Jour. of Mathematical Sciences
Vol.22, No.1 (2011) 37-42

A REFORMULATION OF IMPLICIT SIX STEP ADAMS
MOULTON METHOD IN CONTINUOUS FORM FOR
SOLUTION OF FIRST ORDER INITIAL VALUE PROBLEMS

Umaru Mohammed, Mohammed Jiya and Sirajo Abdul-Rahman

Department of Mathematics/Statistics
Federal University of Technology
Minna, Niger State, Nigeria
(e-mail:digitalumar@yahoo.com)

ABSTRACT

In this paper we reformulate the six step Adams mouton method into the continuous form. The process produces some
schemes which are combined together to form the block method for parallel or sequentia! solution of ODE's. The suggested
approach climinates requirement for a starting value and there is anticipated speed up of computations. The method
which is of order eight is shown to be consistent and zero stable, hence convergent.

1. Introduction

It is well known that initial valued problems of ordinary differential equations often arise in many
practical applications, such as chemical reactor, theory of fluid mechanics, automatic control and
combustion etc. Aikeu (1985). The traditional methods for solving ODEs generally fall into two
main classes: linear multistep (multi-value) and Runge-Kutta (multi-stage) methods Wright (2002),
A linear multistep method with continuous coefficients is considered and applied to solve (ivps).
The traditional multistep methods including the hybrid ones can be made continuous through the
idea of multistep collocation Lie and Norsett (1989) and Onumanyi etal (1994:1999). Following
Onumanyi etal (1994:1999), we identify a continuous formula (CF ). The CF is evaluated at some
distinct points involving step and off-step points along with its first and second derivatives, where
necessary, to obtain multiple discrete formulae for a simultaneous application to the ODEs with
initial conditions. This approach of using simultaneous discrete formulae (linked to a CF) both as
corrector formula circumvent the requirement for special predictor in the use of single discrete
formula as corrector formula.

2. The Method

Let us consider the first order system of ODEs
y'=fx,y), a<xs<bh - (1)
Where y satisfies some additional two-points or multi-point boundary conditions which can involve
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derivative values either the point a, b or other points in between as well. The function fis sufficiently
smooth, f: R"+1 ---- R™. where y is an m-dimensional vector and x is a scalar variable.

A particular useful class of methods for (1) is the k-step linear multistep methods (1mms) of the form.

& K
Zﬁ;,"'nﬂ = hz‘p_ffm-; (2)
=0 J=0

The idea of the k-step MC, following Onumanyi et al (1994:1999), is to find a polynomial U of
the form

= =l
U= iﬁj(x)y"” +hz;,]¢)(x)f(x) ,u(fj)), X, SYSX) (3)
;:

1=0
Where ¢ denotes the number of interpolation points x,..;, i =0, 1, ..., #— 1, m denotes the distinct
collocation points x; € [x,, X,] =0, 1,...,m—1

The points x,, are chosen from the steps x,,,; as well as one more off-step points.

We make the following assumption:

(1) For a given mesh

x,:x,=a+ nh,n=0(1)N where h = x,,| - x, N = (b - a)h is a constant step size (2)

That (1) has a unique solution and the coefficients ¢(x) and @(x) in (3) can be represented by
polynomials of the form.

f+m=1

$,(x)= gﬁ ¢H+|x'; j {0, ,.....=1} @)
t4m=1

hﬁ’_;(x)= Z QH_HI'; j {0, ].....m-l} (5)
=0

With constant coefficients ¢N,1. hq%,,, to be determined using interpolation and
collocation conditions:

U(xm|]=_!.'m|. jE {0. ], ey l_]} (6)
U'(R,) = f(F,.u(%); je{01,....m=1} (M
With these assumptions we obtain an MC polynomial see Onumanyi etal (1994:1999) in the form:
1+m=1 ; P | m=1
U(x) = Z ax ., &= Zci+l.;+lyn+; + Zcr+l,j+1fﬂ+j (3)
1=0 =0 J=0

Where x, Sx £x,4and ¢, ;, i,j=1,2,...,t + mare constants given by the elements of the inverse
matrix C = D! the multistep collocation matrix D is an m + 1 square matrix of the type

i 2 rem-1 1
! Xy X, ]
1 2 r+m=1
Xpst Xpsl o “n+l
=i . 2 rem=|
D=1 Riusar Hiamdis o X 9)
=2
0 1 2xy ..o (PHm=1xg™"
y =1
(] 2 o BRI | lt'_:,_lr
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with exact solution y(x)= e and Taking # = 0.1
Example 2
= B Consider the initial value problem
y=-9,mM0)=¢, 0sxx<I1
with exact solution y(x) = ¢!~ and Taking 4 = 0.1

Firstly we transform the schemes by substitution to get a recurrence relation and solving
simultaneously at each step, we obtain values of y(x) and the results are summarized in Table 1

and Table 2
Table 1 : Example 1
N X Numerical Solution Exact Solution Absolute Error

