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ABSTRACT 

Wireless Sensor Network application entails deploying thousands of wireless sensor 

nodes in unreachable locations. The inability to reconfigure each node in order to take 

on new tasks poses a serious challenge to the continued operation of the entire system. 

Several attempts have been made to address these challenges, of interest is one that 

exploits design-time knowledge of the application scenario dynamics to construct and 

implements a proactive runtime reconfiguration paradigm. However, It suffers two 

defects:  the possibility of capturing all anticipated reconfiguration needs can be 

challenging, and the scarcely available memory space might not be sufficient to 

accommodate codes written to address these needs. Moreover, even if it does, there is 

the likelihood of redundant codes written to handle anticipated changes, which might 

never occur, and invariably taking up scarcely available memory spaces. This research 

work explores the use of context information to improve upon wireless sensor networks 

reconfiguration processes. The research’s aim is to develop a software system that 

dynamically reconfigures wireless sensor network operational functionalities optimally 

based on evolving application context. In order to demonstrate the benefits of the 

context based reconfiguration model, two contexts related input variables were used. 

The first variable is obtain using a metric tool (PDE) devised for extracting context 

information from the delta of two files (application related context). The second 

variable entails the battery energy level state of the sensor node taken as an operational-

demand related context. A robust inference engine was developed based on the inferred 

expert knowledge on memory related energy consumption pattern during the 

reconfiguration process. The pattern studied and presented explains how delta size and 

its orientation can influence energy consumption while reprogramming sensor nodes. 

The resulting output from the fuzzy logic system controls when and which one of the 

reconfiguration approaches should be implemented in order to prolong the battery life. 

The model's performance was evaluated on an OMNet++ simulation platform using 

pilot data obtained from a testbed composed of Microchips’ PIC32MX320F128H 

microcontroller and MRF24J40MB transceiver. In a network of six nodes, two were 

equipped with the developed model capability and the others were not. The overall 

energy expended as read, erase and write were obtained from each node for the purpose 

of comparison. Results obtained show that 65% of energy expended during the erasure 

procedure is saved in nodes that adopt the context based reconfiguration model. 

Similarly, 45% and 69% reduction in energy consumption were obtained for the read 

and write procedures respectively. The research work was able to emphasise the 

benefits of identifying, employing and managing the impact of contextual information 

(Application/operational related) during wireless sensor network reconfiguration 

procedure.  
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CHAPTER ONE 

1.0                                                 INTRODUCTION 

 

Wireless sensor network (WSN) is a collection of small-embedded devices 

interconnected with the sole aim of sensing, processing, sharing and remotely relaying 

data via known communication protocols. WSN applications are widespread and 

increasingly growing by the day. Examples of these applications entail: military 

sensing, physical security, air traffic control, traffic surveillance, video surveillance, 

industrial and manufacturing automation, distributed robotics, health care monitoring 

and delivery.Others are environmental monitoring, observatory purposes in weather and 

earthquake monitoring, building and structural monitoring (Chong  and Kumar, 2003). 

The small embedded devices commonly referred to as wireless sensor nodes share or 

relay data to the base station by employing various communication models. A number 

of communication models exist as  follows: direct, multi-hop and clustering. The node 

consists  of sensors,  processing elements (microcontrollers),  radio communication 

interface and a power source (battery and solar). The sensors detect and measure  

physical phenomena such as temperature, light, magnetic field, pressure, acceleration, 

current and ultrasound.  

A typical WSN application entails deploying hundreds or thousands of wireless sensor 

nodes in unreachable locations. Examples of these applications are as follows: 

surveillance, environmental monitoring, oil and gas pipeline monitoring (Misra and 

Eronu, 2012). When there is a change in the operational needs of the system or new 

functionalities are required in such application, reconfiguration of either the entire 

network or individual sensor nodes become inevitable. The inability to effect these 

changes could pose a serious challenge to the continued operation of the entire system 
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(Misra and Eronu, 2012). Other issues that could warrant the need for a reconfigurable 

WSN are bug fixes (Hinkelmann, Reinhardt and Glesner, 2008) , regular code updates 

(Kulkarni, Sanyal,  Al-Qaheri and Sanyal, 2009), security challenges (Portilla, Otero, 

De la Torre, Riesgo, Stecklina, Peter and  Langendorfer, 2010), RF communication link 

(Ramamurthy, Prabhu and Gadh, 2004) and efficient energy management.  

Altering system functionality in both real-time or design time involves making changes 

to either the hardware component or software component or both components. The 

altering process could in some cases (Krishna, Bagchi and Khalil, 2009) be referred to 

as ‘Reprogramming’ , and  in some other cases (Muralidhar and Rao, 2008) it is 

considered as ‘Reconfiguration’. When only the software component is involved, it is 

termed ‘Reprogramming’. Likewise, the term "Reconfiguration” is used when the 

Hardware components are involved.  Probably in agreement with this proposition, 

Compton and Hauck (2002) described reconfigurable systems as devices that 

incorporate some form of hardware programmability. However, in this thesis, both 

terms are used interchangeably. Both terms refer to ‘an act or process of effecting a 

change’ to the system’s underlying codes or instructions (high-level or low-level 

languages and Hardware Description Language (HDL)). The aim is to alter its initial 

functions. Some other words often used to connote reconfiguration in certain literature 

are ‘updating' , 'adaptation' or ‘Adapting’ (Brown and Sreenan, 2006; Han, Kumar, Shea 

and Srivastava, 2005).  Stating these definitions clearly prevent misapprehension due to 

the use of different words or terms meant to explain the same concept. 

Good design criteria demand that for a system to be cost-effective, it should possess 

attributes that enable it take cognisance of the resources around its immediate and 

remote environments. It should autonomously or remotely be directed to perform new 

tasks or implement existing task more efficiently.    The adoption of Context-driven and 
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context-aware paradigm in distributed systems is on the increase, as such WSN should 

not be an exception (Silva and Vuran, 2010). 

Sensor network application can be expensive to implement, especially when large-scale 

projects are involved. Being able to manage network resources and tailor their use 

towards several other applications other than what they were initially designed for can 

be a daunting task.   Application objectives, anticipated constraints, resource managerial 

strategies and other surrounding factors, when well spelt out in the design model, 

simplify the complexity arising from adapting WSN to newer applications. Identifying 

these factors requires a careful analysis of the entire WSN operational environment.  

When these factors are considered as a source of relevant contextual information, then 

reconfiguring WSN becomes much easier. In this perspective, the intent is to understudy 

context-related approaches as they relate to reconfiguration computing and by extension 

reconfigurable WSN.  

Baldauf, Dustdar, and Rosenberg (2007) described context-aware systems as systems 

that can alter their mode of operation to suit the current context without explicit user 

intervention thereby increasing the systems usability and effectiveness. Context 

awareness is commonly used in systems whose operation or responses are influenced by 

certain defined surrounding factors. The concept of context-aware systems allows 

applications to gather context data and adapt their operational behaviour accordingly. 

These applications can function without explicit intervention and thereby increase their 

usability and effectiveness within the context of the environment where they operate 

(Baldauf et al., 2007). Context-driven allows a system to assign resources on current 

and relevant tasks, rather than just processing predefined applications. Equipping the 

node with relevant context sensing capabilities enables it to estimate future context 

requirements. When these requirements are used appropriately, the network can be 
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configured to perform more optimally. Management systems can guess about what kind 

of tasks will be required in the near future and consider it when allocating resources. 

Hence, effecting the sensor nodes’ reconfiguration processes based on contextual 

information can be helpful in several ways. For example, deciding on when and how to 

effect a reconfiguration process can result in reducing the system’s operational cost. 

This cost invariably entails energy consumed and memory size utilised by the nodes 

during the reconfiguration process.  

1.1 Motivation  
 

In order to appreciate the benefit of such a context-based reconfigurable paradigm, 

consider a WSN application scenario as depicted in Figure 1.1. The application is 

intended to be deployed and utilised in an urban setting, and the nodes have the 

capability to reconfigure themselves autonomously. In addition, they can as well be 

remotely reconfigured to use any desired particular communication standard (RFID, 

Bluetooth, UWB, Zigbee, GSM, GPRS, WIFI or WiMax). Taking into consideration 

also that in most urban settings, fully installed and operational communication 

infrastructure supporting known communication standards is virtually everywhere. If 

the earlier mentioned considerations are viable, then the WSN can be remotely 

reconfigured to take advantage of the available infrastructure (gateways and base 

stations) already on the ground instead of setting up new ones.   Adopting the intended 

model reduces the cost of deploying and installing new gateways and possibly new base 

stations.  

 

 

 

 



 

19 
 

 

 

 

The nodes can easily adopt future communication standards whenever they become 

available. Instead of retrieving older nodes and replacing them with newer ones, the 

older ones can simply be reconfigured on the fly thereby enabling them to function 

within evolving context requirements. 

Capturing and using context information during reconfiguration processes can be 

helpful in intelligently managing the node's resources. This guaranty optimal 

performance and efficient use of scarce available resources (energy and memory space) 

In view of these needs and observed deficiencies in existing approaches, the research 

work is intended to address the following:    

Figure 1.1: Exemplified scenario of context-aware inclined reconfigurable WSN 
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 Reduce the presence of redundant codes, thereby lessening the size of the 

firmware deployed to the wireless sensor nodes; 

 Enhance the flexibility of reuse; allow real-time user input during 

reconfiguration processes and autonomous reconfiguration using fuzzy logic 

in decision making; 

 Establish a two-way interactive platform between the reconfiguring agent 

(user via base station) and the reconfigured (sensor node) and by extension 

the entire wireless sensor network. The two-way interactive platform enables 

the base station to assess the state of the sensor node through the contextual 

information it relayed. In addition, coupled with other relevant information 

(operational related contextual information), the system then decides when 

and how or what manner of reconfiguration should be employed. The aim is 

to ensure that the entire network performs efficiently and optimally manages 

the available resources (memory usage and energy consumption) 

 Include artificial intelligence techniques (fuzzy logic) in reconfiguration 

processes to enable the entire system autonomously respond to evolving 

changes especially in unfriendly environments. 

The benefits of the model are to reduce energy consumption rate and effect a reduction 

in the amount of memory-space  used while reprogramming a wireless sensor node. The 

inclusion of artificial intelligence techniques (fuzzy logic) in reconfiguration processes  

enables the entire system to  respond to evolving changes in an unfriendly environment.  

 

1.2  Problem Statement 
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Steine, Ngo, Oliver, Geilen, Basten, Fohler and Decotgnie (2011) introduced an 

approach that exploits design-time knowledge of the application scenario dynamics to 

construct and implements a proactive runtime reconfiguration paradigm. However, two 

challenging issues are apparent here: , the possibility of capturing all anticipated 

reconfiguration needs can be challenging, and the scarcely available memory space 

might not be sufficient to accommodate codes written to address these needs. Moreover, 

even if it does, there is the likelihood of redundant codes written to handle anticipated 

changes, which might never occur, and invariably taking up scarcely available memory 

spaces. A review of existing reconfiguration approaches and related challenges (energy 

consumption rate and memory space ) is reported in Eronu, Misra and Aibinu (2013).    

In addition, implementing WSN reconfiguration may depend on whether it is needful, 

urgent, or sustainable. For example, instead of effecting reconfiguration procedure 

during unfavourable weather conditions, it may be needful to delay the process and then 

resume when the conditions become favourable. In extreme cases, it is advisable to stop 

the process completely when the available energy in the node cannot sufficiently sustain 

the reconfiguration process. Where the second option is the norm, the sensor node might 

not be able to implement new functionalities but it can still be utilised for other 

purposes not dependent on the update. The ability to take decisions of this nature is 

largely confined to the human domain. However, Artificial Intelligence (AI) techniques 

like the Fuzzy Logic and Artificial Neural Network allow machines to mimic human 

cognitive capabilities. Importantly, the problem needs to be presented as defined input 

variables and the output variables make-up the solutions. Solutions are obtained from 

the analyses of processed input variables in conformity with a set of rules that are based 

or derived from expert knowledge.  
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1.3 Aim and Objectives  

 

The aim of this research is to develop a software system that dynamically reconfigures 

wireless sensor network operational functionalities optimally based on evolving 

application context. In order to realise the aforementioned aim, the under listed set of 

objectives were actualised and used to devise result-oriented procedures:  

 

I. To devise a WSN context based reconfiguration model; 

II. To design and implement a metric utility for measuring the degree of 

changes made in modified application source codes and relaying the exact 

changes; 

III. To integrate and use fuzzy logic controller in deciding the most appropriate 

reconfiguration approach to adopt in response to evolving application or 

operational context; and  

IV. To evaluate the performance of the developed system. 

 

 

1.4 Limitation of Study 

The Execution Link File (ELF) format adopted for developing the Precision Delta 

Extraction (PDE) tool in this work is not implemented in certain operating systems like 

the TinyOS. Hence, this limitation has constrained most of the work to only sensors 

nodes that employ the ELF format in their firmware generation and deployment. 

 

1.5   Scope of Study 

Several reconfiguration approaches are currently being implemented at various layers of 

the sensor node architecture. Majority of these approaches are still under development; 

that is, research are still on and their possible adoption in real life application scenario 
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appears remote. For example, the use of field programmable gate arrays (FPGA) to 

actualise reconfigurable processors or rather soft-processors for wireless sensor nodes is 

not feasible now. More detailed information on the implementation of selected 

reconfiguration approaches at four layers is presented in Chapter Two. However, in this 

research work, the design and implementation processes are confined to the operating 

system platform.  

