29)  

2 HO2
⋅ → H2O2 + O2                                                                     (30)  

H⋅ + HO2
⋅ → H2O2                                                                        (31)  

2H⋅ → H2                                                                                     (32)  

HO2
⋅ + OH⋅ → H2O + O2                                                               (33) 

During the formation process of reactive oxygen and nitrogen-based 
species (ROS) in DCDBD, free radicals take up electrons from neigh
bouring atoms or molecules and several new chemically active species, 
such as H2O2, O•, OH•, HO2

•, O3*, N2*, e− , O2
− , O− , O2

+, etc. are formed. 
The dislocated electrons in newly generated entities tend to return to 
their initial states and the process becomes uninterrupted. This conse
quently gives rise to reaction chains of the formation of reactive oxygen- 
based species as shown in Fig. 5. To avoid confusion, the RNS formed in 
DCDBD system as previously claimed, have been presented and dis
cussed in a separated section in Fig. 5. 

Similarly, reactive nitrogen-based species (RNS) presented in Fig. 5 
are also produced in atmospheric non-thermal plasma geometries 
mainly DCDBD following the same scenario as shown in Fig. 4. Electrical 
discharges based on non-thermal plasma processes are sources of several 
reaction chains leading to the formation of ROS in Fig. 4. The principal 
goal of these avalanche reactions is the generation of the most powerful 
and non-selective hydroxyl radicals that destroy any type of contami
nant and micro-organisms [1]. In addition to this, the multiple ROS 
produced in DCDBD and other DBD configurations is often characterised 
by their different oxidation potentials. Hence their effects on target 
pollutants may be completely different. For instance, ozone with an 
oxidation potential of 2.07 V selectively reacts with unsaturated com
pounds. Based on these particularities, the most common ROS produced 
in DCDBDs, their densities, oxidation potential, and half-life have been 
reviewed and are shown in Table 3. 

The various physical and chemical properties summarised in previ
ous paragraphs showed that DBDs are sources of powerful chemical 
oxidant mixtures that directly or indirectly mineralise organic contam
inants in polluted water bodies. During advanced oxidation processes, 
based on ozonation, Fenton or photo Fenton reactions, etc. O3, UV, and 
H2O2 are often used separately or in combination. This often requires the 
purchase of UV lamps, ozonisers, and liquid H2O2, and other necessary 
equipment which could be costly, energy demanding, or maybe time 
consuming to operate. In contrast, with only 1 eV, DCDBD configuration 
solely produces UV–vis light and multiple selective and non-selective 
oxidising agents that destroy contaminants [1]. This, therefore, gives 
DCDBD an advantage in eliminating toxins from polluted water. Most 
established water treatment techniques do not successfully remove 
water pollutants, but they generate carcinogenic by-products that are 
often more toxic than the parent pollutants [11]. Consequently, this has 
rendered the most developed treatment methods inefficient. So, the 
determination of the reaction mechanisms or degradation steps of ROS 
on organic pollutants might be crucial in understanding the chemistry of 
the oxidative agents when reacting with contaminants. These in turn 
may guide researchers in choosing the type of treatment of each targeted 
pollutant and hence having a lucid comprehension of the expected 
by-products. So far filtration and adsorption processes have failed to 
remove these contaminants from the water being treated. Hence 
oxidative methods that may directly break down the remaining recal
citrant pollutants should be applied. Double cylindrical dielectric barrier 
discharge (DCDBD) technology described in this manuscript presents 

Fig. 5. Generation of reactive oxygen species in atmospheric DBD plasma configurations [2,74,102].  

Table 3 
Chemical properties of common oxidants in non-thermal plasma configurations 
[169].  

Reactive oxygen 
species 

Oxidation 
potential (V) 

Density 
(cm− 3) 

Half-life 
(s) 

Ref. 

OH• 2.80 1015–1017 10− 9 [174] 
O• 2.42 1014–1016 10− 6 [174] 
O3 2.07 1015–1017 1.2 × 103 [175] 
H2O2 1.78 1014–1016 60 [174, 

175] 
HO2

• 1.70 NA NA [174] 
O2

.− 1.44 1010–1012 10− 6 [174, 
175] 

Nitric oxide (NO) NA 1013–1014 NA [175]  
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various physical and chemical benefits and may be considered as an 
alternative, efficient method that can be utilised to destroy aqueous 
pollutants into dissolved CO2, H2O, and harmless by-products [1]. This 
does not mean that DCDBD would purify water from the raw state to the 
final step; rather DCDBD could be employed as an integrative technol
ogy to treat secondary or tertiary water effluents. Furthermore, from the 
numerous publications focusing on the use of non-thermal plasma for 
water treatment, literature presents little information on descriptive 
reaction effects/mechanisms of ROS produced in non-thermal configu
rations on organic contaminants and micro-organisms. Therefore, this 
review also highlights in greater detail, the reactive mechanisms of the 
common ROS produced in DBDs on organic contaminants and 
micro-organisms. The formation mechanisms of ROS previously 
described in Figs. 4 and 5 show that O3 and its derivatives are produced 
in DBD reactors via a series of chemical reactions. However, more 
mechanisms could still be discovered depending on the DBD system
s/configurations and perhaps additives used to enhance the generation 
of ROS. In this regard, it could be challenging to discuss the production 
of ROS mechanisms in a DBD plasma system without highlighting their 
reaction mechanisms with targeted contaminants. Furthermore, since 
the physical and chemical properties of the DBD system appear as 
chemical cocktails, it would be challenging to state the production route 
of each ROS in DBD solely, rather their production occurs in consecutive 
chains of reactions. 

4.7. Reactivity of ozone and its impact on persistent organic 
compounds in aqueous dielectric barrier discharges 

Various studies [176,177] have shown that ozone with an oxidation 
potential of E0 = 2.08 V is a strong oxidiser agent and its oxidation re
action yields hydrogen peroxide. Likewise, Lide [178] showed that at 
normal conditions of temperature and pressure, ozone has a very low 
solubility. Moreover, Atkinson [179] showed that when exposed to UV 
radiations at λ = 310 nm, ozone decomposes to a singlet oxygen atom 
and singlet oxygen molecules according to Eq. (34). Moreover, the 
highly reactive singlet oxygen atom with a lifetime of 4.4 µs in aqueous 
media reacts with water to produce hydroxyl radicals as shown in Eq. 
(35) [180]. The generated OH radicals may recombine to form H2O2 as 
presented in Eq. (36) [1].  

O3 + hv → O (1D) + O2 (1Δg) λ ≤ 310 nm                                      (34)  

O (1D) + H2O (g) → 2OH                                                              (35)  

O (1D) + H2O (l) → H2O2                                                              (36) 

At normal conditions of temperature and pressure and in an acidic 
environment, ozone behaves as an electrophilic substance and reacts 
with organic molecules [181]. Gurol [181] postulated that this is 
probably due to the positive charge carried by the oxygen atom in the 
resonance structures of ozone as presented in Fig. 6. 

An extended property of ozone is that ozone can be converted into 
oxygen by hydroxyl radicals according to Eqs. (37) and (38).  

O3 + OH⋅ → O2 + HO2                                                                 (37)  

HO2
⋅ + O3 →OH⋅ + 2O2                                                                 (38) 

Furthermore, the reactivity of ozone is often classified into two 
categories mainly, direct, and indirect reaction mechanisms [183]. 

4.7.1. Direct and cycloaddition reactions of ozone reactions in DBD 
configurations 

The Lewis ozone molecular structure presented in Fig. 7 shows a 
resonance structure with the two oxygen atoms carrying lone pairs of 
electrons making ozone a polar molecule. Hence, the Lewis model of the 
ozone molecule exhibits two dipole moments both oriented towards the 
central oxygen atom. Based on its resonance structure, it has been re
ported that ozone can act as a 1, 3-dipole, an electrophilic agent, and as a 
nucleophilic agent during aqueous chemical reactions with organic 
pollutants [49,183–185]. These interactions have been summarised as 
shown below. 

The 1, 3 dipole structure of ozone has been demonstrated to undergo 
dipolar cycloaddition reaction with unsaturated compounds yielding 
ozonide compounds as shown in Fig. 7. 

This is often referred to as the Criegee mechanism [182,183,185, 
186]. Moreover, the literature supports that in aqueous media, the 
ozonide structure more likely disintegrates into an aldehyde, a ketone, 
or a zwitterion [76,100,183]. These can further be converted into 
hydrogen peroxide and carboxyl compounds [186]. The direct cyclo
addition attack of ozone on organic pollutants in aqueous media has 
already been highlighted by a few authors. For example, Rivera-Utrilla 
et al. [187] studied the degradation of naphthalene sulphonic acids by 
oxidation with ozone in the aqueous phase. The authors showed that the 
abatement of naphthalene sulphonic acids was induced by 1, 3 cyclo
addition reaction of ozone. Similar studies were conducted by von 
Gunten [51] and Yargeau et al. [188] who successively investigated the 
ozonation of drinking water and the impact of operating conditions on 
the decomposition of antibiotics during the ozonation process, respec
tively. Even though, non-thermal plasma technologies have recently 
been used for the removal of organic pollutants from water and waste
water [161,189–192], the direct oxidative degradation of pharmaceu
ticals by dielectric barrier discharge technologies is an emerging 
research field that can still be explored for water and wastewater 
decontamination. The few studies conducted in this regard show that 
DBD technologies are effective in the conversion of pharmaceutical 
toxins into more amenable intermediate degradation by-products 
[28–30,193–195]. Among the various ROS produced in DBDs systems 
ozone and OH radicals have been identified as the major oxidants that 
largely participate in the deactivation of pharmaceutical toxins as 
described in Fig. 2. For instance, Liu et al. [76] investigated the removal 
of carbamazepine from water by dielectric barrier discharge. The results 
of their study showed that upon the cycloaddition reaction of ozone with 
carbamazepine (CBZ) various degradation by-products were obtained. 
On the other hand, Kim et al. [100] performed the degradation of vet
erinary antibiotics by dielectric barrier discharge plasma; the authors 
specified that the direct attack of ozone on the aromatic rings in the 
antibiotic molecules was initiated by 1, 3-dipole addition reaction of 
ozone as shown in Fig. 8. 

Alekseeva [196] and Dantas et al. [197] supported that the cyclo
addition oxidation of aromatic rings can sometimes involve/induce the 
hydroxylation process that often leads to the formation of hydroxyl 
compounds as shown in Fig. 9. 

Munter et al. [198] and Pintar et al. [199] reported later that the 
hydroxyl molecules formed are further altered to small entities such as 
aldehydes and carboxylic acids that often resist oxidation. The authors 

Fig. 6. Ozone resonance structures; the positively charged oxygen is electro
phile [182]. Fig. 7. Dipolar cycloaddition [184].  
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found that the total mineralisation of hydroxylated fragments by hy
droxyl radicals into dissolved H2O, CO2, and simpler intermediates is a 
slow process. Based on these observations, they concluded that the 
decomposition of pharmaceuticals, mainly antibiotics, could be char
acterised by a fast disintegration of their bulky organic frameworks 
followed by slow oxidation stages. This was also supported by Kim et al. 
[100] who investigated the degradation of veterinary antibiotics by 
dielectric barrier discharge and whose degradation mechanistic path
ways in the DBD system are presented in Figs. 8 and 9. Although the 
resultant carbonyl by-products could be aldehyde or ketones, the 
toxicity effect of these metabolites that represent a critical parameter 
during water and wastewater treatment was not discussed. Besides the 
cycloaddition reaction discussed above, ozone can also react as either an 
electrophile or a nucleophile [49,184]. 

4.7.2. Electrophilic reactions of ozone in DBDs 

In aqueous media, electrophilic reactions take place between ozone 
and compounds with high electron density, principally aqueous aro
matic mixtures [183]. For instance, substituted aromatic molecules by 
electron donors OH and NH2 groups display significant electron density 
on carbonic molecules at ortho and para positions [200]. Therefore, in 
these positions, ozone is readily active to substituted aromatic com
pounds. A typical illustration of ozonation of aromatic compounds is the 

reaction of phenol with ozone that occurs rapidly as shown in Fig. 10. 
This was also sustained by Rong et al. [162] and Chen et al. [202] 

who consecutively studied the degradation of sulfadiazine antibiotics by 
water falling film dielectric barrier discharge and the synergistic 
degradation performance and mechanism of 17b-estradiol by dielectric 
barrier discharge non-thermal plasma combined with Pt–TiO2. The re
sults of their studies showed that through electrophilic reactions 
occurring in DBDs, both sulfadiazine and 17b-estradiol were success
fully oxidised to their corresponding carboxylic acids and further to 
H2O, CO2, and harmless substances. Moreover, Tang et al. [190] studied 
the removal of oxytetracycline (OTC) antibiotic in water using a gas 
phase dielectric barrier discharge (GPDBD) plasma reactor. During their 
investigation, the authors found that the applied voltage is one of the 
factors that affect the production of the principal reactive species in the 
DBD reactor. They proved that the concentration of O3, H2O2 and OH in 
GPDBD system increased with an increase of the applied voltage and 
successfully improved the degradation of OTC model pollutant. This was 
in accordance with previous investigations [203–205]. In addition, Tang 
et al. [190] demonstrated that at a prolonged treatment time, the con
centrations of both O3 and H2O2 were superior in deionized water than 
in OTC wastewater when exposed to plasma treatment. This signified 
that both O3 and H2O2 were used up during the plasma treatment pro
cess and were accountable for the demolition of OTC in GPDBD 
configuration. The electrophilic attack of ozone reinforced by OH re
action completely converted OTC to H2O, dissolved CO2, and simpler 
inorganics. Furthermore, Xin et al. [67] examined the role of ozone and 
hydroxyl radical during the removal of bromoamine acid (BAA) in dye 
wastewater by gas-liquid plasma system. In their study, the authors 
successfully quantified O3, H2O2 by indigo colorimetric method and Ti4+

colorimetric method, respectively as recommended in previous publi
cations [206,207]. The results of Xin et al. [67] showed that the presence 
of BAA in DBD reactor resulted in a decrease of ozone concentration but 

Fig. 8. Degradation pathways of antibiotics in the DBD system [100].  