0 0 1.000000000 1.000000000 0

| 0.1 09048374175 0.9048374180 4.,999999303E-10

2 0.2 0.8187307519 0.8187307531 1,.199999988E-09

3 0.3 0.7408182199 0.7408182207 8.000000662E-10

4 0.4 0.6703200460 0.6703200460 0

5 0.5 0.6065306597 0.6065306597 0

6 0.6 0.5488116365 0.5488116361 3.99999922 1E-10

i 0.7 0.4965853039 0.4965853038 1.000000083E-10

8 0.8 0.4493289642 0.4493289641 1.000000083E-10

9 0.9 0.4065696594 0.4065696597 2.999999693E-10

10 1.0 0.3678794410 0.3678794412 2.000000165E-10

Table 2 : Example 2
N X Numerical Solution Exact Solution Absolute Error

0 0 2.718281828 2.718281828 0

1 0.1 1.104467461 1.105170918 7.034570000E-04

2 0.2 0.4492293732 0.4493289640 9.959080000E-05

3 0.3 0.1825388112 0.1826835240 1.447128000E-04

4 0.4 0.07432156949 0.07427357800 4.799149000E-05

5 0.5 0.03001528010 0.03019738300 1.821029000E-04

6 0.6 0.01302217282 0.01227734000 7.448328200E-04

7 0.7 0.005291050123 0.004991594000 2.994561230E-04

. 8 0.8 0.002152073475 0.002029431000 1.226424750E-04
' ! 9 0.9 0.000874468496 0.0008251050000 4.936349600E-05
‘ \ 10 1.0 0.000356044123 0.0003335463000 2.249782300E-05

6. Conclusions

We have converted a six-step implicit Adams mouton method into the continuous form. The
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i 8 38 136 664 13
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Hence (11) constitute the five member block methods which are later solved simultaneously along
with the initial values of (1). This is an initial value approach and its main advantage is the
elimination of the use of special predictors in the application (11).

4. Discussion Of Results

Using the matlab package, we were able to plot the stability region of the proposed block method.
This is done by reformulating the block method as general linear method to obtain the values of
the matrices 4, B, U, ¥ which are then substituted into stability matrix and stability function. Then
the utilized maple package yielded the stability polynomial of the block method. Using a matlab
program we plot the absolute stability region of proposed 6-step block Adams Mouton Method as:

Figure 1 : Region Of Absolut+ Stability

5. Numerical Experiments
In this section we have tested the perfnrmance of our method on two examples and for each
example we compared the result with the exact solution.
Example 1
Consider the initial value problem
y=E—-p =1, 0sx<1
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Is the multistep collocation matrix of dimension (r + m) x (r + m). Then it follows from (9) that the
column of matrix C = D! give the continuous coefficients aj(x) and f(x)

3. Derivation Of The Continuous Method
Let us consider six step Adams mouton method Butcher (2003)

- 863 263 6737 586
Pins = Vnas — 60480 ’!f 2520 kf""‘] 20160 hfm2 *9a5 945 hf,,...;

_ 15487 2713 19087
20160 74 * 3520 Wnes * Goago Vnee
The genera! pproach is to consider the data for the matrix D in {x,, x,, .¢}. Withm =7, r= 1 and

p=m+1(  also

(10)

r 4 5 6 7

Xn+s qu-s x:d Tnes  Xnes  Xpas Xpus
1 2x, 3x,, 4x} sx!  6x 7x,f
1 2xn+l 3xn+l 413*1 5x:+1 61::1-1 -"xm-l
I 2xes 3.:,"2 4x3+2 Sx,:d 6).3,3,{z 'J’x‘,,,,2

1 2.'(,,‘3 3.\',,.,,3 41343 5x:+3 6x:+3 7““]

I 2xn+4 31»4-4 4xn+4 Sx:M me-l 71’,,_,_‘

12X 3’:"-5 4xn+5 Sx:+, 5";»5 7xn+5

[0 Y "2, 30, Ax Sxbe 62 T2t ]

And the element of D' yield C,, i,/ = l 2,3,4,5,6,7, 8 in (8) to give the continuous form.

We recover (10) by the evaluation of y,,.4 = u(x = x,,.4). On the evaluating of the continuous form

X =X,.4,X=X,.3, X=X, x=x,., and x = x, yield respectively the five discrete formulae which

form the block method below.

00 C O O O —

_ 271 . 811 254 5221
Yosd = Vpss — 50480 hfn 840 hj;-v] 6720 éfm-! +54c 945 hfn+3 6720 hfnﬂ.
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continuous formulae are immediately employed as block method for direct solution of six point
IVPs. The direct solutions are in discrete form which can be substituted into the coniinuous formula
for dense output. The proposed method is self starting, convergent and A(a) stable as shown by
the plotted region of absolute stability (Figure 1). The method demonstrated satisfactory
performance when applied to solve a simple ODE, without recourse to any other method to provide
the starting values.
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