 

1.6 Thesis Outline 

The general introduction, statement of the problem, the aim, objectives and justification 

of the work were presented in this Chapter.  Chapter Two presents a review of several 

wireless sensor reconfiguration research works from the following perspective: the 

driving factors necessitating reconfiguration needs, previous and current reconfiguration 

approaches at some selected layers of the sensor node. The four selected layers are 

namely: the application, middleware, processing elements and the operating system 

layers. In addition, challenges and lapses associated with these approaches as 

implemented in the various layers were also presented. Also, further discussion on how 

these lapses can be addressed using surrounding contextual information presented. In 

Chapter Three, a detailed description of the research methodology presented. The 

description spans over the design and development of the context based reconfiguration 

software system for wireless sensor network model. The formulation and application of 

two additional subcomponents namely the precise delta extraction tool and a fuzzy logic 

controller were discussed. In addition, the testbed composition and setup for evaluating 

the model’s pilot data, and the simulation tool employed to evaluate the model on a 

larger scale are presented. Chapter Four presents the results and discussion of the 
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research. Finally, Chapter Five presents some concluding remarks and 

recommendations for future works. 
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

 

Research efforts towards devising the most efficient and appropriate approach in 

realising WSN whose operational and functional capabilities can be altered on-the-fly 

have been on for quite a long time now. This chapter presents a review of previous and 

current reconfiguration approaches at some selected layers of the sensor node. The four 

selected layers are namely: the Processing Elements, Radio Frequency Transceiver, 

Application, Middleware, and the Operating System layers. Brief background 

information on the impact of reconfiguration processes on WSN operations was 

conveyed. In addition, challenges and lapses associated with these approaches as 

implemented in the various layers were also presented.    

Much work is concentrated on the operating system layer, and its related 

reconfiguration approaches because of its widespread adoption as reported in most 

literatures. The different paradigms employed by some selected number of operating 

systems tailored for the WSN application were reviewed. Comparative studies of the 

energy cost of implementing the various approaches reviewed are also presented in this 

chapter.  

Attempts to use context information in WSN applications were reviewed and 

subsequently reported. Studies indicate that limited efforts were directed towards the 

use of contextual information in addressing WSN reconfiguration issues especially 

those related to its resource management. In addition, the use of Artificial Intelligence 

(AI) to manage WSN related resource-constraint problems, which were mainly at 

experimental stages were presented. The review highlighted some of the milestones 
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archived from previous attempts to employ contextual information and AI in addressing 

WSN resource-constrained issues. The findings indicate that not much work has been 

concentrated in WSN related reconfiguration problems  

2.1 Wireless Sensor Network (WSN)  

 

The WSN (see Figure 2.1) is built of few to several hundred or even thousands of sensor 

nodes. Each node is connected to one or more sensors. Each sensor network node 

consist of several parts: a radio transceiver with an internal antenna or connection to an 

external antenna, a microcontroller, an electronic circuit for interfacing with the sensors 

and an energy source, usually a battery or an embedded form of energy harvesting. The 

topology of the WSNs can vary from a simple star network to an 

advanced multihop wireless mesh network.  

 

 

The propagation technique between the hops of the network can be routing or flooding 

Figure 2.1: A typical example of a Wireless Sensor Network (www.virtual-labs.ac.in) 

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Transceiver
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Battery_(electricity)
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Mesh_networking
http://en.wikipedia.org/wiki/Wireless_mesh_network
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Flooding_algorithm
http://r.search.yahoo.com/_ylt=AwrB8pyuujRUR1cA7hijzbkF;_ylu=X3oDMTBxNG1oMmE2BHNlYwNmcC1hdHRyaWIEc2xrA3J1cmwEaXQD/RV=2/RE=1412770606/RO=11/RU=http%3a%2f%2fvirtual-labs.ac.in%2fcse28%2fant%2fant%2f8%2ftheory%2f/RK=0/RS=qGDAdgo3pE.976Rl4SzGMxHEXv0-
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The main characteristics of a WSN include: 

 Power consumption constraints for nodes using batteries or energy harvesting 

 Ability to cope with node failures (resilience) 

 Mobility of nodes 

 Heterogeneity of nodes 

 Scalability to large scale of deployment 

 Ability to withstand harsh environmental conditions 

 Ease of use 

 Cross-layer design 

Cross-layer is becoming an important studying area for wireless communications. In 

addition, the traditional layered approach presents three main problems: 

 Traditional layered approach cannot share different information among different 

layers，which leads to each layer not having complete information. The 

traditional layered approach cannot guarantee the optimization of the entire 

network. 

 The traditional layered approach does not have the ability to adapt to the 

environmental change. 

 Because of the interference between the different users, access confliction, 

fading, and the change of environment in the wireless sensor networks, 

traditional layered approach for wired networks is not applicable to wireless 

networks. 

 

 

http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Resilience_(network)
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/w/index.php?title=Cross-layer&action=edit&redlink=1
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2.1.1  Hardware and Software components of WSN 

One major challenge in a WSN is to produce low cost and tiny sensor nodes. Many of 

the nodes are still in the research and development stage, particularly their software. 

Also, inherent to sensor network adoption is the use of very low power methods for 

radio communication and data acquisition. 

In many applications, a WSN communicates with a Local Area Network or Wide Area 

Network through base stations or a gateway. The base stations are one or more 

components of the WSN with much more computational, energy and communication 

resources. They act as a gateway between sensor nodes and the end user as they 

typically forward data from the WSN on to a server. Other components in routing based 

networks are routers, designed to compute, calculate and distribute the routing tables. 

The Gateway acts as a bridge between the WSN and the other network. This enables 

data to be stored and processed by devices with more resources, for example, in a 

remotely located server. 

Energy is the scarcest resource of WSN nodes, and it determines the lifetime of WSNs. 

WSNs may be deployed in large numbers in various environments, including remote 

and hostile regions, where ad hoc communications are a key component. For this 

reason, algorithms and protocols need to address the following issues: 

 Lifetime maximization 

 Robustness and fault tolerance 

 Self-configuration 

Lifetime maximization: Energy/Power Consumption of the sensing device should be 

minimised and sensor nodes should be energy efficient since their limited energy 

resource determines their lifetime. To conserve power the nodes normally turn off the 

http://en.wikipedia.org/wiki/Local_Area_Network
http://en.wikipedia.org/wiki/Wide_Area_Network
http://en.wikipedia.org/wiki/Wide_Area_Network
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Server_(computing)
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radio transceiver when not in use. Some of the important topics in WSN software 

research are: 

 Operating systems 

 Security 

 Mobility 

 Usability 

 Maintenance 

Operating systems for wireless sensor network nodes are typically less complex than 

general-purpose operating systems. Wireless sensor nodes strongly resemble embedded 

systems, for two reasons. First, wireless sensor networks are typically deployed with a 

particular application in mind, rather than as a general platform. Second, a need for low 

costs and low power leads most wireless sensor nodes to have low-power 

microcontrollers ensuring that mechanisms such as virtual memory are either 

unnecessary or too expensive to implement. 

TinyOS is perhaps the first operating system specifically designed for wireless sensor 

networks. TinyOS is based on an event-driven programming model instead 

of multithreading. TinyOS programs are composed of event handlers and tasks with 

run-to-completion semantics. When an external event occurs, such as an incoming data 

packet or a sensor reading, TinyOS signals the appropriate event handler to handle the 

event. Event handlers can post tasks that are scheduled by the TinyOS kernel some time 

later. Contiki uses a simpler programming style in C while providing advances such 

as 6LoWPAN and Protothreads. 

 

 

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/TinyOS
http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Contiki
http://en.wikipedia.org/wiki/6LoWPAN
http://en.wikipedia.org/wiki/Protothreads
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2.1.2 Simulation of WSNs 

At present, agent-based modelling and simulation are the only paradigm, which allows 

the simulation of complex behaviour in the environments of wireless sensors (such as 

flocking). Agent-based simulation of wireless sensor and ad hoc networks is a relatively 

new paradigm. Network simulators like OPNET, OMNeT++, NetSim, and NS2 can be 

used to simulate a wireless sensor network. 

2.2 Reconfigurable Computing  

Reconfigurable computing is a computer architecture combining some of the flexibility 

of software with the high performance of hardware by processing with very flexible 

high-speed computing fabrics like field-programmable gate arrays (FPGAs). The 

principal difference when compared to using ordinary microprocessors is the ability to 

make substantial changes to the datapath itself in addition to the control flow. On the 

other hand, the main difference with custom hardware, i.e. application-specific 

integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by 

"loading" a new circuit on the reconfigurable fabric. 

Reconfigurable computing technologies offer the promise of substantial performance 

gains over traditional architectures via the customizing, even at run-time, the topology 

of the underlying architecture to match the specific needs of a given application. 

Contemporary configurable architectures allow for the definition of architectures with 

functional and storage units that match in function, bit-width and control structures the 

specific needs of a given computation. For example, one can define a numerically 

intensive architecture for digital signal processing with specific number of input/output 

channels meeting specific timing requirements and/or organise internal RAM modules 

with a given bandwidth to match the processing rate of the functional units. The 

http://en.wikipedia.org/wiki/OPNET
http://en.wikipedia.org/wiki/OMNeT%2B%2B
http://en.wikipedia.org/wiki/NetSim
http://en.wikipedia.org/wiki/NS2
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Datapath
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
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flexibility enabled by reconfiguration is also seen as a basic technique for overcoming 

transient failures in emerging device structures. 

There are two primary methods in traditional computing for the execution of algorithms. 

The first is to use an Application Specific Integrated Circuit (ASIC), to perform the 

operations in hardware. Because these ASICs are designed specifically to perform a 

given computation, they are very fast and efficient when executing the exact 

computation for which they were designed. However, after fabrication, the circuit 

cannot be altered. Microprocessors are a far more flexible solution. Processors execute a 

set of instructions to perform a computation. By changing the software instructions, the 

functionality of the system is altered without changing the hardware. However, the 

downside of this flexibility is that the performance suffers and is far below that of an 

ASIC. The processor must read each instruction from memory, determine its meaning, 

and only then execute it. This results in a high execution overhead for each operation. 

Reconfigurable computing is intended to fill the gap between hardware and software, 

and to achieve much higher performance than software potentially while maintaining a 

higher level of flexibility than hardware.  

2.3  Impact of Reconfiguration Approaches  

 

Reconfiguration processes, though intended to improve upon the services and operation 

of WSN, unfortunately, contribute to the system’s performance impediment. This 

notably poses many reconfiguration challenges at all layers/platforms.   

A measurement of performance related issues for the purpose of comparison can be 

complicated.  Several factors not directly related to the reconfiguration process can 

impede a wireless sensor network performance.  For example, propagation delays 

resulting from Multipath phenomenon, especially in extreme cases of nulling. Nulling 
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refers to the cancellation of RF signal. The cancellations results in retransmission 

attempts (Moerschel et al., 2007), which, invariably affects how long it takes for the 

updates or reconfiguration process to be completed. 

An assessment of these challenges confines this impediment to the following: Energy 

demands of key active components of the sensor nodes and memory space required 

when carrying out the reconfiguration process. 

2.3.1 Memory space 

Depending on the reconfiguration method employed, it is possible for a scheme to 

consume a large portion of memory while storing an image or related patches. A 

memory overlap could occur, thereby limiting the overall performance of the network.  

It gains more significance in Operating Systems like Sensor Operating System (SOS) 

where it is allocated dynamically at runtime (Balani, Han, Rengaswamy, Tsigkogiannis 

and Srivastava, 2006). 

2.3.2 Energy consumption 

Reprogramming requires the transmission of new images (complete, patches, modular) 

as updates from the base station to the individual nodes. In the course of implementing 

this process, certain sections of the nodes’ memories (EEPROM or Flash memory) are 

read from and written to. Sometimes, the whole process is repeated several times 

because of erroneous transmission and reception of data via noisy communication 

channel. Subsequently, this leads to an increase in the nodes processing power an 

appreciable demand in consumption of scarce energy resources. 
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2.4   Overview of Reconfiguration Approaches on Selected Enabling Platforms  
 
Similar Survey works on reconfigurable WSN seems to concentrate on software updates 

alone (Chong and Kumar, 2003; Han, Kumar, Shea, and Srivastava, 2005; Kulkarni, 

Sanyal, Al-Qaheri, and Sanyal, 2009; Yick, Mukherjee, and Ghosal, 2008).  However, 

this research work spans over reconfiguration approaches involving hardware 

components as well. The reconfiguration approach viewed from two perspectives 

involves those categorised under software and hardware groups. The software entails 

the application layer, middleware and the operating system whereas hardware comprise 

of the Processing element and the RF communication platform (Figure 2.2). 

Reconfiguration-related issues and challenges in both the hardware and software 

subcomponents are presented in this subsection.  

 

 

2.4.1  Processing Element  

The Processing Element consists of hardware platforms that handle the execution of 

instructions within the sensor nodes. Reconfigurable WSN system nodes consisting of 

Figure 2.2: Reconfigurable software and hardware     
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microcontrollers interfaced with detachable sensor and RF communication modules 

makeup the bulk of commercial wireless sensor nodes available in the market. WSN 

systems built around these processing elements are much easier to design and 

implement (Leligou, Redondo, Zahariads, Retamosa, Karkazis, Papaefstathiou and 

Voliotis, 2008).  The Libelium waspmote (www.libelium.com) is one clear example of a 

sensor node built around microcontrollers. The processing element in use is the 

ATMEGA 128 microcontroller. The waspmotes architecture is modular in design.  The 

intention is to integrate only modules needed for a particular application in each device. 

These modules can be changed or expanded to accommodate the WSN application’s 

goal.  Some examples of the services provided by these modules entails: providing an 

enabling platform for interfacing an array of sensors;  acquisition and storage of data  

and providing platforms that allow the sensor node to effect transmission and reception 

services by  selectively adopting  any of the available RF communication standards 

(ZigBee/802.15.4, GSM/GPRS and GPS module) 

Microcontrollers are most flexible, but they exhibit shortcomings in energy efficiency. 