Fig. 9. Hydroxylation of aromatic molecules during 1, 3-dipole reaction of ozone in DBD configuration [100].  

Fig. 10. The reaction between phenol and ozone [201].  
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an improved of H2O2 production. This implied that dissolved ozone 
contributed to the abatement of BAA in aqueous solution. However, the 
authors claimed that OH. originating mainly from H2O2 participated at 
60% in the decomposition of BAA while O3 only contributed 20% to
wards the detoxification of BAA pollutants. The electrophilic attack of 
ozone on BAA contaminant followed by OH mediation principally 
resulted in small entities consisting of epoxides, alcohols, and carboxylic 
acids. These studies clearly showed that O3 is one of the reactive oxygen 
species produced in DBD configurations. Its electrophilic reaction with 
organic pollutants directly converts/oxidises them into amenable 
degradation intermediates by-products. 

4.7.3. Nucleophilic reactions of ozone in DBD system 

In aqueous dielectric barrier discharge technologies, the nucleophilic 
reaction of ozone occurs in organic compounds with an electron defi
ciency, mainly those containing electron withdrawing groups such as 
–COOH and –NO2. This consequently lowers the rate of reaction of 
ozone with electron deficient molecules [100,181]. Consequently, it 
could be inferred that ozone selectively reacts with organic compounds 
in DBD systems. On the one hand, its reaction is faster with compounds 
containing electron donor groups and much quicker with unsaturated 
aromatics [49]. In this regard, Rong et al. [162] studied the degradation 
of aqueous diclofenac (DF) using a dielectric barrier discharge system. 
During plasmas discharge experiment, several active species including 
HO., O. and H., and molecular species such as H2O2 and O3 were pro
duced in the DBB actuator. Likewise, the authors showed that O3 was the 
major species that initiated the decomposition of DF. In this regard, the 
nucleophilic interaction of O3 produced in the DBD reactor with the 
amino group on DF led to the formation of aminyl radical that was 
further converted to more stable intermediates. A comparable study on 
the nucleophilic reaction of ozone during the degradation of 
bisphenol-A (BPA) by dielectric barrier discharge alone and in combi
nation with polyethylene glycol stabilised nano zero valent iron 
(PEG-nZVI) catalysts was carried out by Tijani et al. [11]. Their results 
revealed that complete removal (99.99%) of BPA was achieved with 
DBD/PEG-nZVI system compared to 67.9% BPA removal reached with 
DBD alone. The authors showed that in both DBD/PEG-nZVI and DBD 
alone systems, the decay of BPA was mainly initiated by ozone through 
an epoxidation process followed by ring opening and elimination of 
various groups such as –CO2. Apart from these, the authors noticed that 
the oligomerisation of recalcitrant degradation intermediate 
by-products of BPA resulted in the formation of bigger molecules that 
required extended time to reach total mineralisation. Similar studies 
focusing on the nucleophilic reaction of ozone during degradation of 
organic pollutants in AOPs have been reported [208–211]. A similar 
activity of ozone has been observed during its reaction with ionised and 
dissociated organic materials compared to neutral or non-dissociated 
particulates where the ozone reaction rate is relatively low [212]. 
Furthermore, during the treatment of drinking water, the speed of re
action of ozone with various inorganics, ionised and dissociated inor
ganic components are extremely high [212]. Likewise, during oxidation 
of inorganic compounds, the electron transfer remains the driving pro
cess through which one of the oxygen atoms in the ozone molecule is 
transferred to the inorganic compounds. Hence, the oxidation of ozone 
with organic compounds is selective and partial while inorganic sub
stances are quickly and completely oxidised by ozone. 

4.7.4. Indirect reactions of ozone in dielectric barrier discharges 

Depending on various factors such as temperature, pH, and the 
chemical composition of water, both direct and indirect oxidation re
actions usually occur during the ozonation process [100]. However, 
indirect oxidation is often governed by side chain reactions during 
which ozone reacts with dissolved oxygen and aqueous metabolites 
giving rise to new active species such as OH radicals that unselectively 

contribute to the mineralisation of organic pollutants [185]. Indeed, 
indirect reactions during the ozonation process are often complex. In 
this way, a single indirect reaction can be summarised in three steps 
among which initiation, radical chain- reaction, and termination. The 
initiation step is characterised by the decomposition/inhibition of ozone 
by the OH-molecule [185] as shown in Eq. (39).  

O3 + OH- → O2
•- + HO2

• (pKa = 4.8)                                               (39) 

Likewise, the hydroxyl peroxide radical formed in Eq. (27) has a pKa 
value of 4.8 above which it forms superoxide radical as shown in Eq. 
(40).  

HO2
• → O2

•- + H+ (pKa = 4.8)                                                         (40) 

In the radical chain reaction, the generated superoxide anion in
teracts with O3 yielding OH-radicals which further react with O3 as 
shown in Eqs. (41)–(44). 

O3 +O⋅−
2 +→O⋅−

3 +O2 (41)   

O3
•- + H+→ HO3

• (pH < ≈ 8)                                                          (42)  

OH• + O3 → HO4
• (43)  

HO4
• → O2 + HO2

• (44) 

Consequently, the HO2
• radicals formed in Eq. (33) often react all 

over again (propagation reaction step) leading to a reaction-chain 
initiated by the so-called promoters such as humic acid (HCO3

− /CO3
2− ) 

and Aryl-R (PO3
4− ) that are known as substances that convert OH- 

radicals to superoxide radicals as presented. Otherwise, the disintegra
tion of ozone (O3) in dielectric barrier discharge configurations, yielding 
secondary species potent for the mineralisation of water pollutants has 
been widely outlined in the literature. Mikheyev et al. [213] examined 
the production of ozone and oxygen atoms in a dielectric barrier 
discharge in pure oxygen and O2/CH4 mixtures. From the experimental 
modelling scenarios studied in the DBD system, the authors showed that 
the vibrationally excited and unstable ozone produced in the bulk so
lution disintegrated following chains of interactions with co-species 
such as atomic oxygen and hydrogen (O and H) and hydroxyl radical 
(OH) resulting in the formation of secondary oxidants including per
hydroxyl radical (HO2) and OH and molecular O2 according to Eqs. 
(45)–(48).  

O3 + O → O2 + O2                                                                       (45)  

H + O3 → OH + O2                                                                      (46)  

OH + O3 → HO2 + O2                                                                  (47)  

HO2 + O3 → OH + O2 + O2                                                          (48) 

In addition, Tang et al. [164] investigated the degradation of tetra
cycline (TC) antibiotic in dielectric barrier discharge system followed by 
addition of sodium percarbonate (SPC) as ROS promotor. Their study 
demonstrated that addition of small amount of SPC in the DBD reactor 
increased the production of reactive species, mainly hydroxyl and su
peroxide radicals that significantly contributed to the elimination of TC. 
Their outcomes indicated that the concentration of H2O2 (44.0 μmol/L) 
detected in the SPC + DBD synergy system surpassed the 38.1 μmol/L 
H2O2 measured in the DBD system alone. Alternatively, the authors 
reported that the concentration of O3 2.1 mg/L quantified in DBD alone 
was higher than 1.8 mg/L O3 measured in the synergic DBD + SPC 
system. Their results implied that the decrease of O3 concentration in the 
synergic DBD + SPC system promoted the formation of H2O2. This was 
attributed to the O3 disintegration to related matters such as OH. and O2

.−

through a cascade of reactions shown in Eqs. (49)–(56).  

O3 + hv → O2 + O⋅                                                                      (49)  
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O3 + H2O + hv → 2OH⋅ + 2O⋅                                                      (50)  

O3 + OH- → HO2
- + 2O                                                                 (51)  

O3 + OH⋅ → HO2
⋅ + O2                                                                 (52)  

HO2 + O3 → OH⋅ + O2 + O2
-                                                         (53)  

O⋅ + H2O → 2OH⋅                                                                        (54)  

HO2
- + H+ → H2O2                                                                       (55)  

O⋅ + H2O → H2O2                                                                        (56) 

Therefore, the study by Tang et al. [164] concluded that the hy
drolysis of SPC in DBD configuration could substantially boost the 
generation of H2O2 that is the major source of OH.; while the mecha
nistic chains of ozone destruction result in the production of O2

.− in the 
bulk solution which together accelerated the direct and indirect oxida
tion of TC in the DBD + SPC coupling approach. Furthermore, the 
destruction of O3 to various ROS such as 1O2 and O2

⋅− that play a crucial 
role in the direct inactivation of simulated S. Typhimurium bacterial 
wastewater in the DBD system was reported by Baek et al. [214]. In their 
research, the authors showed that the formation of 1O2 and O2

⋅− via 
decomposition of O3 followed an avalanche of reactions shown in Eqs. 
(57)–(59).  

O3 + HO− → HO2
⋅ + O2

⋅− (57)  

HO2
⋅ + HO2

⋅ → 1O2 + H2O2                                                            (58)  

HO2
⋅ + O2

⋅− + H+ → 1O2 + H2O2                                                    (59) 

Several investigations involving the disintegration of ozone in 
plasma systems leading to the production of secondary species for 
wastewater remediation have been widely reported [215–219]. From 
these reaction mechanistic trends, it can be inferred that the indirect 
reactions of O3 in DBD geometries significantly participate in the 
decontamination of polluted water. For typical selected contaminants 
that O3 cannot decompose directly, its disintegration to secondary spe
cies is crucial for the effective removal process. 

4.7.5. Ozonation of water and wastewater at elevated pH values in DBD 
systems 

For decades, ozone has been known as a potent oxidant that strongly 
reacts with various organic contaminants containing functional groups 
such as C––C, C––N, N––N. However, its reaction with functional groups 
such as C–C, C–O, O–H of single bonded compounds is very low 
[220]. Likewise, Staehelin and Hoigne [221] indicated that the reaction 
of ozone at elevated pH values is unselective. Hence, reacts with all 
organic and inorganic aqueous species. This was supported by Munter 
[222] who stated that increasing solution pH might increase the 
decomposition rate of ozone which often dissociates into superoxide 
anions radicals (O2

.− ) and hydroxyperoxyl radicals (HO2
. ). In turn, the 

O2
.− generated reacts with O3 to produce the ozonide anion O3

.− which 
further decays to OH. radicals in such a way that three ozone molecules 
produce two HO. radicals as shown in Eq. (60).  

3O3 + HO- + H+ → 2HO⋅ + 4O2                                                    (60) 

The produced hydroxyl radicals have been proved non-selective and 
more potent oxidisers than ozone. This was verified by Munter [222] 
who showed that the hydroxyl radical rate constant is usually 106–109 

times higher than the corresponding reaction rate constants of molecular 
ozone. Besides the decomposition processes of ozone in DBDs previously 
highlighted, ozone actively reacts with aqueous H2O2 to generate OH. 

radicals in a way that two molecules of ozone yield two hydroxyl radi
cals [183] as presented in Eq. (61).  

2O3 + H2O2 → 2HO⋅ + 3O2                                                           (61) 

Hence, the generation of both ozone and OH. and their oxidative 
character in DBD aqueous configurations may relatively boost the 
degradation of the targeted contaminants. 

4.7.6. Reactivity of ozone radical ion in DBDs 

Even though the OH. radicals have been known as the strongest 
oxygen-based species, Buxton et al. [174] and Bratsch [223] showed 
that the ozone radical (O3

− ) with a standard reduction potential of E0 
= 3.3 V principally results from the interaction of oxygen radicals and 
molecular oxygen as shown in Eqs. (62) and (63). These authors stated 
that O3

− could be a potent oxidant in acidic media.  

O- + O2 → O3
-                                                                              (62)  

O3
- + 2H+ + e- → O2 (g) + H2O, E0 = 3.3 V                                    (63) 

In addition to this, the generated ozone anion may oxidise water 
molecules to yield hydroxyl radical, a hydroxide anion, and oxygen as 
shown in Eq. (64).  

O3
- + H2O → OH + OH- + O2                                                        (64)  

4.7.7. Interaction of catalyst with ozone in DBDs technologies 

The photo-oxidation process is often characterised by the excitation 
of an electron from the valence (C) to the excited state (C*) by UV ra
diation (photon) as shown in Eq. (10). Furthermore, Legrini et al. [224] 
showed that the excited organic molecule may react with molecular 
oxygen to yield radical ions and cations that often recombine either by 
hydrolysis or homolysis to form new radicals that further react with 
oxygen and hence producing oxygenated substrates as shown in Eqs. 
(65)–(68).  

C + hv → C*                                                                               (65)  

C* + O2 → C⋅ + O2
⋅-                                                                      (66)  

R-X + hv → R⋅ + X⋅                                                                     (67)  

R⋅ + O2 → RO2                                                                            (68) 

In addition to this, Legrini et al. [224] highlighted that the quantum 
yield of the process, the photon rate at the wavelength of excitation, and 
the concentration of dissolved molecular oxygen may be the dependent 
factors of the oxidation process. Conversely, the authors claimed that 
complete mineralisation of the targeted pollutant could be achieved by a 
combination of photolysis with oxidising species such as H2O2, O3, 
and/or semiconductors, particularly titanium dioxide as a catalyst. Since 
O3 and H2O2 are produced in DBD systems, the addition of semi
conductors photocatalysis may significantly improve the destruction of 
water contaminants. Consequently, the mechanistic pathways associ
ated with the catalyst surface in decomposing the ozone in DBD tech
nologies should be clarified. 

4.7.7.1. Photocatalytic principle, mechanisms, and its integration with 
ozone in DBD configurations 

Most semi-conductor photocatalysts such as TiO2, ZnO, MgO 
deriving from transition metals have different properties. For instance, 
often characterised in rutile, anatase or amorphous phase to some extent 
and their band gap varies in different ranges [225]. For instance, the 
band gap of TiO2 catalysts is usually encountered between 3.0 eV and 
3.2 eV [226]. When a photon with energy exceeding this gap 
(λ < 388 nm) strikes the catalysts, electrons are excited and promoted 
from the valence band (Vb) of the catalyst to its conduction (Cb) leaving 
behind positive holes referred to as the electron-hole pairs (e− – h+) on 
the Vb as indicated in the schematic diagram shown in Fig. 11 earlier 
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discussed by Chen et al. [227] and reinforced by Mouele et al. [228]. In 
the work by Gilmour [226], it was reported that the excited electrons, 
depending on their excitation energy/wavelength converge back to their 
original states and interact with positive holes releasing heat or could be 
trapped; else they mostly migrate to the surface of the catalyst and 
become solvated, and hence involved in series of oxidation and reduc
tion reactions exhibited in Eqs. (69)–(72), where etr

− indicates the trap
ped charge.  

TiO2 + hv → e-
cb + h+vb                                                                (69)  

e-
cb + h+vb → heat                                                                         (70)  

Ecb → e-
tr                                                                                     (71)  

h+vb → h+tr                                                                                  (72) 

At steady state, Lafi and Al-Qodah [229] reported that the number of 
electrons and positive holes moving to the surface becomes equal, this 
consequently renders the catalyst electrostatically stable. In this regard, 
the authors endorsed that the mineralisation of the contaminant hap
pens either by oxidation reaction with the surface trapped holes, or by 
oxidation with hydroxyl radicals (OH.), or with surface adsorbed water 
molecule and hydroxide ions that contribute to the generation of .OH as 
shown in Eqs. (73)–(80), where ads stand for the adsorbed species.  

Dads + h+tr → D + ads                                                                   (73)  

H2Oads + h + tr → OH⋅
ads + H+ (74)  

OHads + h + tr → OH⋅
ads                                                                (75)  

(O2) ads + e- → O2 
⋅-                                                                      (76)  

H+ + O2
⋅- → HO2

⋅                                                                          (77)  

2HO2
⋅ → H2O2 + O2                                                                      (78)  

H2O2 + O2 
⋅- → OH⋅ + O2 + OH-                                                   (79)  

H2O2 + e- → OH⋅ + OH-                                                               (80) 

From this sequence of Equations, Gilmour [226] underlined that 
because the surface holes take part in oxidation reactions, the charge 
equilibrium in the treatment system must be preserved. Consequently, 
dissolved oxygen could be used as electron scavenger so that it gets 
adsorbed onto the catalyst surface and reduced by the surface trapped 
electrons. Even though ozone may be produced via the association re
action of O2 and O (Eq. (81)) or by other chemical routes, its interaction 
with the catalyst in the schematic in Fig. 11 may follow the same prin
ciple and mechanisms as those earlier described in Section 4.3.2 that are 
also expected to occur in processes detailed in Fig. 11.  

O2 + O → O3 association                                                               (81) 

These result in various reactions and hence in the formation of 
diverse molecular and ionic species such as H2O2 that promote the 
production of OH., the powerful non-selective oxidant that mineralises 
the selected pollutants. The variety of ROS generated during photo
catalysis have been extensively used for the removal of organic con
taminants from water and wastewater [230–232]. Mouele et al. [1,32, 
90] demonstrated that ozone is abundantly produced in DBD configu
rations reviewed in this text, and its formation and disintegration 
contributed to the generation of OH.. So, both catalytic ozonation pro
cess earlier described in this paper and the photocatalytic principle 
illustrated in Fig. 11 are adequate procedures that synergically converge 
toward the production of OH radicals and related active species in DBD 
configurations for the successfully destruction of targeted pollutants. 
Though measuring the intensity of the UV radiation produced in DBD 
actuators has been one of the major challenges, incorporation of cata
lysts in DBD configurations inducing either catalytic ozonation or both 
photocatalysis and catalytic ozonation is a breakthrough in boosting the 
efficacy of DBD advanced treatment technologies. From this point of 
view, the combination of DBD systems with catalysts has been found an 

Fig. 11. Photocatalysis principle of spherical TiO2 particle for the formation of electron–hole pair and reactions pathways in the production of ROS Chen et al. [227].  
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effective route to enhance the concentration of reactive species, and 
hence the efficiency of DBD configurations for efficient degradation of 
water contaminants [233–237]. 

4.7.8. Removal of water contaminants by catalyst incorporated in DBD 
configurations 

Based on the selective reactivity of ozone, some compounds such as 
atrazine may react poorly with ozone. Literature showed that oxidation 
of such substances could be accelerated by the incorporation of catalyst 
materials into the contaminated solutions [11,202,238]. In this way, 
numerous homogeneous catalysis including zinc and copper sulphates, 
silver nitrate, chromium trioxide, and heterogeneous catalysts such as 
Ru/CeO2, MnO2, TiO2/Al2O3, and Pt/Al2O3 have been used [239–241]. 
The studies showed that both homogeneous and hetero photocatalysts in 
DBDs could expand the decomposition efficiency of diverse organic 
compounds in the presence of ozone in DBD aqueous media. Similarly, 
in case agglomeration of by-products occurs during the degradation of 
organic contaminants in DBD configurations, it has been advised that 
reasonable amounts of non-toxic catalysts could be incorporated to 
enhance the removal process [141,155,202]. For instance, Zhang et al. 
[242] studied the degradation of acetaminophen (APAP) by DBD com
bined with reduced graphene oxide (rGO) and P25-TiO2. The authors 
found that the addition of rGO in the DBD system boosted the removal 
percentage of APAP from 50% to 92% after 18 min of plasma irradiation 
compared to solely plasma or plasma combined with P25-TiO2. The 
results of the study conducted by Zhang et al. [242] also showed that the 
degradation of APAP was induced by two reactive species including O3 
and OH.. Likewise, the decomposition of APAP with each oxidant fol
lowed a separate pathway but both routes resulted in simpler linear 
aliphatic and unsaturated degradation by-products even if their com
plete mineralisation into the water and dissolved CO2 was not 
mentioned. Apart from this, the reaction mechanism of O3 and OH re
actions with APAP were not defined. A similar study was carried out by 
Aziz et al. [243] who successfully investigated the degradation of two 
non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and 
ibuprofen (IBP) by the ozonation process and by other three aqueous 
systems including, photocatalytic ozonation, photocatalytic oxidation 
and non-thermal dielectric barrier discharge (DBD). Aziz and co-workers 
showed that the addition of Fe2+ to the DBD run in an argon atmospheric 
aqueous media improved the degradation efficiency of the NSAIDs due 
to the Fenton reaction. Nevertheless, the best mineralisation efficiency 
assessed by TOC removal was achieved by photocatalytic ozonation in a 
DBD/Ar/O2 atmospheric plasma system. Besides, Xin et al. [244] 
investigated the degradation of triclosan (TCS) in an aqueous solution by 
dielectric barrier discharge combined with activated carbon fibres 
(ACFs). The results of their study showed that 85% of TCS removal was 
achieved with DBD alone and 93% with DBD combined with ACFs after 
120 min of plasma treatment. Likewise, the mineralisation of TCS (12%) 
reached at pH 6.26 was improved to 24% at pH 3.5. Furthermore, the 
decomposition of TCS mainly induced by the direct reaction of OH led to 
numerous aromatic degradation intermediates which by ring opening 
pathway were oxidised to carboxylic acids that were mineralised to H2O, 
dissolved CO2, and harmless inorganics. Furthermore, Wang et al. [245] 
studied the degradation of triclocarban (TCC) in aqueous solution by 
dielectric barrier discharge (DBD) plasma combined with TiO2 coated 
activated carbon fibres (TiO2/ACFs) catalysts. The outcomes of their 
experiments showed that the incorporation of TiO2/ACFs into the DBD 
reactor increased TCC degradation efficiency by 12% compared to the 
single DBD actuator. On the other hand, the study highlighted that after 
30 min of plasma reaction, the combined DBD/TiO2/ACFs system less
ened the toxicity of TCC from 64% to 32%. Wang et al. [245] showed 
that the degradation of TCC principally induced by O3 and OH., probably 
by epoxidation and direct attack, resulted in various substituted nitro 
halides and alcohol degradation intermediates that were further min
eralised into H2O and CO2. Even though Mouele et al. [90] showed that 

during DCDBD run, the initial pH (acidic or basic) decreased with an 
increase of treatment time, Beltran et al. [240] and Xin et al. [244] 
pointed out that addition of catalysts in DBD reactors could also lower 
solution pH to more acidic media. This consequently may not only 
improve the degradation efficiency of compounds such as pharmaceu
ticals but enhance the removal of their total organic carbon (TOC) as 
well. In addition, Tijani et al. [12] studied the degradation of 2-nitrophe
nol (2-NP) by air DCDBD alone and in combination with TiO2 supported 
on stainless steel mesh. In their report, the authors showed that high 
removal of 2-NP was achieved in acidic conditions at pH 3. Likewise, 
during DCDBD experiment without catalyst, all initial solution pH set at 
acidic or basic values decreased with increase of treatment time and fell 
below 6. A similar trend was observed when supported TiO2 catalyst was 
incorporated DCDBD reactor. These indicate that addition of catalysts in 
air DBD systems does not impact on the solution pH, however, different 
observations could be rated when other gases such as pure oxygen (O2), 
argon (Ar) or helium (He) are used as feed gases. Therefore, solution pH 
should carefully be optimised to achieve maximum decomposition of 
targeted pollutants. Several studies focusing on the removal of organic 
pollutants using DBDs configurations alone or in combination with 
catalysts have been conducted [246–250]. These investigations showed 
that the removal efficiency of contaminants by DBD combined with a 
catalyst was enhanced as compared to that of DBD alone. Nevertheless, 
they claimed that the type and the dose of catalysts being added should 
be controlled because at saturated state, they can impact on the degra
dation efficiency of targeted pollutants. Moreover, they argued that the 
operational costs of DBD and DBD assisted catalytic degradation pro
cesses should also be investigated. Considering the energy yield factor, 
Ansari et al. [250] outlined that the energy yield of DBD/catalysts was 
higher than that of DBD alone. This implied that the integration of 
catalysts in DBD configurations is a promising route that could result in 
economical, sustainable, and environmentally benign treatment 
protocols. 

4.7.9. Extended reactions of ozone in DBD configurations 

Glaze [175] and Munter [222] reported that the rate of production of 
free reactive species in aqueous solutions could considerably be 
improved by combining UV light and ozone/hydrogen peroxide (UV/O3, 
UV/H2O2) or by the combination of both (UV/O3/H2O2). This is because 
the adsorption of UV radiation by ozone at a wavelength of 254 nm 
results in the formation of hydrogen peroxide as an intermediate, which 
further decomposes to hydrogen peroxide radicals as shown in Eqs. (82) 
and (83), respectively.  

O3 + hv → O2 + O(1D)                                                                 (82)  

O(1D) + H2O → H2O2 → 2HO⋅                                                       (83) 

In turn, H2O2 is cleaved off into OH. radicals as shown in Eq. (45). 
The authors also mentioned that in pH dependent circumstances, 
aqueous H2O2 solution and HO2

− may also absorb UV radiation at 
254 nm to form a hydroxyl radical as shown in Eqs. (84)–(86), 
correspondingly.  