Field programmable gate arrays (FPGA) strike an optimal balance between computing 

power, energy demands and flexibility (Tanaka, Fujita, Yanagisawa, Terada, and 

Tsukamoto, 2008).  As a result, FPGA based processors are emerging as a better option 

for implementing reconfigurable WSNs at the processing element layer. These types of 

processors also referred to as soft-core processors make up a class of software defined 

and alterable processors. Typical examples of soft-core processors are the Microblaze 

and   NIOS II, which are products of Xilinx (www.xilinx.com) and Altera 

(www.altera.com) respectively. Much work in this direction has been mostly 

experimental (Compton and Hauck, 2002; Muralidhar and Rao, 2008). However, a good 

number of commercial products have employed this option though in combination with 
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other processing platforms like Digital Signal Processors (www.libelium.com). 

Muralidhar and Rao (2008) used FPGA (Cyclone II)   from Altera (www.altera.com) to 

implement a soft-processor, the NIOS. The soft-core characteristic of the NIOS II 

processor enables the system designer to develop a custom processor core, to handle 

intended WSN application’s requirement. The addition of predefined memory 

management unit to the NIOS II soft processor allows its basic functionality to be 

extended. Using the aforementioned technique, the designer can also define new custom 

instructions and peripherals. Muralidhar and  Rao (2008) employed the soft-processor 

concept in achieving some level of hardware reconfiguration that increases the target 

system’s efficiency and ease of adaptation, notwithstanding the wireless sensor node’s 

small size (Muralidhar and  Rao, 2008). In a related work, Khan and Vemuri (2005), 

using the FPGA processing platform, devised a paradigm that prolongs the battery life 

of a sensor node by ensuring that the rate of energy usage in conjunction with the task 

being implemented is efficiently managed.  

2.4.2  Radio Frequency Transceiver 
 

The use of reconfigurable platforms like Field Programmable Gate Arrays and software-

defined radio technology allows transceivers that previously operate on a single radio 

spectrum to operate on several other spectrums. Software Defined Radios (SDR) 

involves the software implementation of hardware constituents of a communication 

system (for example modulators, demodulators, detectors, filters and amplifiers) with an 

implicit assumption of an analogue to digital conversion close to the antenna (Tuttlebee, 

2002). 

The term “Software Defined Radio” was used by Joseph Mitola, in his first publication 

on the topic in 1999 (Yick, Mukherjee, and Ghosal, 2008; Dong, Chen, Liu and Bu, 

2010).  Software defined radios early development can be traced to the defense sector of 

http://www.altera.com/
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both the U.S. and Europe during the 1970s (Tuttlebee, 2002). SDR realisation is largely 

attributed to the evolution and convergence of digital radio and innovations in software 

technologies. 

In SDR each of the major functions of the radio as depicted in Figure 2.3, which 

includes the RF transceiver, contain reconfigurable features that can be altered on-the-

fly. This reconfiguration process is made possible by a blend of field-programmable 

gate arrays (FPGAs), digital signal processors (DSPs) and general-purpose processors 

(GPPs). The suitability of using an ASIC, FPGA, or DSP depends largely on the 

following: Programmability, Level of integration, Development cycle, and Performance 

and Power utilisation (http://www.sdrforum.org). 

The benefits of SDR taken from SDRforum (http://www.sdrforum.org) are summarily 

listed below: 

 It allows new functionalities to be added to the existing communication 

infrastructure with ease and at reduced cost; 

 

 

Figure 2.3:  A Typical SDR Architecture (http://www.sdrforum.org) 

 
 

 
 

 

http://www.sdrforum.org/
http://www.sdrforum.org/
http://www.sdrforum.org/
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 Service capacity is enhanced via capability upgrades. This is made possible 

through remote software download; 

 Enables end-users have access to ubiquitous wireless communications; allowing 

ease of communication to any spectrum, whenever and in whatever mode thereby 

reducing costs;   

 Operational and maintenance (real-time debugging via over-the-air remote 

reprogramming/reconfiguration) time as well as their associated cost can be 

reduced significantly; and   

  It enables a family of radio “products” to be implemented using common 

platform architecture. This invariably facilitates speedy production to market 

scenario. 

 

A typical wireless sensor node is characterised by its small size and in most WSN 

applications the smaller it is, the better. This explains why adopting SDRs for the 

wireless sensor communication interface can become a challenging task. The challenges 

stem from application requirements that span over small size and weight, limited power 

consumption to long battery lifetime.  Recent research efforts (Balani,  Han, 

Rengaswamy, Tsigkogiannis, and Srivastava, 2006; Fuentes and Gámez, 2011; Tanaka, 

Fujita,Yanagisawa, Terada, and Tsukamoto, 2008; Linn, 2009) can accelerate the 

developing of SDR wireless sensor node. Reviewing some of these works, equally lead 

to new and inspiring research questions. Cafaro,  Gradishar, and  Guimaraes (2009) 

reported a flexible integrated circuit transceiver operating from 10MHz to 4 GHz and 

having a dimension of 5.0 mm x 5.4 mm in 90nm CMOS and housed in a 10mm x 

10mm 132-pin dual row Micro Lead Frame (MLF) package. The reported transceiver 

can handle as many protocols as possible. Considering its relatively small size, it can 
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effectively be adopted for SDR application tailored for wireless sensor node RF front 

end.   

The option of identifying and reducing software overheads in such a way that SDR 

algorithm can be adopted in wireless sensor nodes was proposed by Linn (2009). Using 

this approach, Linn (2009) invented an extremely efficient Verilog programming 

technique that allows the cramming of SDR algorithms into the FPGA.  

A good number of SDR development platforms and software tools are now readily 

available for rapid development of SDR applications. Some of these tools (Universal 

Software Radio Platform and GNU (Gnu’s Not Unix) Radio) have been largely used by 

both the educational and commercial research bodies in conducting research in this 

field. The “Lightweight Communications Architecture” or LCA is also being proposed 

for use on smaller commercial platforms, with land-mobile radio (LMR) systems, which 

can easily be adopted for wireless sensor nodes (Cafaro,  Gradishar, and  Guimaraes, 

2009). 

 

2.4.3 Application  

 
Basic changes at the application layer to suit application needs involve the addition, 

removal or editing of constants, variables and functions.  In some cases the use of 

compiler directives like ‘#define’ and ‘#if’ are used to selectively bypass the 

compilation of program codes, modules or library functions in line with the application 

specifications and requirements. Microchip wireless application programming interface 

(Miapp) is one good example of a framework that provides an enabling platform for 

reconfiguring WSN at the application layer (Yang, 2009).  Similar other frameworks 

also exist, and they are referred to as Application Programming Interface (API) 

(www.libelium.com and www.digi.com).    

http://www.libelium.com/
http://www.digi.com/
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One of the primary objectives of the MiApp is to provide a communication-

programming interface through which the application developer can adopt or implement 

different WSN communication protocol using appropriate RF transceivers without the 

need to understand in details the workings of the physical layer or Media Access 

Control layer (MAC). 

The MiApp specification benefits WSN reconfiguration in a number of ways (Han, 

Kumar, Shea, Kolher, and Srivastava, 2005; Yang, 2009): 

 It allows developers to select wireless protocol at any phase of application 

development with ease; 

 As depicted in Figure 2.4, MiApp indirectly communicates with Microchip RF 

transceivers through the Microchip Wireless Media Access Controller (MiMAC) 

interface. MiMAC controls the lower interface of the Microchip propriety 

wireless protocols, while MiApp regulates the higher interface of Microchip 

propriety wireless protocols. Combined use of both MiApp and MiMAC gives 

the application developer the flexibility of using different RF transceivers.  Each 

RF transceiver has varied capability in handling known wireless communication 

protocols.  

Support for WSN reconfiguration in MiApp is in two parts. First, it involves the 

definition of configuration parameters (CONFIG_PARAMETER) within a 

configuration file (using “#if define (CONFIG_PARAMETER)”, “#define C 

CONFIG_PARAMETER”) and secondly, the inclusion of signatures of functions calls 

to the Microchip proprietary wireless communication protocols. The configuration 

parameters stipulate among others the requirements (the microntroller hardware 

resources,   peripheral and RF transceiver control pins) to be used and specifies or 

decides what sections of the entire application source code should be compiled into the 
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firmware hex file using the appropriate compiler directive. Table 2.1 shows selected 

samples of some configuration parameters.  

Reconfiguration at the application layer is only possible at design time. In addition, 

these changes cannot take effect except the source code is recompiled and redeployed. 

The flexibility of reuse at this layer during run time is limited. 

 

 
However, this limitation can be overcome if the user can capture the application’s real 

time field experiences in the source code’s design and implementation. Steine, Ngo, 

Oliver, Geilen, Basten, Fohler, and Decotgnie (2011) introduced an approach that 

exploits design-time knowledge of the application scenario dynamics to construct and 

implement a proactive runtime reconfiguration paradigm. The issues with this approach 
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Figure 2.4:  Block Diagram of Microchip Wireless (Miwi) Stack (Yang, 2009) 
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are: First, the possibility of capturing all anticipated reconfiguration needs can be 

challenging and secondly, the scarcely available memory space might not be sufficient 

to accommodate codes written to address these needs. Moreover, even if it does, there is 

the likelihood of redundant codes written to handle anticipated changes, which might 

never occur, and invariably taking up scarcely available memory spaces. 

 

Table 2.1: Selected software definition in the configuration file (Yang, 2009) 

 
 

Example of Definition 

 

Functionality 

 

Comments 

 

#define PROTOCOL_MIWI 

#define PROTOCOL_P2P 

 

Selects the Microchip 

protocol to be used in 

wireless application 

 

Only a single protocol is allowed  

 

#define MRF24J40 

#define MRF49X 

 

Specifies what type of 

Microchip RF transceiver to 

employ.  

 

Only a single protocol is allowed  

The MRF24J40 definition is a related 

transceiver  

 

#define ENABLE_SLEEP 

 

This enables the RF 

transceiver’s sleep mode 

capability. It is meant to 

reduce power consumption 

whenever the system is in an 

idle state.  

 

The type of transceiver in use determines 

whether the sleep mode can be activated or 

not. 

 

#define ENABLE_SECURITY 

 

Enables Microchip’s 

propriety protocol which 

ensures that  packets 

reliability is guaranteed  

 

The main components (security engine) 

and attributes(security mode and keys)  are 

defined within a specification file meant 

for every RF transceiver,  

 
 

2.4.4 Middleware 

A middleware is a software abstraction layer that exists between operating systems and 

applications. It is meant to simplify operations, enable heterogeneity and masks the 

basic hardware or software layers of sensor nodes (Graziosi, Pomante, and Pacifico, 

2008).  Also, they provide some degrees of abstraction of communication networks, 

operating systems, programming languages and management of distributed applications, 
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via the use of API that encapsulates the access to the underlying mechanisms 

(Alkhawaja, Ferreira and Albano, 2012). Middleware implementation in distributed 

systems entails (Graziosi, Pomante, and Pacifico, 2008; Puder, Romer, and Pilhofer, 

2006; Myerson, 2002) the following:   

 Application manageable data representation and codification; 

  Remote processing and monitoring;   

 Open system interconnect (OSI) protocol compliant;  and  

 Location transparency (effect communication with distributed systems devices 

by using the middleware capabilities, and suited to offer Quality of Service to 

the application layer).  

These implementation paradigms allow mobile distributed systems to have context-

aware capabilities. Implementing these traditional middleware functionalities in WSN 

can be challenging because of the constraints (limited processing and energy resources) 

associated with sensor nodes. As such, middleware implementation for reconfigurable 

WSN is required to be of a lightweight type (Graziosi, Pomante, and Pacifico, 2008).  

Few work done in this area has been published in notable literatures (Gámez, Cubo, 

Fuentes and  Pimentel, 2012; Graziosi, Pomante, and Pacifico, 2008; Hu,  Ndulska, and 

Robinson, 2006; Kjær, 2007).  Graziosi, Pomante, and Pacifico (2008) presented a 

middleware-based approach for WSN, which enables WSN to transport data across 

heterogeneous networks. It also offers a homogenous API (Application Programming 

Interface) for the related applications development.  

Hu, Ndulska, and Robinson (2006) implemented a dependable context management 

system at the middleware layer that dynamically locates and replaces failed sensors or 

network based on context information derived from context sensing sources. The 

system, as illustrated in Figure 2.5, is composed of the following layers: 
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 Context-aware applications layer - context information are obtained, analysed 

and appropriate decisions taken at this layer to adapt the system to evolving 

context.  

 Reconfigurable context management layer – composed of several components 

meant to  store and evaluate context information according to the context models 

and broadcasts this information through responses to queries and/or context 

changes; and 

 Context sensing layer – made up of context sources (sensors) and possibly 

related processing components to transform acquired context data into context 

information required by the application. 

The intentions of Gámez et. al., (2012) were tailored towards implementing a context 

aware architecture that can easily be adapted to several platforms via the use of a 

model-driven configuration process approach. The model is designed to integrate new 

contexts to the FamiWare family (Fuentes and Gámez, 2011) by producing context-

aware versions of the middleware for every application. The FamiWare, a family of 

middleware for Ambient Intelligence is designed to be aware of contexts in sensor and 

smartphone devices. It provides several monitoring services capable of acquiring 

contexts from devices and users alike. In addition, it integrates a context-awareness 

service that analyses and detects context changes as well. 
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2.4.5 Operating System 

 

 Jun-Zhao (2010) categorises WSN reconfiguration paradigm in operating system (OS) 

in terms of how much alteration is done to the original source code. The phrase 

‘alteration’ refers to the addition of new codes, removal of existing codes or editing of 

existing codes. This invariably means the introduction of a new task, the removal of no 

longer needed task or an enhancement of an existing task respectively.  Jun-Zhao (2010) 

classified the OS reconfiguration approaches into three groups:  the complete code 

image replacement scheme, loadable module scheme and the difference scheme. The 

complete code image replacement scheme involves overwriting the entire code memory 

of a wireless sensor node with a new firmware. Examples of these implementations are 

XNP (Jeong, Kim and Broad, 2012), Trickle (Levis, Patel, Culler and Shenker, 2004), 

Deluge (Hui and Culler, 2004), Stream (Krishna, Bagchi, and Khalil, 2009) and Mate 

(Levis, and Culler, 2002). The Loadable module approach effects changes at the 

Figure 2.5: Reconfiguration Architecture (Hu,  Ndulska, and Robinson, 2006 ) 
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modular level; this also means the OS framework is modular in setup. It also allows for 

the addition and removal of new application task packaged in modular form. However, 

use of large memory space and demand for more processing time (which invariably 

translates to higher power consumption and slows system execution) are drawbacks 

associated with the loadable module based approach. The Difference-Based approach 

specifically overwrites the identified difference between the original and the modified 

file. In addition, only the delta (the difference between the old and updated program) 

generated at the base station is transmitted to the terminal nodes in the field. This 

invariably reduces the amount of data needed to be transferred especially when only 

small changes are involved.   

Each paradigm has its advantages and disadvantages. The reconfiguration paradigms 

and their related challenges as implemented in four selected OS (namely TinyOS, 

Contiki, Sensor Operating System and MANTIS) are presented in Tables 2.2 and 2.3. 

2.4.5.1 TinyOS 

Reconfiguration and dissemination schemes implemented using the TinyOS component 

architecture exists. Some of the paradigms implemented adopt either the Entire Image 

replacement approach (Hill et. al., 2005; Jeong, Kim and Broad 2012; Levis, and 

Culler, 2002) or the Difference-based approach (Krishna, Bagchi, and Khalil, 2009).  

The various successive schemes implemented on the TinyOS platform over time stem 

from attempts to improve upon the challenges associated with their predecessors. Some 

of these challenges span over performance issues, memory and energy management 

related issues. Some of the key improvements inferred while reviewing the trend of 

development and implementation of the various schemes are relayed thus:  Starting with 

the XNP (Jeong, Kim and Broad, 2012), this scheme was primarily designed to function 
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as a single-hop reprogramming protocol. XNP performance suffers some defects 

resulting from overheads when making request directly from the base station. However, 

Trickle (Levis, Patel, Culler and Shenker, 2004)   addressed this defect by implementing 

the first multi-hop code dissemination protocol. Trickle has a limitation of only being 

able to transmit the update-codes in small size patches. This shortcoming again was 

addressed by the introduction of Deluge (Hui and Culler, 2004). Deluge, an extension of 

the Trickle Protocol improved upon its predecessor by being able to effect bulk transfer 

at a reduced transmission time using pipelined data transfer technique. 

Deluge employs the complete image replacement approach and it transmits the actual 

binary codes (firmware) during every code update. Thereby causing a large number of 

energy hungry memory (EEPROM and or flash program) writing to transpire. Concerns 

about energy demands by the Deluge protocol subsequently leads to the evolution of 

newer OS-based reconfiguration paradigm. Few examples like the Contiki and SOS 

were fashioned after the Loadable module approach while others like the Zephyr 

(Krishna, Bagchi, and Midkiff, 2009) and FlexCup (Marron, Gauger, Lachenmann, 

Minder, Saukh, and Rothermal, 2006) implemented the Difference-based approach. 

More discussions on the loadable module approach were presented in section 2.4.5.3 

while discussing the contiki and SOS OS platforms.   

Under the Difference-based approach, most algorithms employed to detect and 

construct deltas for dissemination and reconstruction within wireless sensor nodes differ 

in their mode of operation. A typical algorithm in use is the Rsync and its variants. 

Rsync and the corresponding RDIFF algorithm (Tridgell, 1999) use non-overlapping 

fixed-sized blocks for matching indistinguishable data between the modified and 

original files. Both files are segmented into blocks, and for each one, a rolling-

checksum and an MD5 (a message-digest algorithm based on a cryptographic hash 

http://en.wikipedia.org/wiki/Cryptographic_hash_function
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function that produces a 128-bit hash) checksum are computed. Using these checksums, 

the delta is constructed of either reference to blocks that already exist in the old version, 

or the entire content of new or changed blocks. While the rolling checksum is 

implemented to be as fast as possible, an MD5 checksum is not appropriate for sensor 

nodes. The apparent flaw of the algorithm is that if two blocks differ in even one byte, 

the entire block content has to be present in the delta. The sensor nodes perform 

expensive MD5 computation for each block of the binary image when the algorithm is 

utilised for differential reprogramming. In addition, a study on the limitations of the 

MD5 for which most variants of the Rsync are based on reveals the following:   

i. Xiaoyun and Hongbo (2005) show that MD5 is not collision resistant. 

ii.  A group of researchers created a pair of files that share the same 

MD5 checksum (Black, Cochran and Highland, 2008). 

iii.  CMU Software Engineering Institute reportedly declared that the MD5 

should be considered cryptographically broken and unsuitable for further use 

(‘‘CERT Vulnerability Note VU#836068’. Kb.cert.org. Retrieved 9 August 

2010.)  

iv. The Flame malware exploited the weaknesses in MD5 to fake a 

Microsoft digital signature (‘NIST.gov-Computer Security Division- 

Computer Security Resource Centre’. Csrc.nist.gov. Retrieved 9 August 

2010). 

Milosh, Cuijipers and Lukkien (2013) modified Rsync such that all the expensive 

operations regarding delta script generation are performed on the host computer and not 

on the sensor nodes. In addition, it ensures that the expensive MD5 computation is done 

only when the inexpensive checksum matches between the two blocks (Milosh, 

Cuijipers and Lukkien, 2013). If no matching block is found then the algorithm moves 

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Collision_resistant
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/CMU_Software_Engineering_Institute
http://en.wikipedia.org/wiki/Flame_(malware)
http://en.wikipedia.org/wiki/Digital_signature
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html
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to the next byte in the new image and the same process is repeated until a matching 

block is found. While the probability of collision is not negligible for two blocks having 

the same checksum, with MD5 the collision probability is negligible (Milosh, Cuijipers 

and Lukkien, 2013). To ensure the correctness of the scheme in the rare case when two 

different blocks have the same MD5 hash, Zephyr (Krishna, Bagchi, and  Midkiff, 

2009) performs a byte-by-byte comparison when MD5 hashes match (Milosh, Cuijipers 

and Lukkien, 2013). A byte–by-byte comparison is deficient when dealing with 

machine codes generated for execution on a microcontroller. Physical addresses of data 

locations always differ whenever changes occur in the new image file. Having a 

common reference point for the purpose of comparison becomes a problem 

2.4.5.2  Sensor Operating System  

Sensor Operating System (SOS) is composed of dynamically-loaded modules and a 

common kernel that implements messaging, dynamic memory and module loading and 

unloading. SOS improves on the XNP energy usage by using modular updates instead 

of full binary system image and does not require rebooting the node after installing an 

update (Han, Kumar, Shea, and Srivastava, 2005). It also installs updates directly into 

program memory without costly external flash access. 

2.4.5.3 Contiki 

Contiki is designed to support dynamic loading and replacement of individual 

application programs and services. It is developed around an event-driven kernel with 

optional support for pre-emptive multithreading. Implementing basic routines as 

services allow the system to effect reconfiguration at run time. Very important services 

like the communication routines, which exist in stacks, can be loaded simultaneously.  
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Dynamic loading is an effective way to make sensor nodes take up new functionalities. 

The approach disseminates loadable modules, which are relatively much smaller 

compared to entire application image. The modular design approach can effectively 

reduce the transferred code size, thereby reducing the amount of energy expended 

during network reprogramming. The files are loaded in Execution Linking Format 

(ELF). The ELF ranks among the most widely used object code format for dynamic 

linking. It is composed of program code, data and supplementary details such as a 

symbol table, the names of all external unresolved symbols, and relocation tables. The 

relocation tables provide information on where the program code and data can be placed 

in memory other than where they were originally meant to be during assembly. One 

problem with the ELF format is the overhead in terms of bytes to be transmitted across 

the network when compared to pre-linked modules. Modular design has other benefits 

(other than reduce data size for efficient reprogramming) like making code reuse easier 

to handle. 

 

2.4.5.3  Mantis  

The Mantis OS employs the traditional concept of preemptive multi-threaded model. 

Reprogramming of the entire operating system and parts of the program memory is 

feasible. It employs the locking mechanism, which mutually excludes shared variables 

while allocating stack spaces to its program (Dong, Chen, Liu and Bu, 2010). The 

dynamic reprogramming capability of the Mantis OS is implemented as a system of call 

library that are built into the Mantis OS kernel (Bhatti et. al., 2005) Applications can 

make changes to the new code image via the library. These changes are then 

implemented on system reset using a bootloader and a called function Commit (Bhatti 

et. al., 2005). 
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Table 2.2:  Reconfiguration features, approaches, impact and comparative advantages for TinyOS and SOS 

 

Operating System Scheme/ Protocol 

Sensor  

Nodes 

where  

deployed 

Energy Management 

Related Issues 

Performance/Memor

y space related 

Issues 

Comments: 

Comparative Advantage 

Recommendation 

 

TinyOS 

 

Deluge 

Disseminates large data objects (binaries) to 

many nodes in WSN using multi-hop 

dissemination protocol. 

Combining the above mechanism with a 

bootloader and command dissemination it  

Build around an event-driven kernel 

 

 

Mica2, 

Mica2-dot 

,MicaZ,Te

los, Tmote 

Sky, Eyes, 

Tinynode, 

IRIS 

 

 

Much energy required for 

transmitting  entire image 

Hence, much processing       

needed for flash writing.  

 

 

Its transmission time 

is much faster because 

it uses pipelined data 

transfer 

 

 

Comparatively efficient when an entire 

code or application needs   changed 

completely. 

Not suitable for updating small 

changes. 

 

Zephyr 

Implements incremental/Differential 

reprogramming. 

The goal is to transfer small details 

(difference between the old and the new 

software), thereby minimising 

reprogramming time and energy. 

 

 

Mica2 

 

less energy required for 

transmitting  patches 

therefore 

Less processing needed for 

flash writing.  

 

 

Depending on the 

algorithm employed, 

the transmission of 

large number of small 

differences spread 

over the entire code 

can be 

disadvantageous. 

Transmission cost 

resulting from 

overheads is very high 

 

less energy required for transmitting  

patches 

 

Less processing needed for flash 

writing.  

 

 

Sensor Operating System 

[SOS] 

 

Uses modular approach. Each module has a 

defined entry and exit point.  

The modules are designed in a loosely coupled 

manner. 

Interactions between modules are effected via 

message passing, direct calling of registered 

functions within modules or kernel system’s 

calls. 

Build around and event-driven kernel 

 

Mica2, 

MicaZ, 

TelosB, 

Tmote 

Sky 

 

Moderate in comparison to 

TinyOS 

 

Less safety features to 

address missing and 

updated modules. 

 

Remotely insert binary modules into 

running kernel without interrupting 

system operation.  Reboots not needed 

as in differential patching. 
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Table 2.3:  Reconfiguration features, approaches, impact and comparative advantages for Contiki and Mantis. 

Operating 

System 
Scheme/ Protocol 

Sensor Nodes 

where 

deployed 

Energy Management 

Related Issues 

Performance/Memory space related 

Issues 

Comments: 

Comparative Advantage 

Recommendation 

Contiki First to support 

modular update and 

consists of two main 

components: system 

core and loaded 

program 

Build around and 

event-driven kernel 

Implements a dynamic 

linker that links, 

relocate and load either 

standard ELF files or 

CELF (compact ELF) 

files. 

ESB,TelosB, 

Tmote Sky 

Less energy as only 

specified module are 

transmitted 

 

Processing overhead 

arising from  a number of 

book keeping tasks to 

resolve cross referenced 

symbols required to link 

and load new module 

The modules are designed in a loosely-

coupled manner and communicating only 

via the kernel. 

Dynamic linking and loading causes 

performance  degradation 

 

. 

 

 

Scheme should be able to estimate the percentage of 

code that need to be modified. And if more than a 

specified threshold (suggesting near entire  image 

size) then opt out of loadable modular approach 

Extra storage needed for keeping track of the symbol 

table. 

 

Mantis Achieves dynamic 

reprogramming on 

several granularities 

Re-flashes the entire 

OS. 

Able to reprogram a 

single thread and make 

changes to variables 

within a thread. 

Mica2, Eyes, 

Telos, Mantis 

nymph 

Employs a power efficient 

scheduler that puts the 

microcontroller to sleep in 

response to reconfiguration 

handling-threads calls to 

the sleep() function. 

Thereby reducing current 

consumption to the micro-

ampere range.  

 

It  maintains two logically distinct sections 

of RAM: Global variables that are 

allocated at compile time while the rest of 

the RAM is managed as a heap. 

It implements dynamic memory 

management scheme. However, it also 

results in a lot of overheads 

Its multi-thread driven capability allows for priority-

based scheduling and preempting of task execution 
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2.5   Application of Artificial Intelligence to WSN related Issues 

Artificial Intelligence (AI) is the study of adaptive mechanisms that enable or facilitate 

intelligent behaviour in complex and changing environments (Venayagamoorth, 2009; 

Engelbrecht, 2007). These mechanisms involve paradigms that exhibit the capacity to 

learn or adjust to new situations, to generalize, abstract, discover and associate 

(Kulkarni, Forster and Venayagamoorthy, 2011). AI encompasses paradigms such as 

Artificial Neural Networks (ANN), Reinforcement Learning (RL), Swarm Intelligence 

(SI), Genetic Algorithms (GA), Fuzzy Logic (FL) and Artificial Immune systems 

(Kulkarni, Forster and Venayagamoorthy, 2011). Brief descriptions of popular AI 

paradigms applied to WSN problems are concisely presented in the following 

subsections. In some cases, hybrids of these paradigms do exist. Notable examples of 

these combinations are  neuro-fuzzy systems and fuzzy-immune systems.  