H2O2 + hv → 2HO⋅                                                                       (84)  

H2O2 ↔ HO2
- + H+ (85)  

HO2
- + hv → +HO⋅ + O⋅-                                                              (86) 

During the plasma discharge process, apart from solvated electrons 
and Pandit [220] specified that the mixture of UV/O3/H2O2 may 
strongly oxidise and attack recalcitrant pollutants in DBD configura
tions. The interaction of ozone with organic pollutants could be direct or 
indirect depending on the neutral or alkaline pH conditions. In an acidic 
medium, ozone reacts directly as an electrophile with aromatic and 
unsaturated alkenes leading to the formation of ozonide intermediates 
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which by ring cleavage result in the formation of zwitterion, aldehyde, 
or a ketone [187]. In turn, the zwitterion is hydrolysed to hydroxyalkyl 
hydroperoxide in an aqueous solution as shown in Fig. 12. 

Likewise, Baily [251] showed that the hydroxyalkyl hydroperoxide 
may decay to yield aldehyde or a ketone by the elimination of hydrogen 
peroxide, alternatively rearrangement to carboxylic acids may take 
place depending on the substituents. On the other hand, the reaction of 
O3 with olefins often leads to epoxides/peroxidation which further by 
hydrolysis may result in reduced chains of aliphatic compounds after a 
certain period. These hydrolysed by-products may seem harmless; 
however, a prolonged treatment time could lead to either their recom
bination that results in agglomerated bulky new substances that might 
be more dangerous than the starting materials, or to their complete 
mineralisation [100,167,239]. Therefore, the toxicity of the resulting 
by-products requires serious investigation. 

Furthermore, water and wastewater contain both microorganisms 
and harmful contaminants [1]. From a hygienic point of view, these 
impurities are harmful to people causing diseases, irritations, and 
eczema, hence the necessity for their removal by disinfection or oxida
tion processes [251–256]. For several years, ozone has been used as a 
principal disinfectant for the removal of water contaminants [102]. The 
disinfection process refers to the purification of water streams to the 
extent that the aqueous impurities become inactive to consumers 
including humans, animals, and plants that come to contact with the 
water. Ozone, having a high oxidation potential of 2.07 V has been 
found potent to oxidise cell components of the bacterial cell wall [102]. 
The cell oxidation process is often initiated by penetration. After ozone 
enters the cell, components such as enzymes, proteins, DNA, RNA are 
immediately oxidised. So, after the cell membrane has been damaged, it 
falls apart and the process is known as lysis [223,257]. Thus, the com
mon steps encountered during disinfection of bacteria by ozone include 
1) penetration of a bacterial cell, 2) via attachment of ozone molecule on 
the bacterial cell wall, 3) ozone penetrates the cell wall and causes 
corrosion, 4) cell destruction (lysis) takes place [223,257]. These 
consequently show that ozone with numerous other active species pro
duced in DBD systems can be effectively employed for the treatment of 
polluted water. 

4.8. Hydroxyl radical and its reactivity towards persistent 
organic compounds in DBD reactors 

Among the various oxidisers generated in AOPs as previously high
lighted, OH radicals with a reduction potential of E = 2.80 V appear to 
be the most powerful non-selective species, predominantly produced in 
acidic conditions. Hydroxyl radicals being the most powerful and non- 

selective free radical is often the final product aimed at in most AOPs. 
Based on their high reactivity and an oxidation rate constant of 108–1011 

M− 1 s− 1, the lifetime of OH radicals in aqueous media is often estimated 
in the range of 1–2 ns, corresponding to a diffusion radius of about 20 Å 
[174,258]. Hydroxyl radicals interact with various organic compounds 
that are mineralised into CO2, water, and harmless organic and inor
ganic end products [222]. In non-thermal plasma (NTP) technologies 
induced by DBD, as in any other AOPs OH. radicals react with organic 
pollutants in four different ways. These include hydrogen abstraction, 
radical addition, electron transfer, and radical combination [182]. 
During hydrogen abstraction scenario in DBD systems, acidic H atoms 
are removed from the pollutant frame chain leading to the formation of 
water and unstable intermediates which by further chemical conver
sions are directly mineralised into dissolved CO2, H2O, and simpler 
entities. The radical addition involves the attachment of OH radical as a 
nucleophile on the pollutant. The last two reactions of OH radicals with 
organic pollutants implicate electron transfer and radical recombina
tion. During these chemical interactions, OH radicals react either by 
hydrogen abstraction or deactivation of pollutants leading to bond 
cleavage and hence to the mineralisation of contaminants [182]. 
Although the OH radical reactions have been singly discussed in the next 
paragraphs, it is important to mention that the non-selectivity property 
of OH has given rise to the development of various AOPs which converge 
towards the production of huge amounts of OH radicals. Therefore, the 
efficiency of a typical AOP such as DBD would depend on the amount of 
OH produced. Atomic oxygen, with an oxidation potential of 2.4 V acts 
as a powerful oxidant in aqueous media and extensively participates in 
the production of O3 and H2O2. Hydrogen peroxide with a reduction 
potential of 2.2 V appears as the recombination product of OH radicals 
and hence is one of the primary precursors of OH radicals in aqueous 
systems. 

4.8.1. Hydrogen abstraction and radical addition reactions of OH in DBD 
configurations 

During the hydrogen abstraction process, hydroxyl radicals often 
remove hydrogen from organic compounds resulting in the formation of 
radical organic compounds that can initiate a reaction chain in which 
the produced organic radicals interact with oxygen, generating peroxyl 
radicals that subsequently react with another organic substance and so 
forth as presented in Eq. (87).  

R + HO⋅→ R⋅ + H2O                                                                    (87) 

The abstraction of the hydrogen atom by the OH. radical from a 
saturated hydrocarbon chain, yielding radical sites was also highlighted 

Fig. 12. The reaction of ozone with an unsaturated bond of an alkene or an aromatic compound [184].  
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by Hoeben [182]. According to the author, the radical sites created on 
the hydrocarbon framework after hydrogen abstraction, initiate oxygen 
attack. The interaction of oxygen on these sites leads to the formation of 
hydroperoxyl radicals and unsaturated compounds which further get 
cleaved by ozone as shown in Fig. 13. 

In the radical addition reaction category, hydroxyl radicals react 
with unsaturated/aliphatic molecules to generate organic radical in
termediates which further produce stable oxidised by-products by re
action with oxygen or ferrous iron as shown in Eq. (87a).  

R + HO⋅ → ROH                                                                         (87a) 

For instance, Hoeben [182] stated that OH attack in unsaturated 
compounds focuses on regions governed by high electron density. In this 
regard, Pan and Schuchmann [257] and Von Sonntag [259] conveyed 
that the OH radicals add themselves to the double bonds of alkenes and 
aromatic molecules leading to the formation of hydroxycyclohexadienyl 
radicals. These later interact with molecular oxygen to yield endoper
oxalkyl and endoperoxyl radicals. The endoperoxyl radicals in turn 
produce endoperoxides as shown in Fig. 14. 

Since endoperoxides are unstable molecules, they likely undergo 
decomposition by ring- cleavage yielding unsaturated aliphatic hydro
carbons containing various functional groups such as aldehydes, car
boxyls, carbonyls, or alkanols. Furthermore, the authors sustained that a 
slight amount of generated carbon monoxide formed during these re
actions may get used up. Moreover, Hoeben [182] demonstrated that the 
hydroxyl radical and oxygen attack on alkene generate hydrox
yalkylperoxyl radical intermediates. Hydroxyalkylperoxyl radicals were 
further proved to oligomerise (dimerise) hence forming tetraoxide 
metabolite. This in turn may decay in different routes, among which the 
fragmentation reaction that mostly produces carbonyl (aldehydes/ke
tones), α-hydroxyalkyl radicals, and oxygen. Von Sonntag [259] and 
Getoff [260] confirmed that the α-hydroxyalkyl radical reacts with 
molecular oxygen yielding an α-hydroxyalkylperoxyl radical which 
further produces an aldehyde or a ketone by the elimination of hydro
peroxyl radicals as shown in Fig. 15. 

4.8.2. Electron transfer reaction and radical combination reactions of OH 
in DBD systems 

The electron transfer attack of OH in DBD systems is usually asso
ciated with the formation of ions with a greater valence. Indeed, the 
oxidation of a negative ion may produce an atom or a free radical. This 
case has been summarised in Eq. (88).  

Rn+ HO⋅ → Rn− 1 + HO-                                                                 (88) 

Alternatively, the radical recombination reaction in DBD configu
rations is based on the combination of two OH radicals that may form a 
molecule such as a peroxide as presented in Eq. (89)  

HO⋅ + HO⋅ → H2O2                                                                      (89) 

Based on these different OH attacks, Ternes [261] confirmed that the 

interactions of OH radicals with organic compounds in water commonly 
result in carbon dioxide and innocuous salts. Nevertheless, in the pres
ence of dissolved oxygen, OH radical attacks repeatedly induce various 
oxidation reaction sequences whose complete mineralisation reaction 
mechanistic pathways have not been fully understood. For instance, 
chlorinated organic compounds in DBD actuators may primarily be 
oxidised into breakdown intermediates such as aldehydes and carbox
ylic acids which are further converted into carbon dioxide, water, and 
chlorine [222]. The extended hetero atoms such as nitrogen, phospho
rous, and sulphur present in parent halogenated compounds are often 
removed or are directly converted to inorganic ionic species such as 
halides, nitrates, phosphates, and sulphates which consequently induce 
the reduction in solution pH. A typical case is shown in Fig. 16 where 
dichloromethane is oxidised by hydroxyl radicals and oxygen, produc
ing carbon monoxide, carbon dioxide, and hydrogen chloride. 

According to Von Sonntag [259] and Getoff [260], the carcinogenic 
phosgene is hydrolysed to carbon dioxide and hydrogen chloride. In the 
case of natural water, the formation of bicarbonate and carbonate that 
are known as OH. radical scavengers as presented in Eqs. (90) and (91) 
may significantly reduce the degradation efficiency of organic pollut
ants. The carbonate radical anion produced during the scavenging 
process is also an oxidising agent whose oxidation potential is less 
effective than that of OH. radicals [224].  

HO⋅ + HCO3
- → H2O + CO3

⋅-                                                          (90)  

HO⋅ + CO3
2- → HO- + CO3

⋅-                                                            (91) 

Even though OH radicals non-selectively attack organic pollutants in 
DBD configurations, the reaction rate constant for the decomposition of 
chlorinated compounds is fast and predominates because of the presence 
of the double bond that is susceptible to hydroxyl attack. By comparison, 
oxidation of saturated compounds, mainly alkanes, is more difficult 
because their reaction rate with hydroxyl radicals is very low. Overall, 
the oxidation supremacy of OH. radicals give advanced oxidation pro
cesses the capability to completely decompose ozone and hydrogen 
peroxide refractory molecules. 

4.8.3. Disinfection by OH-radicals in DBD technologies 

As previously described, OH radicals are usually produced in 
aqueous media and largely contribute to the disinfection of various 
categories of microorganisms [176]. Unlike ozone, OH radicals are 
short-lived and non-selective reactive species that are often used up 
inside bacteria cell walls. These radicals have significant derivative ef
fects toward disinfection resistant microorganisms. A typical example is 
the protozoa Cryptosporidium parvum oocyst that slowly reacts with 
ozone but is quickly decomposed by OH radicals. Based on this fact, it is 
believed that OH radicals considerably assist ozone in the disinfection 
process during advanced oxidation induced by DBDs. The disinfection 
properties of OH radicals towards microorganisms are only applicable to 
resistant protozoa and not to microorganisms that react quicker with 
ozone. 

Fig. 13. Hydroxyl radical hydrogen abstraction from a saturated hydrocarbon chain followed by oxygen attack [182].  
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In summary of this section, ozone being one of the most utilised 
oxidants for water purification follows various reaction mechanisms or 
reaction pathways due to the existence of various reaction sites on 
organic pollutants. From the literature reviewed in this text, it could be 
remembered that the reaction of ozone towards microorganisms (bac
teria and viruses) begins with the penetration of ozone into the cell 
membrane, followed by oxidation of cell components and its lysis. On 

the other hand, ozone reactions with organic pollutants via two cate
gories which include direct and indirect reactions. Direct reactions 
occurring in acidic media begin with cycloaddition which is a process 
during which ozone interacts with olefins to yield epoxides. In acidic or 
basic conditions, epoxides may be broken down by cleavage leading to 
the formation of simpler by-products. The cycloaddition is followed by 
an electrophilic reaction during which ozone interacts with phenolic 

Fig. 14. Reactivity of hydroxyl radical and molecular oxygen on aromatic compounds yielding endoperoxides and polyfunctional unsaturated aliphatic hydrocar
bons [184]. 

Fig. 15. Reaction attacks of a hydroxyl radical and oxygen on alkenes [182].  

Fig. 16. Oxidation of dichloromethane by hydroxyl radicals and oxygen [182].  
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compounds yielding various carbonyl substances such as aqueous car
boxylic acids. Finally, the nucleophilic reaction appears as the third 
interaction of ozone with organic pollutants. In this step, ozone behaves 
as an electron provider and may react with compounds carrying electron 
withdrawing groups such as –COOH and – NO2 resulting in short-chain 
organics and inorganics. Conversely, during the indirect reaction of 
ozone, three major interactions among which initiation, radical chain- 
reaction, and termination have been reported. In these three processes, 
O3 behaves either as a precursor of various free radicals such as OH., 
H2O, O2

.− , etc. or O3 gets decomposed via interaction with other chem
ical species such as H2O, H2O2, etc. forming new radicals such as HO2

. , 
OH., O2

.− , O., etc. that may directly or indirectly attack the targeted 
pollutants. Furthermore, ozone can be exposed to UV-light to induce 
photolysis, yielding new ROS. Ozone can also be combined with cata
lysts and UV light to initiate photocatalytic phenomena. Most of these 
combinations are referred to as advanced oxidation processes (AOPs) 
induced in DBD configurations. Since UV light and most free radicals are 
generated directly in DBD systems, therefore DBD configurations could 
be considered as effective integrative water treatment methods. Conse
quently, O3 and co-oxidants such as H2O2, OH., HO2

. , O2
. , etc., produced 

in DBD geometries, contribute directly or indirectly to the decomposi
tion of pharmaceutical pollutants (PPs). Hence understanding their 
interaction mechanisms with PPs is mandatory. 

4.9. Reactivity of hydrogen peroxide in DBD configurations 

Hydrogen peroxide (H2O2), which is habitually considered as a 
recombination product of OH radicals, has an ineffective reactivity 
compared to that of its precursor OH radicals [177,178]. In acidic 
media, H2O2 has a reduction potential of E0 = 1.76 V. Its photolysis 
decomposition (Eq. (94)) yields hydroxyl radicals whereby the dissoci
ation of the OH–OH bond requires 213 ± 4 kJ/mol which is the same as 
2.2 eV [178,182]. On the contrary, H2O2 may instantaneously oxidise 
and reduce itself; the decomposition of concentrated H2O2 into water 
and oxygen (Eq. (95)) is an exothermic reaction that releases up to 
98.3 kJ/mol. In addition to this, Moeller [262] showed that H2O2 is a 
weak acid with a decomposition constant pKa = 11.75 as shown in Eq. 
(92).  

H2O2 + H2O → H3O+ + HO2
-                                                         (92) 

Mouele et al. [90] investigated the production of H2O2 in a double 
cylindrical DBD reactor. The authors proved that the highest concen
tration 0.933 mol/L of H2O2 was achieved at pH 10.5 after 5 min of time 
on streamer However, the authors reported that within 60 min of plasma 
experiment in both acidic and basic conditions, H2O2 concentration 
fluctuated down to 0.613 mol/L and rose back to the primary amount. 
The observed variations were attributed either to the self-decay (Eq. 
(93)), photodecomposition to H+, H2O− , and OH. (Eqs. (93) and (94)), or 
H2O2 was involved in side reactions leading to the formation of various 
reactive oxygen species such as HO2, OH− , O2

− , etc. as indicated in Eqs. 
(95)–(101).  

H2O2 → H+ + H2O-                                                                      (93)  

H2O2 + hυ → 2OH⋅                                                                       (94)  

O3 + H2O2 + OH− → OH + HO2 + O2 + OH− (95)  

H2O2 + OH → H2O + HO2                                                            (96)  

H2O2 + H → H2O + OH                                                                (97)  

H2O2 + H+ → HO2 + H2                                                               (98)  

H2O2 + O2 → 2HO2                                                                      (99)  

H2O2 + O- → H2O + O2
-                                                              (100)  

H2O2 + OH → H2O + H+ + O2
-                                                    (101) 

These chains of reactions demonstrate that H2O2 is one of the most 
important species produced in plasma technologies and plays a crucial 
role in generation of the secondary species. Most of these reactions have 
been summarised by Gupta [2] and supported by Ullmann [263] and 
Kirk and Othmer [264]. In a system with less OH. scavengers, Gupta [2] 
and Sahni and Locke [265] conveyed that excess of H2O2 can scavenge 
OH radicals produced in the bulk solution according to Eqs. (102) and 
(103).  

H2O2 + 2O3 → 2OH⋅ + 3O2                                                         (102)  

OH⋅ + H2O2 → H2O + HO2
⋅                                                         (103) 

Huang and Fang [266] highlighted that UV-radiation generated in 
DBD reactors can decompose H2O2 yielding HO. as indicated in Eq. 
(104).  

H2O2 + hv → 2OH⋅                                                                     (104) 

In addition, the O3 diffused in the bulk may react with accumulated 
H2O2 and further produce OH radicals (Eq. (105)); this reaction is often 
referred to as peroxonation process.  

O3 (aq) + H2O2 → O2 (aq) + OH⋅ + HO2
⋅                                       (105) 

Mouele et al. [90] emphasised that, though H2O2 does not directly 
destroy targeted pollutants, it largely contributes to the generation of 
various reactive species. 

4.10. Hydroperoxyl radical interactions in DBDs 

The hydroperoxyl radical (HO2
. ) with a standard reduction potential 

of E0 = 1.44 V in acidic media has been proved less effective than O3, 
H2O2, and OH radicals but is slightly stronger than chlorine. 

This weak free radical is usually formed via hydrogen atoms that 
derive directly from the decomposition of water molecules (Eq. (106)). 
Likewise, Patai [267] noted that in an alkaline environment, HO2

. occurs 
as the superoxide radical ion O2

.− as presented in Eq. (107). Also, liter
ature supported that HO2

. auto reacts to generate H2O2 as shown in Eq. 
(108). Conversely, the decomposition constant of HO2

. is about pKa 
= 4.4 in an aqueous environment.  

H2O → H + OH                                                                          (106)  

HO2
⋅ + OH- → O2 + H2O                                                             (107)  

2HO2
⋅ → H2O2 + O2                                                                    (108) 

Furthermore, the per-hydroxyl radical (HO2
. ) occurring as the su

peroxide radical (O2
. − ) in alkaline media is a precursor of H2O2 which, 

by dissociation, generates OH radicals. Baek et al. [214] reported that 
the O3 dissolved in the bulk is often unstable and may result in a 
sequence of reactions such as its interaction with hydroxide ion (OH− ) 
producing hydroperoxyl radical (HO2

⋅ ) and super oxide ion (O2
⋅− ) which 

majorly contribute to the generation of atomic oxygen (1O2) and H2O2 as 
shown in Eqs. (109)–(111).  

O3 + HO− → HO2
⋅ + O2

⋅− (109)  

HO2
⋅ + HO2

⋅ → 1O2 + H2O2                                                          (110)  

HO2
⋅ + O2

⋅− + H+ → 1O2 + H2O2                                                  (111) 

Kovačević et al. [268] demonstrated that the interaction of atomic 
hydrogen with water molecule in the bulk initiate a series of reactions 
that lead to the formation of hydroperoxyl radicals whose recombina
tion results in the production of co-species including hydroxyl radicals 
as shown in Eqs. (112)–(119). Nevertheless, the authors indicated that in 
acidic conditions (pH < 6), these processes might be slow but could 
accelerate when the solution pH is above 5. Likewise, Ma et al. [269] 
sustained that HO2

. can also be produced via the reaction of OH. and O3 
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in the bulk yielding various species through chains of reactions (Eqs. 
(112)–(119)).  

H⋅ + OH2 → HO2
⋅                                                                        (112)  

HO2
⋅ + HO2

⋅ → H2O2 + O2                                                           (113)  

O3 + HO2
− → O3

⋅− + HO2
⋅                                                             (114)  

O3
⋅− + H2O → OH⋅ + OH + O2                                                     (115)  

OH⋅ + O3 → HO2
⋅ + O2                                                               (116)  

HO2
⋅ + O2

- → HO2
- + O2                                                                (117)  

O3
- + O2

- → 2OH- + 2O2                                                              (118)  

3O3 + OH- + H+ → 2HO⋅ + 4O2                                                  (119)  

4.11. Reactivity of atomic oxygen in DBD configurations 

Atomic oxygen (O.), another powerful oxidant, is often produced by 
irradiation of O2 with dissociation energy of 498.4 kJ/mol equivalent to 
5.2 eV [216,270]. Lide [178] and Hoeben [182] claimed that in an 
acidic milieu, atomic oxygen is a powerful oxidant with an oxidation 
potential of E0 = 2.43 V, higher than that of ozone. However, its insta
bility makes its lifetime extremely short and often difficult to quantify. 
Conversely, Aziz et al. [216] and Moeller [262] reported that atomic 
oxygen in the gas phase contributes to the generation of ozone by re
action with molecular oxygen at an activation energy of Ea 
= 16.7 kJ/mol. Apart from this, Tang et al. [93] and Wang et al. [245] 
also highlighted that in aqueous solutions, atomic oxygen participates in 
the formation of OH. and H2O2 according to Eqs. (120)–(122) via 
oxidation of water molecules.  

e− + O2 → O⋅ + O⋅ + e− (120)  

O⋅ + H2O → 2OH⋅                                                                      (121)  

O⋅ + H2O → H2O2                                                                      (122) 

Gupta [2] suggested that the reaction between dissolved O3 and 
UV-radiation leads to the disintegration of ozone to atomic oxygen (O) 
and oxygen (O2) (Eq. (123)) and H2O2 (Eq. (124)). The atomic oxygen 
further interacts with water molecules and yields OH radicals as previ
ously shown in Eq. (120).  

O3 + hv → O⋅ + O2                                                                     (123)  

O3 + hv + H2O → H2O2 + O2                                                      (124) 

On the other hand, Massima [6] showed that solvated electrons can 
dissociate O2 molecule to produce atomic oxygen (Eq. (125)) which in 
return converts water molecule to OH. (Eq. (121)) and reacts with dis
solved oxygen to yield O3 (Eq. (126)).  

O2 + e- → 2O                                                                             (125)  

O⋅ + O2 → O3                                                                            (126)  

4.12. Impact of superoxide anion in DBD technologies 

The superoxide anion (O2
.− ), another reactive oxygen species pro

duced in DBD reactors with an oxidation potential of 1.44 V, has a short 
half-life of 10− 6 s therefore, impedes its quantification in DBD systems. 
To the best of our knowledge, literature presents little information on 
the direct reaction of O2

.− with organic contaminants. Giannakis [253] 
claimed that O2

.− somehow shows antibacterial properties, but the 
mechanisms of its interaction with bacteria and viruses have not been 

well elucidated. Nevertheless, in DBD protocols, the aqueous O2
.− results 

from various reactions including the disintegration of HO2
. [271] as 

shown in Eqs. (127)–(132). The interaction of dissolved oxygen and 
highly energised/solvated electrons [272] majorly contributes to the 
production of OH radicals and other species via collision with H2O 
molecules as disclosed in Eq. (60). This phenomenon has commonly 
been reported in other advanced oxidation processes [88,90], hence 
making O2

.− one of the common OH radical precursors.  

O3 + OH → HO2
- + O2                                                                (127)  

O3 + HO2
- → OH O2

⋅- + O2                                                           (128)  

HO2
- + O3 → HO2

⋅ + O3
⋅-                                                               (129)  

HO2
⋅ {Reciprocal} → O2

⋅− + H+ (130)  

O2
⋅- + O3 → O2 + O3

⋅-                                                                   (131)  

H2O2 + O2
⋅− → OH + OH− + O2                                                  (132) 

Gupta [2] supported that in aqueous media, solvated electrons (eaq
− ), 

atomic hydrogen (H.) and super oxide radical anions (O2
. − ) are the 

common reductive species generated underwater in non-thermal plasma 
discharges. In DBD aqueous media, the solvated energised electrons 
interact with dissolved oxygen resulting in the formation of super oxide 
ions (O2

.− ). Alternatively, H. readily reacts with O2 producing hydro
peroxyl radicals (HO2

. ) that can alter to O2
.− in neutral pH environment 

according to Eqs. (133)–(135).  

eaq
- + O2 → O2

⋅− (133)  

H⋅ + O2 → HO2
⋅− (134)  

HO2
⋅ → O2

⋅− + H+ (135) 

During the plasma discharge process, apart from solvated electrons 
and radical species such as OH., H. and O., molecular species including 
H2, H2O2 and O3 have been identified in the bulk solution [182]. The 
major reactions between these species that have been proved to occur 
near the plasma-water interface and in bulk water include the interac
tion of solvated electrons with H2O2 yielding hydroxyl radicals (OH.) 
and hydroxide anion (OH− ) whose reaction further produces super oxide 
radical (O2

.− ) (Eqs. (136) and (137)). The super oxide radical may react 
with H2O2 and O2 producing multiple co-species as shown in Eqs. (138) 
and (139).  

eaq
− + H2O2 → OH⋅ + OH− (136)  

2OH⋅ + 2OH− → O2
⋅− + 2H2O                                                      (137)  

1/2O2
⋅− + H2O2 → O2

⋅− + H2O                                                       (138)  

O2
⋅− + 2O2 → 2O3

− (139)  

4.13. Quantification of reactive oxygen species in dielectric 
barrier discharges 

One of the most difficult tasks during wastewater remediation by 
plasma technologies is the determination of reactive oxygen species 
(ROS) in aqueous plasma discharge actuators, because of their inade
quate selectivity and limited lifespan as shown in Table 1. Nevertheless, 
long-lived species such as O3 and H2O2 have effectively been quantified 
in DBD system by spectroscopic methods [90]. On the other hand, the 
powerful non-selective hydroxyl radical in aqueous plasma reactors has 
been measured using diverse chemical probes including phenol, 
dimethyl sulfoxide (DMSO), disodium salt of terephthalic acid (NaTA), 
terephthalic acid (TA) and 4-hydroxybenzoate (HDB) [136,273,274]. 
The products resulting from the reaction of OH with these chemical 
trapping agents are often measured using different methods [46]. 
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Furthermore, plasma generated radicals in liquid phase namely, OH, 
superoxide anion (O2

. ), atomic oxygen (O.) among others have been 
identified using advanced techniques such as electron paramagnetic 
resonance (EPR) spectroscopy [275,276] and related Spectrophoto
metric methods [277,278]. Indeed, a successful and comprehensive re
view on quantification of ROS mainly O3, H2O2, OH., O. O2

.− , etc. in 
liquid plasma technologies was published by Mouele et al. [32]. The 
authors reported that O3 and H2O2 could successfully be measured by 
indigo and per titanyl sulphate spectroscopic methods, respectively, 
while OH radical could specifically be measured by fluorescence spec
trometry method using terephthalic acid as a probe. In total these 
measurement methods have been found effective for the determination 
of ROS in aqueous plasma actuators, however, the choice of a particular 
technique may depend on the availability and cost of the equipment. 