 

2.5.1   Artificial Neural Networks 

The Artificial Neural Networks (ANNs) is modelled after the human brain known to 

have an astonishing capacity to learn, remember and simplify complex issues. It is a 

network of more than ten billion neurons; each neuron is joined to approximately ten 

thousand other neurons. The neuron receives signals through synapses. The synapses 

regulate the effect of the signals on the neuron thereby playing an important role in the 

performance of the brain (Haykin, 1994). Figure 2.6 and 2.7 shows an artificial neuron 

and a popular ANN architecture respectively. It is made up of three constituents: one, 

the links that provide weights Wji, to n inputs of jth neuron xi, i = 1,…, n; two, an 

aggregation function that produces uj , a summation of  𝛩𝑗 + ∑ 𝑥𝑖𝑊𝑗𝑖
𝑛
𝑖=1 , where 𝛩𝑗 is the 

bias; and thirdly, an activation function Ψ that maps the output Ψ(uj) to uj. 
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Figure 2.6: Structure of an Artificial Neuron. (Kulkarni et al., 2011) 

Figure 2.7: Popular ANN architectures: The connections shown in solid lines and 

         the context later make up a feedforward NN. Addition of the        

                  connections shown in dotted lines converts it into a recurrent neural    

                  network. (Kulkarni et al., 2011) 
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ANNs learn the facts characterised by patterns and deduce their inter-relationships. 

Learning approaches are via supervised learning, unsupervised learning, or 

reinforcement learning. Successful applications of ANNs are found in power system 

stabilization,  image processing, speech recognition, and  prediction related problems. 

2.5.2   Genetic Algorithm  

Genetic algorithm (GA) implementation is based on a search algorithm that tends to 

proffer solutions to AI problems using the natural selection approach. It starts with a 

simple potential solution and evolves toward a set of more ideal solutions. In the course 

of progressing toward the best solution, it excludes those solutions that are less result 

oriented,   while superior solutions are combined and their beneficial traits proliferated, 

thereby allowing more solutions into the set, which subsequently facilitate  better 

potentials. In order to avoid stagnation occurring in the process, random mutation are 

carried out to replace the several replicas of  identical solutions. In order to use   genetic 

algorithms efficiently, the under listed conditions need to be met: 

 The system should be able to appraise how ‘good’ a prospective solution is 

relative to other would-be solutions with ease. 

 The system should be able break a potential solution into separate portions 

(‘genes’) that can vary independently.  

 Lastly, genetic algorithms are well-matched for situations where a ‘good’ 

solution is viable and might not necessary be the absolute best solution. 

The operation of the genetic algorithm entails the following:   

 Reproduction: The process of duplicating a  prospective solution; 
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 Crossover: The process of exchanging gene values between two prospective 

solutions, mimicking the "mating" of the two solutions;  and,  

 Mutation:  The process of arbitrarily varying the value of a gene in a 

prospective solution. 

 

2.5.3  Fuzzy Logic system 

 

The Fuzzy Logic (FL) model is empirically-based. It relies on operator's know-how and 

little attention is given to the working  details of the system. Fuzzy Logic System is 

compose of four components: These are namely the fuzzifier,   adopted rules based on 

expert knowledge, an inference engine, and defuzzifier. 

 

 

Figure 2.8:  A Fuzzy Logic System 

Crips 

Input 

Crips 

Output 
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FL is inherently robust because it does not need precise, noise-free inputs. It produces a 

smooth output control even when the input variations are notably wide. Interestingly, it 

allows the designer to implement a fail-safe option should in case a major critical 

component of the system fails. FL controller processes user-defined rules that can be 

modified and tuned easily to improve system performance. It allows for easy integration 

of new sensors and subsequent modification of existing rules to accommodate the 

update.  

The rule-based operation allows  any rational number of inputs to be processed, and 

copious outputs generated. However, an increase in the  number of input and output 

could result in a complicated rulebase formation. Fuzzy Logic system has been found 

very useful in controlling nonlinear systems that are mathematically demanding to 

model.  

To use fuzzy logic approach, the following steps is recommended: 

 The control objectives and criteria need to be defined.  

  Infer the number of input and output requirement and their relationship within 

the context of the system’s goals.   

 The control problem should be broken down to a chain of ’ IF X AND Y THEN 

Z’ rules  that define the anticipated system output response for given system 

input settings.  

 Produce Fuzzy Logic membership functions that state the values of Input or 

Output terms employed in the rules. 

 Generate the needed pre- and post-processing Fuzzy Logic functions for 

Software or Hardware implementation.  
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 Lastly, setup a Testbed to examine the system, appraise the results, alter the 

rules and membership functions, and retest the system again until  suitable 

 

2.6 Choice of AI Solution for WSN related Issues  

AI provides adaptive mechanisms that exhibit intelligent behaviour in complex and 

dynamic environments like WSNs. AI brings about flexibility, autonomous behaviour, 

and robustness against topology variations, communication failures and scenario 

changes (Kulkarni, Forster and Venayagamoorthy, 2011).  

Artificial intelligence (AI) Paradigms have been employed as tools to handle  several 

WSN problem areas. Notable among these areas are efficient management of data 

collection and fusion activities, optimal localization and energy ware routing. However, 

not much has been reported in WSN reconfiguration related issues. Many AI methods 

have outperformed or complimented conventional methods under uncertain 

environments and severe limitations in power supply, communication bandwidth, and 

computational capabilities.  

Kulkarni, Forster and  Venayagamoorthy (2011) surveyed some WSN application areas 

where some of the AI techniques earlier mentioned in the preceding section were used. 

The outcome of their findings is shown in Figure 2.7. The findings are intended to serve 

as a guide for selecting the most appropriate AI approach to explore or adopt when 

solving WSN related problems. Though WSN reconfiguration related issues were not 

mentioned, some of the problem areas surveyed (for example Deployment, Routing, 

Data Aggregation, Fusion and Quality of Service management (QoS)) share some 

operational characteristic with it.  
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Figure 2.9 depicts a table that is composed of columns and rows representing the 

surveyed WSNs application areas and the main AI techniques employed respectively. 

The number of articles surveyed for a particular combination of WSN problem and the 

adopted AI approach was symbolically represented by the size of black circles. 

Moreover, the cells were equally hashed to indicate which AI is most suitable and 

applicable for the problem in question. The evaluation is rather an estimate, since the 

actual outcomes depend on the nature of the problem, the AI algorithm employed, and 

the parameters used. Also, most researchers rarely evaluate their algorithms under real 

WSN environments like test-bed or in the field.  

The findings presented by Kulkarni et. al., (2011) indicates that Design and deployment 

is usually a centralized problem, where an optimal architecture for the WSN to be 

deployed is determined. AI models like ANNs, and GAs are very well suited for that 

purpose. They can produce optimal results from large datasets where memory and 

processing restrictions do not apply. For localization, it looks like ANNs and GAs are 

the best suited techniques, although they need to be used in a centralized manner. The 

problem is the high variance of the localization data, for example, using RSSI values to 

compute distances between nodes. Fuzzy logic is well suited for security and QoS 

problems. It is able to compute general non-optimal rules that can accommodate larger 

variance of the data, as in case of security applications. Routing and clustering seems to 

be the most popular WSN problem for applying AI methods (in fact, it is also a very 

active research area in general). However, not all AI methods are equally suited. ANNs 

and GAs have very high processing demands and are usually centralized solutions. In 

the case of ANNs, learning can also be conducted online at each of the nodes, but is 

slow and has high memory requirements. These two AI approaches are slightly better 

suited for clustering when the clustering schemes can be pre-deployed. Fuzzy logic is 
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very well suited for implementing routing and clustering heuristics and optimizations, 

like link or cluster head quality classification. However, it generates non-optimal 

solutions, and fuzzy rules need to be re-learnt upon topology changes. 

 

 

When dealing with data aggregation and fusion, the best suited AI methods are fuzzy 

logic, evolutionary algorithms and neural networks. It is interesting to note that two AI 

techniques, ANNs and AIS, have been rarely applied to WSNs. This is predominantly 

awkward in the case of ANNs, because this paradigm is very well studied and there 

exist many different ANN models with different properties.  

 

Figure 2.9: An overview of WSN challenges and the AI paradigms applied to address them        

(Kulkarni et al., 2011) 
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Based on previous studies on OS related reconfiguration approaches, reconfiguration 

paradigm are very likely to thrive more when the algorithm in use can handle routing 

efficiently and places less demand on complex computation and high demand for 

memory space. Hence, the choice of AI technique to use must conform to these 

requirements. 

2.7 Summary  

 

In this chapter, various research approaches adopted towards realising fully 

reconfigurable WSNs under severely constrained resources were discussed. 

Reconfiguration at the application layer is only possible at design time. In addition, 

these changes cannot take effect except the source code is recompiled and redeployed. 

The flexibility of reuse at this layer during run time is limited.  

A review of the existing reconfiguration schemes under the OS approach shows that the 

difference approach method is more promising when compared to others (Misra and 

Eronu, 2012). A review of the Difference based approach reveals that in some cases, 

instead of smaller deltas being generated, larger ones were rather produced (Misra and 

Eronu, 2012). A problem largely attributed to the use of traditional differential utilities 

like Rsync employed in (Bert and Weiss, 2009), Longest Common Sub-sequence (LCS) 

employed in (Apostolio, 1986) and Clone Detection in (Burd and Bailey, 2002). These 

utilities were inherently not designed to handle file structures well-matched for sensor 

network data transmission and dissemination. In order to mitigate the aforementioned 

shortcomings, this research work has devised a Precise Delta Extraction model for use 

in reprogramming or reconfiguring wireless sensor nodes. The scheme is intended to 

reduce energy consumption rate, as well as effect a reduction of memory space used 

during reprogramming processes. In addition, it also serves as a metric utility software 
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for measuring the degree of changes made in modified application source codes and 

relaying the exact changes. This information can also be fed as input to a fuzzy logic 

controller, which can guide a WSN in deciding the best reconfiguration approach to 

adopt under certain defined application or operational context 

Among the three AI algorithm understudied, the Fuzzy logic is adjudge to be the most 

suitable to adopt. A critical look at the other two approaches (ANN and GA), suggest a 

high degree of complication could arise during real life application or implementation. 

The reasons as reported in (Kulkarni et al., 2011) clearly discourages the adoption of the 

ANN and GA in most WSN applications. In WSN reconfiguration scenarios, memory 

space, high computational processing demands as well as the associated energy 

consumption is not that readily available. Hence, Fuzzy Logic is the most appropriate 

AI technique to use. It is inherently robust and it processes user-defined rules that can 

be modified and tuned easily to improve system performance. It allows for easy 

integration of new sensors and subsequent modification of existing rules to 

accommodate the update.  
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 CHAPTER THREE  

3.0          RESEARCH METHODOLOGY 

 

This chapter discusses in detail the design, development and evaluation procedures 

employed in realising the Context-based WSN reconfiguration software system. Two 

software components were designed and developed using software modelling tool. The 

two components are the Precise Delta Extractor (PDE) and the Fuzzy logic Controller. 

The first provides information on the degree of changes resulting from the modification 

done to the application firmware   as well as relaying the exact changes in bytes form. In 

addition, it provides fuzzified member set inputs (application context) to the fuzzy logic 

controller. The second component developed is based on expert knowledge of the 

energy consumption constraints associated with reprogramming procedures of wireless 

sensor node’s program memory. In addition, background information on program 

memory reprogramming constraints and a devised algorithm to address these constraints 

were presented.  

A testbed made-up of an ad hoc network of three 32-bit processor based sensor nodes 

(PIC32MX320F128H architecture and the MRF24J40B Zigbee based transceiver) was 

used to provide some pilot data. The test applications were developed in the Contiki 

operating system. The pilot data were then used to test the efficacy of the context based 

reconfiguration software at a much larger scale using the OMNeT++ and Castalia WSN 

simulation platform. Details of these procedures are presented in subsequent sections of 

this chapter. The order and nature of results to be obtained and analysed were also 

relayed in each subsection where appropriate.  
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3.1 Context-Based Reconfiguration System Design  

This section presents the design of a model that utilise context information to improve 

upon WSN reconfiguration processes.  

3.1.1 Deriving a Context-Based Reconfigurable Model  

A well-developed context information model, which entails gathering, evaluation and 

maintenance of context information, can be expensive. Hence, provision for context 

information re-use and sharing should be part of the application’s planning phase 

(Bettini et al., 2010). Based on the survey work carried out on the various identified 

WSN reconfigurable components, context related information relevant to WSN 

reconfiguration can be classified into two main categories. These entail the following:  

Application related context information and Operational-demands related context 

information. The model allows the user to associate selected context information to 

sensed application data. Thereby allowing every sensed datum have a history of related 

surrounding activities (defined contexts) for further analysis. Reconfigurable WSN  

implementation at the various layers earlier highlighted in the preceding sections can 

easily be maintained and improved upon when  relevant contextual information are  

modelled into the target system’s design and development processes.  

The essence of the model is to associate selected context information with sensed 

application data. In addition, it allows every node in the network to build up a history of 

related surrounding activities (defined contexts). This information is further analysed 

and used to guide the entire system in taking decisions that are beneficial to its 

operation. 

3.1.1.1 Application related Context Information 

WSN application related contextual information are primarily the key driving factors 

behind reconfiguration needs. They determine what other contextual information will be 
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needed, acquired, analysed, evaluated or probably stored in the systems database. The 

selection of sensor types is a function of the WSN application goals.  