4.13.1. Impact of solution pH and scavengers on the production of 
reactive species in DBD and DBD/catalysts configurations 

Besides reactor configuration aspect, the efficiency of a DBD reactor 
also depends on the amount of reactive species produced. However, the 
presence of scavengers in DBD actuators could diminish their concen
tration resulting in low degradation efficacy of the targeted pollutants. A 
comprehensive study on the effect of both solution pH and scavenging of 
the production of reactive species mainly O3, H2O2 and OH radicals in 
double cylindrical DBD configuration using distilled water as model 
solution was conducted by Mouele et al. [90]. The authors showed that 
the amount of ozone in both acidic and basic pH fluctuated during time 
on stream though the highest concentration of ozone 0.79 M was ach
ieved in acidic pH 2.5. This suggested that O3 was being formed and 
scavenged in the DCDBD reactor via different reaction paths. Its 
decomposition by UV radiation (at λ ≤ 310 nm) leads to oxygen mole
cules and singlet atomic oxygen that further reacts with water molecules 
to generate OH radicals. The rearrangement of OH results in the for
mation of H2O2 follows an avalanche of chemical reaction chains as 
early sustained by Haugland [180] and Tang et al. [164]. Following 
these trends, and by considering the nucleophilic and electrophilic re
actions of ozone, it can be inferred that the amount of O3 in DBD systems 
could fluctuate in the presence or absence of catalyst. High amount of 
ozone can be produced at low pH values [164]. Unlike ozone, H2O2 in 
DBD reactors is abundantly produced in basic conditions as product 
from various chemical reactions. Hydrogen peroxide is often considered 
as one of the primary sources of OH. via dissociation reaction. Its high 
amount in DBD systems may result in improved concentration of OH. 
This latter being the major product of most advanced oxidation pro
cesses is non-selective and highly reactive towards aqueous chemical 
species. In this regard, Mouele et al. [90] showed that in the absence of 
buffer, OH resulting from countless reaction chains [164] are abun
dantly produced in the DBD system in basic conditions (pH ≥ 8.5) with a 
concentration range of 8.24–9.66 mg/L. However, the addition of small 
amounts of buffer solution (KH2PO4 + Na2HPO4, pH = 7.39) signifi
cantly reduced OH concentration in DBD reactor to the range of 
0.97–1.27 mg/L at pH ≥ 8.5. This was ascribed to the reaction of 
phosphate anion scavengers, mostly H2PO4

− , HPO4
− and PO4

− from the 
buffer with OH radicals. Moreover, the authors demonstrated that the 
addition of 6.36 g of Na2CO3 in DBD reactor drastically decreased the 
amount of OH radicals from 0. 389 mg/L (without scavenger) to 
0.001 mg/L (with scavenger). This noticeable decay was attributed to 
the scavenging reaction of carbonate/bicarbonate (CO3

2− /HCO3
− ) with 

OH radicals and has been widely reported [279–283]. Therefore, these 
mitigations show that trace amounts of scavengers in DBD configura
tions can diminish the amount of active species and consequently affect 
the solution pH which in return may impact on the decomposition rate of 
water toxins. 

5. Generation of reactive nitrogen species in DBD configurations 

Besides the aspects highlighted above, the efficiency of DBD systems 
may also depend on the nature of the feed gas which in return influences 
operational parameters during optimisation processes. The common 
feed gases used in DBD advanced technologies include dry air, oxygen 
(O2), and argon (Ar) and the impact of their composition on the removal 
efficiency of targeted pollutants has been evaluated by Wardenier et al. 
[161]. The authors reported that excellent decomposition of model 
toxins could be achieved with oxygen plasma followed by argon and air 
plasma. This classification is likely associated with the nature and 
different amounts of chemical species produced in each system at 
ambient conditions. During diagnostic studies of plasma induced by 
dielectric barrier discharge technologies using air as the feed gas, 
various reactive oxygen (ROS) apart from those reviewed above, reac
tive nitrogen species (RNS) deriving from air nitrogen have also been 
accounted. The production of RNS in air DBDs has been highlighted by 
various authors [28–30,93,191,284] and the common mechanisms for 
the formation of RNS have been summarised and are presented in  
Fig. 17. 

The efficacy of O3 produced in DBDs at the feed gases was examined 
by Lukes et al. [285]. Lukes and colleagues proved that changing from 
oxygen to plasma air (N2, O) resulted in the decrease of the amount of 
ozone due to its reaction with N2 forming nitrogen oxide (NO) in the 
discharge zone as shown in Eqs. (140)–(143).  

N2 + e− → 2N⋅ + e− (140)  

O2 + e− → 2O⋅ + e− (141)  

N⋅ + O2 → NO + O⋅                                                                    (142)  

O⋅ + O2 + M → O3 + M                                                             (143) 

Next, Kogelschatz [98] sustained that NO that is significantly 
generated in air plasma reacts with O3 forming nitrogen dioxide (NO2) 
according to Eq. (144).  

NO + O3 → NO2 + O2                                                                (144) 

This indicates that the low performance of air plasma compared to 
that of O2 plasma could be the consequence of reduced rates of forma
tion of OH. and O3. Even though literature claims that a significant 
amount of O3 could be achieved/measured in the absence of N2 species, 
the reduced amount of O3 in DBD systems does not imply that O3 directly 
interacts with pollutants but could indicate that O3 undergoes side re
actions with co-species due to its electrophilic and nucleophilic prop
erties. For instance, in the presence of H2O2 in plasma-treated liquids, O3 
is quickly converted to OH radicals as earlier demonstrated in Eq. (34). 
This, therefore, implies that ozone is often absent in some DBD config
urations or present in very minute concentrations. It should be recalled 
that the circulation and dissolution of gas phase chemical species into 
the plasma-treated effluent give rise to secondary oxidising agents (ox
ygen and nitrogen species) in the liquid which further affect the physi
cochemical properties of the DBD aqueous media mainly pH and 
conductivity of the solution being treated. Apart from hydrogen cations 
(H+) that may likely result from water dissociation, nitrogen species (NO 
and NO2) previously discussed are often responsible for the formation of 
nitrite (NO2

− ) and nitrate (NO3
− ) that induce the acidification of the air 

plasma-treated waters. Consequently, various studies have proved the 
presence of nitric (HNO3) and nitrous (HNO2) acids in air plasma treated 
solutions [223,286] resulting from aqueous NO2

− and NO3
− and the for

mation these acids has been reported in Lukes et al. [285] according to 
Eqs. (145) and (146).  

2 NO2 + H2O → HNO3 + HNO2 → NO3
− + NO2

− + 2H+ (145)  

NO + NO2 + H2O → 2HNO2 → 2 NO2
− + 2H+ (146) 
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The acidity of DBD plasma treated solutions induced by nitrogen 
species is often dictated by nitrite and nitrate concentrations [195]. 
Wardenier et al. [161] emphasised that the concentration of nitrite re
mains in the DBD treated solution is often lower than that of nitrate due 
to sequential oxidation side reactions as shown in Eqs. (147)–(149).  

NO2
− + H2O2 + H+ → ONOOH + H2O → NO3

− + H2O                   (147)  

NO2
− + O3 → NO3

− + O2                                                              (148)  

NO2
− + HO⋅ → NO2 + HO-                                                          (149) 

Therefore, the reduced performance of air plasma encountered in 
literature could be ascribed to these two scenarios including O3 
quenching by NO and aqueous decomposition of nitrite to nitrate that is 
often one of the major by-products quantified in air plasma treated 
waters [195]. Thus, the abundance of nitrate in treated effluents has 
become an outstanding challenge in DBD processes that limit their 
application at the industrial level. This signifies that any amount of ni
trates higher than 50 mg/L in surface and groundwater as permitted by 
the EU Nitrates Directive (91/676/EEC), may require further treatment 
for the removal of nitrates. This review demonstrates that nitrogen 
species in DBDs technologies are mostly involved in the generation of 
secondary species that induce acidification of water being treated 
instead of directly reacting with the targeted pollutants. This in return 
may impede their complete removal. 

5.1. Quantification of reactive nitrogen species in DBD configurations 

The determination of RNS in DBD systems has been shortly reported 
in the literature, though their formation in plasma systems may not only 
appear limiting to the efficiency of the reactor being employed but they 
may somehow contribute to improve deactivation/inactivation of bac
teria from polluted water [286–288]. Likewise, their pre
sence/formation in various plasma reactors are claimed to be stopped. 
Hence, it is important to determine their amount or concentration in the 
solutions being investigated. Wright et al. [289] claimed that pure ox
ygen (O2) can be used to avoid the formation of RNS in DBD systems, 
however, the rise of temperature to about 150 ◦C could be a limiting 
factor, though this claim has not been widely reported in the literature. 
Schwartz et al. [290] outlined that N2 often emits UVA, UVB and UVC 
while NO radiates in the UVA region and N2 and N2

+ in the residue. In 

case O2 impurities are present in the plasma zone, NO is likely to form 
leading to an intense generation of UVA radiations [291] which can 
subsequently be absorbed by O3 if produced in the system as endorsed by 
Grebenshchikov et al. [292]. Indeed, FT-IR has been employed to 
ascertain the concentration of RNS in DBD systems whose exhausts that 
are operated with dry air (without liquid in the reactor vessel) and are 
connected to a gas cell (e.g., Pike Technologies Ltd.) with a varying 
path-length incorporated in a FTIR spectrometer (4700, Jasco Ltd, for 
example). In this regard, the concentrations of RNS are defined at 
different absorption wavenumbers. For instance, N2O could be sensed at 
2240 cm− 1, N2O5 at 750 cm− 1, HNO3 at 890 cm− 1, and NO2 at 
1580 cm− 1 according to Fitzsimmons et al. [293]. According to 
Sakiyama et al. [294], when FTIR and UV-absorption spectroscopies in 
combination with OES are used in DBD systems in the absence of liquid, 
the concentration of long species mainly H2O2, HNO2, HNO3 and NO3 
are often below the detection limit and their concentration could be 
deduced/estimated as a function of time until steady state is reached 
using computational method or numerical model via conversion of their 
amount into partial pressure using the ideal gas law. In this case, the 
DBD reactor is often flushed out with plasma effluent that replaces air 
and hence channelled through the FTIR column followed by analysis. 
Similar investigation on the determination of RNS in DBD configuration 
was also conducted by Pavlovich et al. [295] who quantified ozone and 
various RNS during chemical diagnostic of air plasma for surface 
disinfection. Focusing on the surface micro-discharge (SMD) of the 
induced air plasma, the authors quantitatively measured the plasma 
chemistry in gas-phase using infra-red spectroscopy (FTIR) employing 
small gas volumes. Their results revealed that O3, NO, NO2 and other 
NOx were present, and the antibacterial inactivation was more effective 
in RNS mode than in that of O3. On the one hand, their outcomes implied 
that plasma chemistry should carefully be characterised during its 
application in surface cleansing or water/wastewater remediation. On 
the other hand, their results signified that, despite being considered as 
scavengers of ROS, RNS can also contribute to the detoxification of 
water contaminants. Besides, Abdelaziz et al. [296] designed a surface 
dielectric barrier discharge (SDBD) whose plasma source was directly 
incorporated into a chamber of a glass tube of 220 mm long and 24 mm 
inner diameter. The outlet of the glass tube connected to the FTIR that 
was linked to a gas cell with a path length of 3 cm was used for quan
tification of RNS produced in gas phase. The concentration of ozone 

Fig. 17. Plasma chemistry nitrogen-based impurities [6,102].  
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produced was measured by UV ozone monitor also referred to as O3 
analyzer. Various authors outlined that the concentration of O3 and that 
of RNS species such as O3, N2O, N2O5, and NO2 in SDBD at the applied 
conditions could be influenced by the amount of O2 in the feed gas. 
While NO is often not detected in FTIR spectra perhaps into its rapid 
oxidation to NO2 and NO3 and further to N2O5 [296–298]; the increase 
of O2 content in the system may result in an increase of O3 concentra
tion. On the other hand, the highly energised electrons and ROS and RNS 
generated in DBD reactors collide with O2 and N2 molecules to produce 
NxOy forming a chain of chemical reactions. The measurement of RNS in 
DBD technologies in gas phase using OES with or without FTIR or 
UV–vis has been extensively reported in the literature [287,299–301]. 
Furthermore, an advanced laser induced fluorescence (LIF) system 
assembled with a self-developed fluorescence telescope, an optimised 
and synchronised tunable pulsed laser with high precision, followed by a 
surface discharge generator and intensified Charge Coupled Device 
(iCCD) camera, and an oscilloscope has also been reported effective for 
the detection and measurement of RNS (~ ppb level) in DBD systems 
[298]. However, the authors claimed that the requirement of a pixel 
resolved spatial distribution and detection in the outer plasma zone 
could be problematic because of the small concentration of RNS (often at 
ppb level) and recurrent interference might limit its applicability. These 
investigations show that diagnosis of plasma chemistry focusing on the 
quantification of RNS in DBD configurations during post-discharge in 
gaseous state can successfully be achieved, however the determination 
of long-lived RNS species such as NO2

− , NO3
− , HNO2 and HNO3, etc. in 

liquid phase is still a challenging task. Nevertheless, nitrogen oxides 
including nitrate (NO3

− ), nitrite (NO2
− ), peroxynitrite (ONOO− ) have 

been identified in the aqueous phase mostly at low pH values [295]. 
During research studies conducted by Machala et al. [302], the con
centrations of nitrites and nitrates in the solution being treated was 
determined using high performance liquid chromatography (HPLC) 
system with a 7 mm All sep A1 anion exchange column 
(10 cm × 4.6 mm) and an eluent consisting of 0.85 mmol L− 1 

NaHCO3/0.9 mmol L− 1 Na2CO3 at a flow rate of 1.2 mL min− 1. The 
samples withdrawn from DBD reactor were stabilised with a buffer so
lution (2 mmol L− 1 Na2HPO4/KH2PO4 solution, pH 6.9) within a short 
time frame (3 min) prior to prevent the acidic decay of nitrites before 
being infused into the chromatography column. On the other hand, 
peroxynitrite concentration was measured via its reaction with 2, 
7-dichlorodihydrofluorescein diacetate (DCFH-DA) resulting in highly 
fluorescent dichlorofluorescein (DCF) in the solution governed by ROS. 
The absorbance measurements were performed at 500 nm while sample 
fluorescence was depicted at excitation and emission wavelengths of 
502 and 523 nm, correspondingly following previous DCFH-DA assay 
fluorescence reports [303,304]. Unlike nitrite and nitrate, the mea
surement of peroxynitrite fluorescence was achieved with a spectro
photometer. The acidic disintegration of peroxynitrite in samples 
withdrawn from the plasma reactor was stopped by addition of phos
phate buffer (2 mmol L− 1 Na2HPO4/KH2PO4 solution) within 5 min of 
withdrawal as in previous cases. Furthermore, the pH and conductivity 
probe was used to monitor/measure pH and conductivity of plasma 
treated water samples. Pavlovich et al. [305] investigated the correla
tion of ozone with antibacterial effects in air dielectric barrier discharge 
during treatment of water. In their work, the authors measured the 
principal long-lived nitrogen chemical species including nitrites (NO2

− ) 
and nitrates (NO3

− ) in DBD-treated aqueous solutions using UV–vis 
spectroscopy. But beforehand, UV absorbance scans of sodium nitrate 
and sodium nitrite used as standards were scanned in the wavelength 
range of 200–400 nm. Thereafter, the concentration of nitrate and ni
trite in plasma-remediated samples was determined, in accordance with 
their previous work [306]. The measurement of nitrogen species mainly 
nitrous acid (HONO) and its conjugate base nitrite ion (NO2

− ) as well as 
nitroacidium (H2ONO+) by UV–vis spectroscopy was also conducted by 
Riordan et al. [307]. The determination of RNS concentration in DBD 
configurations or any other aqueous systems using diverse protocols has 

extensively been outlined [298,299,308]. 

5.2. Removal of nitrous oxides from DBD configurations 

Plasma systems driven by air (N2, O2) and pure nitrogen (N2) gas- 
discharges produce diverse species including ROS and RNS. The accu
mulation of RNS, mostly nitrogen oxides (NOx) in the solution being 
treated by DBD configurations could be a potential limiting factor that 
can impede the complete degradation/mineralisation of targeted pol
lutants. Though Oehmigen et al. [299] and Naitali et al. [308] showed 
that NOx (NO + NO2) enhanced antibacterial properties, they often 
behave as scavengers of oxygen (O2) and ROS such as O3 and OH. and 
hence diminish their amounts in DBD configurations and further 
decelerate the depollution process [275]. So far, literature presents little 
information of methods used to prevent the formation of RNS in 
air/N2-DBD protocols. Nevertheless, Obradovic et al. [309] reported 
that the formation of NOx in DBD technologies could be stopped by 
introduction/injection of ammonia (NH3) gas downstream from the DBD 
reactor (in the plasma exhaust/outlet in gas phase) at reasonable 
amount below the detection limit of Nessler’s reagent. In the direct 
oxidation stage, NO is oxidised to HNO2 mainly by O3 and OH., HO2

. and 
O. radicals generated in the plasma zone of the DBD reactor. Atkinson 
et al. [310] highlighted that the oxidation reactions of NO are fast and 
effective. The second step involves the removal of NO2 via oxidation to 
form HNO3 and to NO3 by O3. Hence, during direct oxidation, the 
decrease of NOx concentration is due to oxidation of NO to HNO2, and 
NO2 to HNO3. The indirect oxidation method on the other hand driven 
by the mixture of flue gas and ozonised air is diagnosed at about 40 cm 
downstream from the DBD actuator. In this region, the concentration of 
O., OH. and HO2

. radicals are insignificant because of their limited life
times. Therefore, NO in this region is effectively oxidised to NO2 by its 
reaction with O3 [311]. However, in the absence of the back reaction 
(NO2 to NO3), the slow diminution of NO2 concentration is noticeably 
observed only when NO is totally oxidised. The secondary way to stop 
the formation of NOx species in DBD plasma reactors might require the 
use of N2 free pure gases such as O2 or Ar which directly result in the 
production of ROS adequate for direct removal of contaminants. 

6. Measurement of temperature in DBD systems 

Literature supports that non-thermal plasma induced by DBD often 
referred to as silent discharges are run at room temperature and are safe 
to operate [33]. However, the electron temperature above room tem
perature recorded during plasma initiated by air, N2, Ar, He or their 
mixture could become a limiting factor in the utilisation of DBD con
figurations for water and wastewater remediation. Hence, the measur
ement/assessment of electron temperature during DBD experiments is a 
necessary step to define the safety of DBD technologies. The most 
common techniques used to determine gas temperature in DBD config
urations include optical emission spectroscopy (OES) [312–315] and 
diode laser absorption spectroscopy (DLAS) [316,317]. Williamson et al. 
[318] determined gas temperature of the bulk in a 30%N2/70%Ar DBD 
system using time resolved diode-laser absorption spectroscopy of 
metastable Ar 4s′ [1/2]◦ and resolved plasma emission of N2

+ 1st 
Negative and N2 2nd Positive. The outcomes of their work showed that 
gas temperature of the low power DBD system run at pressures of 10, 30, 
and 100 Torr and pulse repetition rates of 0.5–30 kHz was in the range 
of 350–400 K (76.85–126.87 ◦C) and somewhat above room tempera
ture. Similar investigations on the measurement of DBD plasma bulk 
temperature were outlined by Horvatic et al. [319]. These studies 
inferred that DBD systems with electron temperature over 300 K should 
carefully be operated, certainly in well adapted cooling systems to avoid 
any experimental obstacle. 
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7. Discussion of the review 

In advanced oxidation processes (AOPs), the combination of UV light 
and other reactive oxygen species (ROS) such as O3, H2O2 contribute 
towards the production of OH.. The most common AOPs mainly O3/UV, 
H2O2/UV, O3/UV/H2O2, and their combination with catalysts have been 
found significant in the removal of organic pollutants and killing of 
bacteria [320]. The utilisation of these techniques by themselves may be 
time consuming and may involve a lot of wet chemistry but work more 
effectively in combination. Conversely, AOPs based on non-thermal 
plasma processes like dielectric barrier discharges (DBDs) generate all 
ROS previously mentioned at once with few or no chemical additives 
[1]. Apart from this, UV light is also produced in DBD systems, and the 
benefit of producing O3, H2O2, O., O2

.− , OH., etc. render DBD actuators 
robust advanced oxidation technologies. This manuscript demonstrated 
that O3, H2O2, O., O2

. are selective towards organic pollutants while OH. 

is non-selective. So, it is certain that contaminants that O3, H2O2, O., O2
. 

cannot decompose in DBDs could be further oxidised and mineralised by 
OH. following various reaction steps previously discussed. This can be 
observed from various studies reported in the literature which mostly 
show the degradation of the carbon skeleton of the initial pollutants into 
secondary by-products [11,221,242]. Nevertheless only a few authors 
showed full mineralisation of the targeted compounds decomposed in 
DBD reactors [238,243,245]. Therefore, extended research still needs to 
be conducted so as to achieve mineralisation. 

Several researchers attempted the degradation of pharmaceuticals 
using AOPs, but only a few showed their total conversion into CO2, H2O, 
and harmless entities [167,238,321]. However, investigation of Liu et al. 
[76] proved that the CBZ compound subjected to DBD system was 
broken down into various degradation intermediates; however, their 
mineralisation into water and inoffensive substances was not 
mentioned. Similar observations could also be made in studies con
ducted by Magureanu et al. [165,166] and Marković et al. [92]. Like
wise, after observation of all studies reviewed in this text and those 
presented in Table 2, it can be noticed that pollutant concentration, pH, 
kinetics, and energy yield required in the process are very important 
parameters that influence the removal of these toxins. Nevertheless, 
most of the parameters in the decomposition of pollutants from water 
and wastewater were not fully examined. Therefore, complete optimi
sation of these factors is required to establish the degradation conditions 
of these contaminants. The pollutant concentration is a very crucial 
parameter because many researchers have shown that the decomposi
tion of water impurities decreases with an increase of pollutant con
centration [6,90,166]. This is probably due to the chemical stability of 
their molecular structures that are designed to resist oxidants’ attacks. 
Apart from this, literature has also shown that toxicants such as phar
maceuticals have been decomposed in DBD systems at different pH 
values while some have been well removed in acidic, neutral, or basic 
media [322,323], the stability of these compounds may also slow down 
the rate of their degradation which usually leads to pseudo first order 
kinetics [158]. Moreover, this review shows that the addition of cata
lysts in DBD systems initiates catalytic ozonation and photocatalytic 
ozonation leading to the abundance of reactive species in the solution, 
which can successfully be quantified using various methods [32,296]. In 
the case of air or N2 feed gases, the formation of RNS and their removal 
can be achieved according to [275]. The thermal stability of DBD system 
can also be controlled following Okada and Kijima [314] and Lin et al. 
[315]. Likewise, analysis of certain AOPs mentioned in this text shows 
that the use of UV and ozone generators requires a certain amount of 
energy to induce oxidation processes [324]. However, most papers on 
DBD technologies reviewed in this text (Table 2) did not investigate the 
energy consumption which is an essential parameter. Nevertheless, with 
lower energy yield G50 estimated in Table 2, DBD could also be used not 
only as an efficient energy saving method that produces UV, O3, H2O2,. 

OH, etc. but as a promising novel technology for the oxidation of pol
lutants from water effluents [33,90]. In addition, the limited use of 

chemicals in DBD configurations is beneficial to avoid more toxicity of 
the effluents being treated as various studies have demonstrated that 
degradation metabolites are sometimes more toxic that the initial pol
lutants [11,12,325,326]. Likewise, the toxicity of the degradation 
by-products in the studies was not highlighted, showing that these 
studies omitted two criteria that are important in water and wastewater 
decontamination. To recall, the general issue claimed by most waste
water treatment plants (WWTPs) is the production of sludge and the 
appearance of emerging micropollutants in treated effluents which 
further limit their reusability for industrial purposes, distribution to 
recipients in need, and their discharge into the environment even 
though Bögner et al. [327] suggested an alternative sludge 
pre-treatment via ozone application for water reuse in aquaculture 
systems. Therefore, complete removal of pharmaceuticals in/from final 
treated water is mandatory in this regard. Perhaps OH production sys
tems need to be run for a prolonged time to allow a series of chemical 
reactions to occur till the total degradation of the pollutants is achieved 
[165,167]. Else in case of co-reactions between the degradation 
by-products, extended/selected heterogeneous catalysts could be added 
to the treatment system to boost the generation of selective and 
non-selective oxidisers, hence achieve total conversion of the degrada
tion by-products [328–333]. This further inferred that effective AOPs 
aiming at producing huge amounts of OH radicals should be employed 
for the decontamination of effluents in WWTPs. Therefore, AOPs 
induced by DBD appear are potent technologies that can be used as 
integrative stages to treat final effluents from WWTPs before being 
discharged into the environment. The combination of various species 
produced in DBD configurations could be a promising mixture that can 
be used to fully remove organic pollutants such as dyes and other types 
of pollutants from final effluents. However, understanding the degra
dation mechanisms of each oxidant toward pollutants is crucial either in 
DBD or in other treatment systems. The studies reviewed in this text and 
in Table 2 indicate that O3 and OH. are the principal reactive species that 
largely contributed to the decomposition of water pollutants in DBD 
configurations followed by NOx and H2O2 that act as major precursors of 
OH radicals. 