 

WSN applications’ source codes and the resulting firmware when compiled can be 

viewed as a set of bytes/words. Hence, it can be argued that the composition of any 

sensor node’s application firmware is a reflection of the type of sensor it employs and 

the related functions assigned to it. Any change in sensor type or mode of usage will 

also translate into a corresponding change in the number and orientation of bytes 

contained in the firmware. In line with this proposition, it is feasible to measure changes 

reflected in modified firmware (result of the reconfiguration process) and relayed them 

as a source of the application-related context information. The metrics derived for 

extracting application-related context information is presented in section 3.1.2.  

 

Indulska and Sutton (2003) classified sensor types into three categories, namely: 

physical sensors, virtual sensors and logical sensors. Table 3.1 shows the context types, 

sections and reconfiguration layers classified under the aforementioned categories. 
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Table 3.1:  Classification of Sensor types (Indulska and Sutton, 2003) 
 

Categories Context Type Available sensors Layers where 

Reconfiguration is 

feasible 

Physical Temperature Thermometers Application Layer 

Light  Photodiodes, colour sensors, IR and UV-

sensors 

Visual  multimedia cameras 

Audio Microphones 

Motion 

acceleration 

Accelerometers, motion detectors 

Position/Location  Outdoor: Global Positioning System (GPS),   

                Global System for Mobile   

                Communication(GSM) 

Indoor:   Radio Frequency     

               Identification(RFID),  Received    

               Signal Strength Indicator(RSSI) 

Virtual (Use of 

software at 

various 

reconfigurable 

layers to deduce  

impact of )  

 

 

 

 

 

Energy  - Inbuilt mechanism to measure energy 

consumption at various layers via 

experimentation. 

Processing Element  

Application via  

Communication 

Layer  

Memory - Space measured as memory space 

taking over  

Operating System 

Performance  - Code execution timing  

 

Processing Element  

Application via  

Communication 

Layer 

Reliability - Transmission issues  Processing Element  

Application via  

Communication 

Layer 

Logical Use of logical 

operators (AND, 

OR) state inputs 

of either physical 

or virtual sensed 

data, decisions 

resulting  

- Software based  Application Layer 

 

 

 

 

3.1.1.2 Operational-Demands related Context Information  

Context classification of this type is rarely mentioned in the literature. Operational-

demands refer to issues or factors arising from reconfiguration approaches that can 

affect the performance or efficiency of a WSN application. In most cases, they also 

constitute the metrics for evaluating the effectiveness of the reconfiguration approaches 

employed.  Examples of this context information types are: 
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i. Energy usage and management issues;  

ii. Memory utilisation;  and 

iii. Performance related issues (speed, reliability, efficiency and 

others) 

 

When designing or implementing reconfiguration processes, it is expedient that energy 

consumption and related issues are managed effectively in order to enhance the 

operational life span of the individual sensor nodes, as well as the entire network. 

There is a need to strike a balance between the operational constraints or demands and 

application goals in a dynamic way. Hence, a constant feed of operational context 

information is necessary. Likewise, a measure of its impact (whether positive or 

negative) on application goals can be helpful in optimising WSN performance. 

 

3.1.1.3     The Model Description and Implementation  

The Context-based WSN reconfiguration model as depicted in Figure 3.1 is composed 

of three key main layers or levels: the context sensing layer, lower context management 

layer and higher context management layer. The model provides a platform for deriving 

Data Frames (Structural and Descriptive Metadata) that associates all relevant context 

information with the primary context data for the purpose of analysis, control, and 

storage purposes. In addition, it empowers the WSN with autonomous capability to 

respond to evolving application changes using any known artificial intelligent 

technique. Table 3.2 summarily describes the parameters and the associated symbols 

used in the model.  
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Context sensing layer: At this level, the following: context identification, definition, 

sensing are implemented. In some cases, there might be need to derive context 

information by processing non-quantifiable context data.  These contexts could be any 

of the two types earlier mentioned (Application related or Operational-demand related). 

The layer acts as a presentation layer by making available usable context information to 

the next higher layer “Low Context Management level."  

 

 

Table 3.2: Description of proposed Models parameter and associated symbols 
 

Symbol Description 

𝒙𝒋 Application related context information  - physical, virtual(goals, objectives, ) 

𝒚𝒊 Operational-demands related 

contextual information 

Energy  

Memory  

Performance  

𝑫𝒏,𝒊
𝑳 , Determinant used at Lower Context Management Level to decide whether a context 

information should be used in this layer or not. The “L” superscript denotes the determinant’s 

level of application 

𝑫𝒎
𝑯  Determinant used at Higher Context Management Level to decide whether a context should be 

used at this level. The “H” superscripts denote the determinant’s level of application 

𝒁𝒔 Logical context derivation used as  switching element at context sensing level with the aid of  

𝐷𝑛,𝑖
𝐿  

𝒁𝒏 Logical context derivation used as  switching element at lower context management level with 

the aid of  𝐷𝑛,𝑖
𝐿  

𝑻 Final collection of data and associated Contexts 

 
𝑻(𝒕, 𝒑) 

The final 

collection of 

data and 

associated 

Contexts 

expressed as 

function of 

time and 

location 

Time(t)  

- Synchronization 

- Aid metrics assessments 

 Qualities 

 Quantity 

 

Location/Posit

ion (p) 

- Adaptation 

- Performance per location assessment 

 

  

 

Lower context management layer: This layer selectively (via the use of switching 

elements 𝐷𝑛,𝑖
𝐿  as depicted in Figure 3.1 and Figure 3.2) accepts raw data (𝑥𝑗)  or 

processed context information (𝑦𝑖) from the sensing layer and logically combines them 

in consonance with a defined operational-demand related context. The selection process 

can be done either manually or autonomously via the use of artificial intelligence (Fuzzy 
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logic or neural networks). The collective impact of the combined related context 

information (considered as secondary context information) is assessed, analysed and 

then passed onto the next higher level. In addition, based on changes in context 

value/parameter occasioned by evolving application scenario, the Lower Context 

management level can make demands to a Higher Context Management level to tune 

certain reconfigurable components in order to optimise the overall system performance.  

To illustrate this, assuming retransmission occurs too often thereby consuming scarce  

energy resource  in the process, the energy context manager (see Figure 3.2) can  then 

inform the Coordinating Context manager (located in the Higher Context management 

Level) about this development. Moreover, possibly advise it to suspend transmission 

activities pending when contending issues are eventually resolved.  

𝑍𝑠 =  {𝐷(𝑠,0)
𝐿 ∗ 𝑦0  , 𝐷(𝑠,1)

𝐿 ∗ 𝑦1  , 𝐷(𝑠,2)
𝐿 ∗ 𝑦2  , 𝐷(𝑠,3)

𝐿 ∗ 𝑦3  , … 𝐷(𝑠,𝑘)
𝐿 ∗ 𝑦𝑘 }              (3.1)      

 

 

Each combination is relayed as a Set  𝑍𝑠  (Equation 3.1) and managed appropriately to 

produce an output designated as 𝑍𝑛 in Equation 3.2.  

 

 

 

𝑍𝑛 =  ⋃  𝑍𝑠

𝑛=𝑠

𝑛=0

   =  ⋃  [𝐷(𝑛,𝑖)
𝐿 ∗ 𝑦𝑖  ]

𝑖=𝑘,𝑛=𝑠

𝑖=0,𝑛=0

                                                                   (3.2) 
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𝑍𝑛 = {
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ,         𝐷(𝑛,𝑖)

𝐿 = 1, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘  

𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , 𝐷(𝑛,𝑖)
𝐿 = 0, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘 

                                      (3.3) 

 

Taking decision on when and how to effect changes can be a complex task. However, 

this can be simplified if all the identified or relevant applications and operational 

context information are quantifiable. Suitable metrics can be derived and utilised in this 

layer. For example, examining the rate of energy consumption within the node in 

relation to each instruction code execution can aid in devising a more energy to source-

code software architecture. Hence, deriving a source-code-execution to energy 

consumption metrics will be relevant in establishing a relationship between the rate of 

energy consumption within the node to the system’s application goals. An      

established relationship will invariably aid in the predicting the life span of nodes’ 

energy sources (batteries) 

 

Higher Context management layer: Much like its predecessor, the higher context 

management layer is designed to combine selected contextual information Znwith the 

application key context information′𝑥𝑟′. The coordinating context manager at this layer 

in response to the directive given by an end user selectively implements the combination 

via the use of switching elements denoted as 𝐷𝑚
𝐻   (Refer to Equations 3.4 – 3.7).  

 
𝑇 =  {𝑥0 ∗ 𝑍0 ∗ 𝐷0  ,

𝐻 𝑥0 ∗ 𝑍1 ∗ 𝐷1  ,
𝐻 𝑥0 ∗ 𝑍2 ∗ 𝐷2  ,

𝐻 𝑥0 ∗ 𝑍3 ∗ 𝐷3  ,
𝐻 ⋯ 𝑥0 ∗ 𝑍𝑠 ∗ 𝐷𝑠 

𝐻}  ∪ {𝑥1 ∗ 𝑍0 ∗  𝐷0  ,
𝐻 𝑥1 ∗ 𝑍1

∗ 𝐷1  ,
𝐻 𝑥1 ∗ 𝑍2 ∗ 𝐷2  ,

𝐻 𝑥1 ∗ 𝑍3 ∗ 𝐷3  ,
𝐻 ⋯ 𝑥1 ∗ 𝑍𝑠 ∗ 𝐷𝑠 

𝐻} ⋯ ∪  {𝑥𝑟 ∗ 𝑍0 ∗ 𝐷0  ,
𝐻 𝑥𝑟 ∗  𝑍1 ∗  𝐷1  ,

𝐻 𝑥𝑟

∗ 𝑍2 ∗ 𝐷2  ,
𝐻 𝑥𝑟 ∗ 𝑍3 ∗ 𝐷3  ,

𝐻 ⋯ 𝑥𝑟 ∗ 𝑍𝑠

∗ 𝐷𝑠 
𝐻}                                                                                                                           (3.4)  

 

 

𝑍𝑛 = {
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 ,         𝐷(𝑚)

𝐻 = 1, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘  

𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , 𝐷(𝑚)
𝐻 = 0, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘 

                                             (3.5) 

 

 



 

72 
 

𝑇 = 𝑥0 ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻 ]

𝑠

𝑚=0

 ∪  𝑥1 ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻 ]

𝑠

𝑚=0

  𝑥2 ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻 ] ⋯ ∪  𝑥𝑟 ⋃[𝑍𝑚 ∗ 𝐷𝑚

𝐻 ]

𝑠

𝑚=0

            (3.6) 

𝑠

𝑚=0

  

 

 

𝑇 = [𝑥0  ∪  𝑥1 ∪ 𝑥2   ⋯ ∪  𝑥𝑟 ] ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻 ]  

𝑠

𝑚=0

                                                                                    (3.7) 

 

The combined information is tagged with timing and location context information 

′𝑇(𝑡, 𝑝)′ (Equation 3.8) so that at every instant, detail historical data are easily 

constructed and a viable database is dynamically built and maintained.  

 

 
𝑇(𝑡, 𝑝) =  [𝑥0  ∪  𝑥1 ∪ 𝑥2   ⋯ ∪  𝑥𝑟 ] ⋃ [𝑍𝑚(𝑡, 𝑝) ∗ 𝐷𝑚

𝐻 ]                                                         (3.8)𝑠
𝑚=0   

 

 

 

Time (t ) can be specified or implemented in intervals,  

Position (p)    can be derived from any of the following: GPS, RSSI and RFID. 

 

Appropriate reconfiguration processes can be initiated or implemented in any one of the 

five reconfigurable components in response to any of the lower level context manager’s 

recommendations. However, the user ultimately decides what actions are to be taken 

and in setups where some form of artificial intelligence is involved, the decision and the 

nature of reconfiguration processes are automated. WSN application users can also avail 

themselves with the system’s activity and performance history.  

 

In realising the proposed concept, a few challenges are to be expected. One key 

challenge is how to identify and develop appropriate metrics for certain contexts (for 

example, performance, and reliability related issues). This can be a complicated venture 

requiring comprehensive experiments. Others might span over the development and 
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optimisation of execution-codes that maintain a balance between performance and 

memory size requirement. 

Some of the benefits of realising the model are highlighted below: 

 Serves as a framework for developing an all-encompassing context-based 

reconfigurable WSN, in addition, prompting the exploration of other system-

related contexts and the development of appropriate metrics. 

 Encourage research work that explores the inclusion of artificial intelligence 

techniques   at higher context level management. This allows the application 

to respond to evolving changes especially in unfriendly environments. 

 If properly implemented, system performance and the rate of resource 

depletion can easily be managed and optimised. For example, predictions or 

estimation of the energy depletion rate is attainable at much higher precision. 

3.1.2 Software Component for Application Context Extraction 

3.1.2.1 Precise Delta Extractor (PDE) Design and Implementation 

 

The PDE implementation serves the following two purposes: 

a. A precise delta extraction  tool that can be used with the different methods 

b. To provide a measure of change/ modification or indirectly a measure of 

changes in the application context information, this also serve as input for the 

fuzzy logic controller. 

Program modification can occur in any of the ways below listed: 

 Adding new functionalities or data (for example, constants,  variables, program 

constructs) 
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 Removing no longer needed functionalities and related data. 

 Updating existing functions or data content. 