All these excellent treatment methods developed in the literature 
show great removal efficiencies but only a few of them stipulate how the 
by-products formed and traced their behaviour in aqueous media. Based 
on these remarks, a few questions need to be asked: Do these high 
removal percentages meant that complete oxidation of organic pollut
ants from water was achieved? If yes, why are the world’s communities 
still facing a global water scarcity while potent treatment methods have 
already been developed? These interrogations demonstrate that even 
though considerable numbers of treatment methods have been estab
lished; the critical behaviour of organic toxins in WWTPs is still perti
nent and hence needs to be addressed. During water and wastewater 
treatment, it is often believed that the following aspects might occur: 1) 
the operational/running cost of these advanced treatments is often 
beyond the allocated budget of various treatment protocols and hence 
limits their applicability at the industrial level [334]. 2) The use of 
excessive chemicals often leads to toxic sludge and undesired 
by-products in the treated effluents [162]. 3) The generated by-products 
often interact to form complex chains which in turn may be more 
harmful than parent molecules [11]. Therefore, the treated effluents can 
neither be reused, distributed nor discharged into the environment 
safely. In fact, the challenge of completely removing toxins from water 
has become a recurrent phenomenon because the degradation in
termediates of some pollutants are usually unknown. Therefore, it is 
recommended that these decomposition intermediates should be 
detected and quantified to predict their degradation mechanistic path
ways and hence to facilitate their removal to achieve a total water 
treatment process. To some extent, the generated by-products may not 
necessarily be toxic; they could just be too complex to be removed from 
the treated water. Likewise, their consumption by water receivers could 
have long term effects which are still under investigation. One may also 
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think that only metabolites could be toxic. But tiny by-products such as 
amides may also be harmful [335,336]. At this point, advanced treat
ment techniques need to be established to meet water global demand. 
Such technologies should incorporate both oxidation and mineralisation 
of target pollutants from water matrices [100,167,238,333]. In addition 
to that, the technology should be applicable with reasonable costs to 
achieve global utilisation. Based on the DBD advantages previously 
highlighted in this text, their configurations are certainly capable to 
meet these requirements. Therefore, it is important to emphasise that 
scientists involved in water and wastewater treatment should investi
gate and understand the properties of oxidants such as O3, OH, etc. in 
aqueous media. Not only their generation routes in the applied systems 
but their reaction mechanisms towards targeted pollutants should be 
considered [337,338]. The toxicity behaviour of the parent pollutants 
and by-products formed should be carefully investigated and reported to 
assess the effectiveness of the treatment method used [157]. Knowing 
the limitations of the treatment options could assist scientists to develop 
suitable DBD systems that achieve total oxidation and mineralisation of 
water contaminants. This may further contribute to relieve the global 
water crisis and the provision of fresh, clean, and water free from toxins. 

On the other hand, hydroxyl radical (OH.) is the main targeted 
product of AOPs. OH. undoubtfully mineralises all types of contami
nants, including bacteria and viruses [102]. Therefore, the efficiency of 
the DBD-AOP systems may depend on the density of OH. produced. But 
based on its non-selective property, OH. often reacts with its precursors 
or other scavengers that usually reduce its concentration in the treat
ment process [172,173]. This hence impacts the mineralisation of con
taminants and their by-products and may further lead to unexpected 
outcomes. 

Attri et al. [339] reported that when comparing various feed gases in 
DBD-driven plasma, O2 plasma produces higher amounts of H2O2, O3, 
and OH species, compared to other feed gases in plasma systems. Hence, 
we propose that assessment of the effect of feed gas on the decomposi
tion efficiency of targeted pollutants should be considered as an 
important aspect for future plasma research projects. Although this re
view proves that DBD technologies are prospective and effective for 
water and wastewater purification, Hegeler and Akiyama [340] claimed 
that the revision of DBD configurations should be considered. 

Conversely, Go et al. [341] appealed that the relatively long duration 
of voltage pulse in some DBD geometries could be responsible for energy 
loss of ions during acceleration; particularly the heating of the gas and 
thermal decomposition of generated ozone could limit DBDs applica
tion. Therefore, the authors suggest that traditional DBD needs cooling 
for dielectric materials and the mitigations to this claim were outlined 
by Lin et al. [315]. A few studies have shown that the use of streamer 
discharge by a short voltage pulse front (several ns) and higher pulse 
amplitude (tens-hundreds kV) significantly increases the production 
yield of ozone [342,343]. This was also endorsed by Beloplotov et al. 
[344] and Ripenko et al. [345] who have used such an approach for the 
decomposition of water pollutants. 

Altogether, the combinations of various homogeneous AOPs such as 
UV/O3, O3/H2O2, UV/H2O2 and UV/O3/H2O2 induced in DBD config
urations have been proved to largely generate powerful non-selective 
hydroxyl radicals [182]. Though various conventional DBDs systems 
have been used to decompose organic pollutants from water and 
wastewater [33], cylindrical DBDs have not been widely used in the 
treatment of water effluents. Therefore, this review emphasises that 
double cylindrical DBD (DCDBD) due to its superior properties previ
ously discussed, can be used as a promising technology for the removal 
of targeted pollutants. The DCDBD technique reviewed in this text is 
cheap, feasible, and environmentally benign. 1 eV is enough as input 
energy to induce the plasma discharge. Although some studies may 
claim that the scalability of DBD systems is challenging, DBD configu
rations present various advantages over other electrical discharges and 
hence need to be considered as promising means for the direct removal 
of water pollutants. Many methods that meet the requirements for low 

cost, accessible treatment often lack good efficiency for complete 
removal of toxins from water. This is the case with various traditional 
techniques that have been used in water purification processes [346]. 
Certainly, they can treat water and wastewater but not all contaminants 
are removed. So, further integrative, and competitive methods are 
needed to oxidise contaminants that escape water recovery plants or 
wastewater treatment plants (WWTPs). In this case, DBD configurations 
could be considered as a potent, efficient route for AOPs that may 
degrade and mineralise recalcitrant toxins. The reaction mechanisms of 
the species produced in DCDBD may favour the choice of reagents to be 
used but a better comprehension of non-thermal plasma properties and 
its application for water and wastewater treatment is needed. Herein we 
suggest some promising areas of experimental research related to 
O3-based advanced oxidation technologies for water and wastewater 
recovery. 

8. Conclusions and future perspectives 

The need to develop effective water treatment methods has gained 
attention in environmental science. The numerous water treatment 
techniques developed in the past three decades, compete with one 
another but they failed to destroy toxic substances from water supplies. 

This review demonstrates that ozone being one of the major oxidants 
is produced in DBD technologies via different reactions. Its electrophilic 
reaction occurs with organic pollutants comprising electron donor 
groups (–OH, –NH2, etc.) and the nucleophilic reaction happens with 
compounds containing electron withdrawing groups (–COOH, NO2, 
etc.). Its cycloaddition reaction on pollutants leads to the formation of 
epoxides which are further hydrolysed to simpler entities by ring 
opening. The indirect reaction of ozone in DBD geometries involves its 
disintegration and the formation of numerous reactive species including 
O., O2

.− , HO2
. , OH., etc. which directly attack water contaminants that 

ozone cannot oxidise. The addition of catalysts in DBD systems may 
induce both catalytic ozonation and photocatalysis if the UV radiation 
produced in the DBD reactor is strong enough to activate the catalysts 
used. These two processes enhance the density of ROS in the bulk and 
hence speed up the decontamination of polluted water. However, opti
misation of factors mainly solution pH, catalysts dose and pollutant 
concentration are mandatory to achieve maximum pollutants’ removal. 
On the other hand, OH radical being the main targeted oxidant in DBD 
technologies as in any other AOPs, is non-selective, thus oxidises, and 
mineralises all types of pollutants. Its common reactions with pollutants 
in DBD reactors include hydrogen abstraction, radical addition, electron 
transfer, and radical combination. Moreover, hydrogen peroxide mostly 
acting as the primary precursor of OH, also disintegrates to yield other 
species such as O2

.− , HO2
. , etc. 

The comparison of DBD technologies based on the energy yield G50 
shows the superiority of DCDBD and suggests that DCDBD configuration 
can still be used as an efficient method for remediation of contaminated 
water. Nevertheless, the value of G50 being < 50% indicates that DBD 
geometries are energy efficient technologies. 

The review further suggests that DCDBD is an effective integrative 
water treatment advanced oxidation process that mineralises recalci
trant toxins when properly applied. Hence, the comprehension of reac
tion mechanisms of ROS, their promotors and limiting factors in DBDs 
may be a key to improving the degradation efficiencies of the existing 
DBD technologies and hence their implementation. Nonetheless, the 
following aspects focusing on the use of DBD technologies for water 
purification should be considered in future studies. 

The energy efficiency of DBD configurations should be estimated by 
calculating the energy yield (G50) required to decompose half of the 
pollutant initial concentration as mentioned by Mouele et al. [33] and 
Malik et al. [34]. The energy yield (G50) is a crucial parameter and 
should be considered during remediation of wastewater by DBD 
technologies. 

In case the total degradation of selected contaminants is not achieved 
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with DBD alone, catalysts can be incorporated not as powder but sus
pended on solid supports (such as stainless-steel mesh coated with 
corrosion resistant layers) to boost the production of O3 and co-existing 
species and hence improve the performance of the DBD reactors. The 
catalyst supports such as stainless-steel mesh (SS) should be coated with 
anticorrosion layer to prevent corrosive deterioration of SS in oxidative 
harsh environments as indicated by Pana et al. [140] and Dinu et al. 
[347]. 

The performance of DBD reactor technologies can be enhanced by 
coating the catalyst on the inner side of the dielectric barrier (quartz) of 
the DBD configurations as demonstrated by Mouele et al. [348] in such a 
way that the UV generated can be used directly to induce photocatalysis 
process and hence increase the density of O3 and other aqueous species. 
This in return may advance the total oxidation of targeted pollutants in 
short periods. 
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[7] M.J. Farré, M.I. Franch, S. Malato, J.A. Ayllón, J. Peral, X. Doménech, 
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Mater Studiorum Università di Bologna, Dottorato di ricerca in Chimica, 28 Ciclo, 
2016, DOI: 〈10.6092/unibo/amsdottorato/7545〉. 

[24] I. Keisuke, N.J. Naghashkar, M.G. El-Din, Degradation of aqueous 
pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone 
Sci. Eng. 28 (2006) 353–414. 

[25] K. Maria, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from 
aqueous systems by advanced oxidation processes review article, Environ. Int. 35 
(2) (2009) 402–417, https://doi.org/10.1016/j.envint.2008.07.009. 

[26] B. Halliwell, G.J.M.C. Utteridge. Free Radicals in Biology and Medicine, 4th ed., 
Oxford University Press, New York, 2007. 

[27] W. Sang, J. Cui, L. Mei, Q. Zhang, Y.Y. Li, D. Li, W. Zhang, Z. Li, Degradation of 
liquid phase N, N-dimethylformamide by dielectric barrier discharge plasma: 
mechanism and degradation pathways, Chemosphere 236 (2019), 124401. 

[28] Y. Liu, C. Wang, X. Shen, A. Zhang, S. Yan, X. Li, A.C. Miruka, S. Wu, Y. Guo, 
S. Ognier, Degradation of glucocorticoids in aqueous solution by dielectric barrier 
discharge: kinetics, mechanisms, and degradation pathways, Chem. Eng. J. 374 
(2019) 412–428. 

[29] J. Jose, L. Philip, Degradation of chlorobenzene in aqueous solution by pulsed 
power plasma: Mechanism and effect of operational parameters, J. Environ. 
Chem. Eng. 7 (2019), 103476. 

[30] A.P.S. Crema, L.D.P. Borges, G.A. Micke, A.N. Debacher, Degradation of indigo 
carmine in water induced by non-thermal plasma, ozone, and hydrogen peroxide: 
a comparative study and by-product identification, Chemosphere 244 (2020), 
125502. 

[31] M. Lapertot, C. Pulgarín, P. Fernández-Ibáñez, M.I. Maldonado, L. Pérez-Estrada, 
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