3.1.2.2 PDE Design Concept 

 

𝐿𝑒𝑡 A =  {𝑥|𝑎𝑙𝑙 𝑏𝑦𝑡𝑒𝑠 𝑚𝑎𝑘𝑖𝑛𝑔 𝑢𝑝 𝑡ℎ𝑒 𝑓𝑖𝑟𝑚𝑤𝑎𝑟𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑑𝑒} 𝑎𝑛𝑑  

 B =  {𝑥|𝑎𝑙𝑙 𝑏𝑦𝑡𝑒𝑠 𝑚𝑎𝑘𝑖𝑛𝑔 𝑢𝑝 𝑡ℎ𝑒 𝑓𝑖𝑟𝑚𝑤𝑎𝑟𝑒 𝑜𝑓 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑑𝑒} 

 𝑁𝑜𝑤  ∆+= 𝐵\𝐴 ∶   ∆+  ⇒  𝐴𝑑𝑑𝑒𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 |𝐵| 

𝐴𝑙𝑠𝑜,   ∆−= 𝐴\𝐵 ∶  ∆−   ⇒ 𝑅𝑒𝑚𝑜𝑣𝑒𝑑  𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 |𝐴|  

 

However, modification could take place without a significant change in the number of 

elements contained  in either A or B. Such occurrences can be represented as   ∆∓ 

 

Extracting   ∆+ ,   ∆−  𝒂𝒏𝒅   ∆∓  

Descriptions of the symbols used in the mathematical modelling of the PDE scheme are 

given in Table 3.3 and Table 3.4 respectively. The symbols used were based on the 

structure of the Execution Link File (ELF) format as highlighted in Appendix A. 

 

Table 3.3:  Description of ELF membership type symbols 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Member Types Description 

𝑷𝑯. 𝒑𝒕𝒚𝒑𝒆 Type  of segment this array element describes  

𝑺𝑯. 𝒔𝒉𝒂𝒅𝒅𝒓 Section’s physical address 

𝑷𝑯. 𝒑𝒂𝒅𝒅𝒓 Segment’s physical address  
 

𝑷𝑯. 𝒑𝒇𝒊𝒍𝒆𝒛 The number of bytes in the file image of the segment 

𝑺𝑯. 𝒔𝒉𝒇𝒊𝒍𝒔𝒊𝒛𝒆 The number of bytes in the file image of the section 

𝑺𝑯. 𝒔𝒉𝒇𝒍𝒂𝒈𝒔 Flags relevant to the segment 
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Table 3.4:  Description of ELF memberships’ attributes type symbols 

 

Attributes Description 

𝑷𝑯𝑻_𝑳𝑶𝑨𝑫 The array element specifies a loadable segment 

𝑺𝑯𝑭𝑨𝒍𝒍𝒐𝒄 The section occupies memory during process execution 

𝑺𝑯𝑭𝑬𝑿𝑬𝑪𝑰𝑵𝑺𝑻𝑹 The section contains executable machine instructions 

 

Let SEG = a collection of 𝑠𝑒𝑔𝑗with the PH.p_type attributes =𝑃𝐻𝑇_𝐿𝑂𝐴𝐷: 

𝑆𝐸𝐺 =  {⋃ 𝑠𝑒𝑔𝑗
𝑛−1
𝑗=0 |𝑃𝐻. 𝑝𝑡𝑦𝑝𝑒 = 𝑃𝐻𝑇_𝐿𝑂𝐴𝐷}                                         (3.9) 

 

Where PH  Program Header and n = number of segments: 

 

And let    

𝐴 =  𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑎𝑑𝑑𝑟 ∈ [𝑠𝑒𝑔𝑗.𝑃𝐻. 𝑝𝑎𝑑𝑑𝑟 , 𝑠𝑒𝑔𝑗.𝑃𝐻. 𝑝𝑎𝑑𝑑𝑟 + 𝑠𝑒𝑔𝑗.𝑃𝐻. 𝑝𝑓𝑖𝑙𝑒𝑧]        (3.10) 

𝐵 =  𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑓𝑖𝑙𝑠𝑖𝑧𝑒 ≠ 0                                                                                                (3.11) 

  𝐶 =  𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑓𝑙𝑎𝑔𝑠 = 𝑆𝐻𝐹𝐴𝑙𝑙𝑜𝑐                                                                                  (3.12) 

           

𝐷 =  𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑓𝑙𝑎𝑔𝑠 = 𝑆𝐻𝐹𝐸𝑋𝐸𝐶𝐼𝑁𝑆𝑇𝑅                                                                         (3.13) 

 

Where SH  Section Header and m = number of sections then the elements of 𝑠𝑒𝑔𝑗 

consists of a collection of sections 𝑠𝑒𝑐𝑖 expressed thus: 

𝑠𝑒𝑔𝑗 =  {⋃ 𝑠𝑒𝑐𝑖

𝑚−1

𝑖=0

│ 𝐴 & 𝐵 𝑉 𝐶 𝑉𝐷}                                                                              (3.14) 
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From each section contained in   𝑠𝑒𝑔𝑗 ,   a unique address value (𝑈𝑎𝑑𝑑𝑟𝑘)   is derived 

for each instruction code/data by concatenating values of segment number (𝑗),   section 

number (𝑖) and the position (𝑝) of each instruction/data (𝐷𝑘).  

𝑈𝑎𝑑𝑑𝑟𝑘      = 𝑗 + 𝑖 + 𝑝      𝑓𝑜𝑟 𝑘 = 0 → ∑ |𝑠𝑒𝑔𝑗|                                                 (3.15)𝑚−1
𝑗=0     

The addressing scheme uniquely identifies an associated instruction code/data contained 

in the entire loadable file. In order to identify changes ( ∆+ ,   ∆−  𝒂𝒏𝒅   ∆∓) resulting 

from reprogramming or reconfiguration processes, 𝑠𝑒𝑔𝑗 are obtained for the original 

file’s ELF (𝐹𝑜𝑟𝑖𝑔) and the modified version (𝐹𝑚𝑜𝑑) respectively. Subsequently, while 

using 𝑈𝑎𝑑𝑑𝑟𝑘 as a reference, each   𝐷𝑘 within 𝑠𝑒𝑐𝑖  of respective 𝑠𝑒𝑔𝑗  are compared 

and where there are differences, they are reported as either modified set of codes ( ∆∓), 

added set of codes ( ∆+) or removed set of codes ( ∆−)  appropriately. Algorithm 1 

listing  shows the algorithm employed for the PDE. 

 

1. From  SEG obtain a collection of seg 

2. { 

3. For each seg, obtain a collection of sec 

4. { 

5. For each sec collection    

6. { 

7. Compare associated contents (𝐷𝑘) of  Forig  and  Fmod as addressed by                                                                     

        unique address value (𝑈𝑎𝑑𝑑𝑟𝑘) 

8. { 

9. Case (contents = equal  )    :   ignore 

10. Case (contents = different) : report as modified, note address, count number of    

         occurrence(s)   

11.        Case (𝑼𝒂𝒅𝒅𝒓𝒌 contained in Forign  does not exist in Fmod ) :  a deletion of code(s) has taken           

                place , note address, count  number of occurrence(s)   

12.        Case (𝑼𝒂𝒅𝒅𝒓𝒌contained in Fmod  does not exist in Forig ) :  an addition of code(s) has taken     

                place, note address, count number of occurrence(s)   

13. } 

14. } 

15. } 

16. } 

 

Algorithm 1: Precision Delta Extraction (PDE) Implementation 
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Measuring the degree of   ∆+ ,   ∆−  𝒂𝒏𝒅   ∆∓ in relation to the original firmware 

size (Distortion Metrics) 

Let m, n and p represent the total number of segments, sections and bytes/words 

respectively, Likewise: 

𝑇𝑠𝑒𝑐𝑖 = Total Number of bytes /words contained in a section. 

𝑇𝑠𝑒𝑔𝑗= Total Number of bytes /words contained in a segment  

𝑇𝑓 = Total Number of bytes /words contained in the file. 

These terms can be obtained thus: 

Tseci =  |𝑠𝑒𝑐𝑖|                                                                                           (3.16)  

Tsegj =  ∑|𝑠𝑒𝑐𝑖|

𝑛−1

𝑖=0

                                                                                    (3.17) 

Tf =  ∑ |𝑠𝑒𝑔𝑗|

𝑚−1

𝑗=0

                                                                                      (3.18) 

Where 𝛿 represents the degree of changes effected, the value 𝛿  can be obtained thus:  

 𝛿 =  (
𝑇𝑓 (𝐹𝑜𝑟𝑖𝑔) − 𝑇𝑓 (𝐹𝑚𝑜𝑑)

𝑇𝑓 (𝐹𝑜𝑟𝑖𝑔)
 ∗ 1)                                                 (3.19) 

Based on the value of 𝛿 , the following can be inferred: 

i. When(𝛿 < 0 ) , it implies that a set of codes has been added and possibly 

some of the original codes could have been modified as well. 

ii. When(𝛿 > 0 ) , it implies that a set of codes has been removed and possibly 

some of the original codes could have been modified as well. 

iii. When(𝛿 = 0 ) , it implies that no change has taken place, however, it is 

possible that some of the original codes could have been modified as well. 

3.1.2.3 PDE Evaluation  

 

The roles of PDE as earlier discussed entails providing information on changes 

occurring in the application context. The information being a function of the size of 

bytes involved in comparison to the total size of the application.  



 

78 
 

The acquisition of Application Context information for the purpose of system evaluation 

was achieved as follows: Sample application source codes’ ELF files were obtained 

using the GNU C compiler customised for the Contiki operating system. Each of the 

sample files’ source codes were altered or modified in response to changes emanating 

from evolving application needs. Typically, these changes could involve or span over 

variables, constants, function names, libraries and other source code constructs. 

However, in this work the changes were confined to variation involving constants, 

variables and Function names only. 

Having implemented these changes, the modified files were then recompiled to obtain 

new ELF files.  Each pair of generated ELF files (original and modified) were further 

processed using the PDE. The PDE, by design, outputs a dataset, which contains a 

collection of delta (the data difference(s) between the original and modified files) and 

their respective address or addresses where applicable. In addition, the PDE produces 

three reports: the first and second reports are printouts of ELF constituents (available 

sections, data contents and their respective addresses) of both the original and modified 

files respectively.  The third report relays the changes detected in the two files. Samples 

of the relevant extract of these printouts can be found in appendix C. Figure 3.3 shows 

the front end of the PDE application developed using C-sharp programming tools, while 

Figure 3.4 shows an additional form that displays ELF profile information of application 

firmware. As indicated in the Figure 3.3, the original and modified application’s ELF 

constituents (generated unified address, physical address, data,  list of loadable 

segments and segments related addresses and size) as well as  the generated delta  are 

displayed using the list view object components labelled as ‘Original’ , ‘Modified’ and 

‘Delta’ respectively. The benefits of PDE are listed below:  
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i. It is used to measure the extent of firmware modification resulting from the 

addition of new functions, removal, or an update of existing functions.  

ii. The normalised delta output is passed as an input to the context-based WSN 

reconfiguration’ s fuzzy controller, which aids in deciding the most appropriate  

reconfiguration scheme to use. 

iii. It is useful in detecting firmware cloning. 

3.1.3 Flash Memory Energy Consumption Modelling  

One very principal factor worth considering when evaluating the impact of 

reconfiguration processes on entire WSN performance and energy sustenance is the 

knowledge of the characteristics of the memory technologies. In practice, no memory 

technology reads and writes in negligible time, retains its stored value indefinitely, 

occupies negligible space and consumes negligible power. Available memory 

technologies have varied advantageous capabilities: some are stronger in one or more of 

the aforementioned characteristics and weaker in others.  

These technologies entail: Static RAM (SRAM), Electrically Erasable Programmable 

Read-Only Memory (EEPROM) and Flash. The Flash is a product of advancement in 

the floating gate technology using two known techniques, the hot electron injection 

(HEI) and the Nordheim Fowler tunnelling (NFT) technologies. It consists of a single 

transistor per memory cells. Unlike EEPROM, it can only erase in blocks. It has a wear-

out mechanism that limits the number of erase and write operations. Flash technology is 

amazingly powerful, and it is mainly used currently in microcontroller program 

memory. 
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Most microcontrollers in use by wireless sensor nodes employ at least two to three of 

the aforementioned memory technologies. Some examples of these microcontrollers are 

the MSP430 and the PIC32MX320F128H. The second microcontroller is used in the 

evaluation testbed.  

MSP430 flash memory is segregated into segments. Single bits, bytes, or words can be 

written to flash memory, but the segment is the minimum size of flash memory that can 

be erased (www.ti.com/product/msp430f123.pdf). The segments are further divided into 

blocks. A block is 64 bytes, starting at 0xx00h, 0xx40h, 0xx80h, or 0xxC0h, and ending 

at 0xx3Fh, 0xx7Fh, 0xxBFh, or 0xxFFh. Figure 3.5 shows the flash segmentation using 

an example of 4-KB flash that has eight main segments and both information segments. 

 

Figure 3.5: Flash Memory Segments, 4KB Example     

(www.ti.com/product/msp430f123.pdf) 

http://www.ti.com/product/msp430f123.pdf
http://www.ti.com/product/msp430f123.pdf
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The program Flash array for the PIC32MX320F128H device is built up of a series of 

rows. A row contains 128 32-bit instruction words or 512 bytes. A group of eight 

rows/blocks compose a page; which, therefore, contains 8 × 512 = 4096 bytes or 1024 

instruction words. A page/segment  of Flash is the minimum unit of memory that can be 

erased at a single time. The program Flash array can be programmed by Row/Block 

programming (128 instruction words at a time), Word programming (one instruction 

word at a time) or both. 

3.1.3.1 Related Memory re-Flashing Constraints  

Three possible reconfiguration scenarios are highlighted in Figure 3.6, Figure 3.7 and 

Figure 3.8. In each Figure, two columns of a set of blocks designated as 

‘SegO0…SegOn’ and ‘SegN1…SegNn‘  represent original and reconfigured contiguous 

segments of flash memory respectively. Reconfigured data are represented by a strip of 

filled rectangular blocks. As shown in Figure 3.6, the first scenario describes a situation 

where the number of reconfigured data bytes is confined to a single segment ‘SegN1’. In 

such a scenario, erasure and rewriting procedures should naturally be limited to a single 

segment. However, in practice, this is not always the case; the entire flash memory is 

always erased, and the new firmware rewritten all again. The repeated occurrence of the 

erasure and rewriting procedures will eventually accelerate energy consumption at a 

higher rate. 
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The second scenario as depicted in Figure 3.7 illustrates the space taken in memory by 

the reconfigured data.  
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Figure 3.6: Reconfigured data confined to a single segment 
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Figure 3.7: Reconfigured data spread over adjoining segment 



 

85 
 

The space overlaps adjoining segments and being able to handle erasure and writing 

operations within these two segments will invariably result in consumption of much  

less energy.  

The third scenario, shown in Figure 3.8, depicts changes in the new firmware that are 

unevenly distributed all over the memory space. This is attributed to changes resulting 

from the addition, removal or renaming of functions within application source codes. 

These can be more complex when the functions are referenced in several places inside 

the application source code. Similar problems exist for global data variables (Dong, Liu, 

Chen, Bu, Huang and Zhao, 2011). 

 

 

 
 

3.1.3.2 Firmware Reconstruction Algorithm  

In cases where changes occur within a single segment and considering the ‘erase before 

rewriting’ constraint associated with Flash memories, it is economical to ensure that the 

reconstruction procedures are confined to that segment. Based on the data obtained from 
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Figure 3.8: Changes spread over several segments 
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earlier works (Han-Lin, Chia-Lin and Hung-Wei, 2008; Gaurav, Peter, Deepak and 

Prashant, 2006), it can be inferred that the cost of erasing an entire memory is far less 

than erasing individual segments. Likewise, writing to a segment is much cheaper than 

writing to each word that makes of a segment. 

The norm in practice has been to erase the entire Flash memory and then reprogram it 

with the new update. Based on the analysis highlighted in the preceding section, three 

delta-orientations were inferred. These are namely ‘Segment-confined’,             

‘Adjoint-Segments’ and ‘Disjoint-Segment’. In practice, only the first and the last are 

more pronounced.   

The PDE presented in section 3.1.2 provides the address of every delta detected, which 

invariably can be helpful in pinpointing the exact segment where they occur. This 

information allows for erasure and rewriting operations to be carried out within only 

selected segment(s) of relevance. 

Algorithm 2 listing in highlights the re-flashing algorithm developed and employed in 

the context-based WSN reconfiguration software system. 𝑎𝑘 and 𝑑𝑘 represent the 

address and data of delta extracted by the PDE utility where k signify the index or 

position of each member in the set with cardinal value of m. Let  𝑆𝑂𝑖 and 𝑆𝑁𝑗 denote 

segments containing the original and modified firmware in flash memory where i and j 

are their respective locations within a set of n segments contained in the flash memory. 

𝑇(𝑟) connote an array for storing the index or indices of segment(s) affected by the 

modifications or reconfigurations. 
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3.1.4 Adoption of Fuzzy Logic Controller  

 

This subsection discusses the adoption of Fuzzy Logic controller earlier introduced at 

the beginning of this chapter. In order to demonstrate the benefits of the context based 

reconfiguration model, two contexts related input variables were used. The delta-

orientation obtained from the ELF profile of the modified code served as the application 

related context and the Battery energy level state was taken as an operational-demand 

related context. A robust inference engine was developed based on the inferred expert 

knowledge on memory related energy consumption pattern during the reconfiguration 

process. The pattern studied and presented in section 3.1.3 explains how delta size and 

its orientation can influence energy consumption during reprogramming operations. The 

resulting output from the fuzzy logic system controls when and which one of the 

1. r = 0; j = 1; k = 1  

2. While ( j<=n) do  

3. While (k<=m) do 

4. If (ak => start address of SNj & ak <= start address of SNj) 

5. T( r ) =  j 

6. end if 

7. k++ ; r++ ;j++ 

8.  end while  

9. end while  

10. Select  |T( r )|  

11. Case 1: 

12. Erase and reprogram within  SOT(0) 

13 Case  2: 

14 Erase and reprogram SOT(0) and  SOT(1) 

15. Case  >2: 

16. Erase and reprogram entire memory space 

17. end select 
 

Algorithm 2: Flash Program Memory re-flashing 
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reconfiguration approaches should be implemented in order to prolong the battery life. 

Figure 3.9 shows the fuzzy logic controller’s flow diagram. 

 

 

 3.1.4.1 Fuzzy Logic Controller 

A Fuzzy Logic Controller (FLC) is a software component that controls the output 

variables of a system according to its inputs and a set of rules expressed with the 

uncertainty of human terms (Rada-Vilela, 2013). 

Fuzzy input values  

Delta-Orientation Sensor Node’s Battery Energy state 

Normalisation 

n  

Normalisation 

 

Fuzzifucation 

Knowledge based Inference Engine  

Defuzzification 

Output Fuzzy Reprogramming Energy Cost 

Initial membership 

function 

Fuzzy rule base 

Figure 3. 9: Computation of Fuzzy Reprogramming Energy Cost 
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The fuzzy system designed and employed in this research work is composed of four 

main parts. These parts are namely a fuzzifier, a knowledge base, an inference engine, 

and a defuzzifier. 

The fuzzifier transforms the real crisp inputs’ into fuzzy functions, therefore 

determining the ‘degree of membership’ of the inputs to a vague concept. The values of 

the input variables are mapped to the range of values of the corresponding universe of 

discourse. The range and resolution of input fuzzy sets and their effect on the 

fuzzification process are considered as a factor affecting the overall performance of the 

controller. 

The knowledge base comprises the knowledge of the application domain and the related 

control goals. It can be splitted in a database of definitions and used to express linguistic 

control rules in the controller, and a rule base that describes the knowledge held by the 

experts of the domain. Intuitively, the knowledge base is the core element of a fuzzy 

controller as it will contain all the information necessary to accomplish its execution 

tasks. Extensive research has been carried out in order to fine-tune a fuzzy controller’s 

knowledge base, many using other Artificial Intelligence (AI) disciplines such Genetic 

Algorithms or Neural Networks. 

The Inference Engine provides the decision-making logic of the controller. It deduces 

the fuzzy control actions by employing fuzzy implication and fuzzy rules of inference. 

In addition, it is viewed as an emulation of human decision making. In Mamdani 

systems, the antecedents and consequents of a fuzzy rule are fuzzy sets. Inferences are 

based on Generalised Modus Ponens, which states that the degree of truth of the 

consequent of a fuzzy rule is the degree of truth of the antecedent. In the case where 

more than one antecedent clause is present, the individual degrees of membership are 
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joined using a min t-norm operator. If the fuzzy set contains several rules, their output is 

combined using a max s-norm operator. 

The defuzzification process converts fuzzy control values into crisp quantities; that is, it 

links a single point to a fuzzy set, given that the point belongs to the support of the 

fuzzy set. The defuzzification stage consists of converting the fuzzy outputs from each 

variable into crisp values, which are computed with a defuzzifier. Many defuzzifiers 

have been suggested in the literature (Leekwijck and Kerre, 1999), but the most 

common ones are the centroid and maxima defuzzifiers for Mamdani controllers 

(Mamdani and Assilian, 1975). Others are the weighted average and weighted sum for 

Takagi-Sugeno or Tsukamoto controllers (Takagi and Sugeno, 1985). The centroid 

computes the 𝑢 value of the centre of mass of the fuzzy set (Equation 3.20). A 

maximum defuzzifier returns the smallest, mean or largest 𝑢 value for the maximum 

membership function (Equation 3.21). The weighted average and weighted sum are 

computed on the modified functions utilising their activation degrees as weights. In the 

case of Tsukamoto, the defuzzifiers utilise the activation degrees as weights, and the 

membership functions of the activation degrees as values. 

�̅� = 𝑑𝑒𝑓𝑢𝑧𝑧(𝐷) =  
∫ 𝑢𝐷(𝑢)𝑑𝑢

∫ 𝐷(𝑢)𝑑𝑢
                                                                       ( 3.20  ) 

�̅� = 𝑑𝑒𝑓𝑢𝑧𝑧(𝐷)| 𝐷(𝑢)𝑖𝑠 𝑚𝑎𝑥𝑚𝑢𝑚                                                     (3.21) 
 

 

3.1.4.2 Design and implementation of the fuzzy logic controller  

 

The design and implementation of the fuzzy logic controller (FLC) consist of modelling 

the system inputs and outputs as linguistic variables, and creating the necessary 

inference rules that will control the system.  
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Choice of Fuzzy Logic Control Library 

The design and implementation of fuzzy logic controllers are centred on the use of 

Fuzzy logic control libraries. The Matlab Fuzzy Logic Toolbox 

(http://www.mathworks.com.au/products/fuzzy-logic/index.html, accessed on July, 

2013) is perhaps the most widely known library for designing FLCs. It is built on top of 

the Matlab computing environment and bundles Mamdani and Takagi-Sugeno 

controllers, four types of hedges, four fuzzy logic operators, seven defuzzifiers, over 

eleven linguistic terms, and FLCs can be imported and exported utilising the Fuzzy 

Inference System (FIS) format. Matlab and its toolbox are sold separately under 

restrictive and costly proprietary licenses. The toolbox has not been updated since 2005 

(Rada-Vilela, 2013). Other FLC libraries are the Octave Fuzzy Logic Toolkit 

(Markowsky and Segee, 2011) and the jFuzzyLogic (Cingolani and Alcala-Fdez, 2012). 

These state-of-the-art libraries to model fuzzy logic controllers have strong limitations 

in terms of licensing, cost, design and implementation, all of which have been recently 

addressed in a free open-source fuzzy logic control library named fuzzylite (Rada-

Vilela, 2013).  

The fuzzylite fuzzy logic controller (Rada-Vilela, 2014) was adopted in this research 

work because it is much easier to configure and use. In addition, it possesses the under 

listed features:   

i.  Controllers: Mamdani, Takagi-Sugeno and Tsukamoto 

ii. Linguistic terms: rectangle, triangle, trapezoid, bell, pi-shape, sigmoid 

difference and sigmoid.  

iii. T-Norms: minimum, algebraic product, bounded difference, drastic product, 

Einstein product and hamacher product. 
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iv. S-Norms: einstein sum, bounded sum, normalised sum, drastic sum, 

algebraic sum, maximum, and hamacher sum. 

v. Defuzzifiers: centroid, bisector, smallest of maximum, largest of maximum, 

mean of maximum, weighted average and weighted sum. 

vi. Import and export controllers utilising the FCL and FIS formats 

 

 

Fuzzylite is a fuzzy logic control library that is programmed in C++ and it is free open-

source. It has a cross-platform capability. Its goal is to provide the design and operation 

of FLCs with an object-oriented approach such that controllers can be incorporated into 

any application in just a few steps without requiring any third-party libraries. 

Additionally, it comes with an application named qtfuzzylite to visually design FLCs 

and interact with their operation in real time. 

 

3.1.4.3 Modelling the system Inputs and Output 

Project Definition in Development Tool 

The first step is to use the qtfuzzylite to define the structure of the controller via its 

editor. The project editor (Figure 3.10) displays the controller structure and allows the 

designer to access linguistic variables and rule definitions directly. 
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Linguistic Variables Definitions 

The next step involves the use of qtfuzzilite graphic interface to create the most suitable 

linguistic variables and membership functions for the application.  

The triangular functions are used as a membership function because they have been 

used extensively in real-time applications due to their simple formulas and 

computational efficiency (Sadiq, Abu, and Ghafoor, 2010).  

The Delta-orientation obtained via the PDE and the sensor node’s battery energy state 

served as input into the fuzzy logic system. The delta-orientation and the battery energy 

state were meant to represent the application and operational-demand context 

respectively. 

The input membership functions shown in Figure 3.11 are defined for the Delta 

orientation input. It takes into account the three delta-orientation outlined in section 

3.1.3.4. The delta-orientation is covered with three membership functions spread over a 

range of 2.5 * number of bytes contained in the segment of program memory (for the 

PIC32MX320F128H, each segment contains 4096 bytes). The three membership are 

Segment-confined, Segment-Adjoint and Segment-Disjoint. 

The second input value for the fuzzy-logic system is the battery energy state expressed 

in terms of joules. As shown in Figure 3.12, the range of this input value is spread over 

the values of 0 to 18720 Joules, where 18720 Joules is the typical energy of two AA 

batteries (http://castalia.npc.nicta.com.au). The range maps the sensor node’s battery 

energy level between when it is in a virtually depleted state to a fully charged state.  

 

http://castalia.npc.nicta.com.au/
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The membership functions of the battery energy state input were distributed as follows: 

i. Critical: Cannot support reconfiguration for any delta size or orientation;  

energy should rather be conserved for application’s basic task 

ii.  Fair: Can support reconfiguration if delta size is within an acceptable size 

range- most probable a segment. 

iii. OK: Can support whole or any delta size of reconfiguration. However, 

should be used with caution. 

iv. Very OK: More than sufficient energy is available to handle any delta size or 

orientation.  

The fuzzy system calculates the fuzzy-cost for each Delta and battery energy state input 

values. The ensuing output membership function intended to guide each sensor node in 

adopting the most appropriate reconfiguration approach while considering the available 

battery’s energy level is shown in Figure 3.13. The distribution is spread over four 

options:  Difference-Approach, Modular-Approach, Entire-Image-Approach, and 

Suspend-Reconfiguration. This process applies to each wireless sensor node while in the 

field. This ensures that the battery’s energy level in every node is optimally managed 

during every reconfiguration process.  

 

3.1.4.4 Fuzzy Inference Engine 

The fuzzy inference engine is composed of rules developed using expert knowledge. 

The design of the knowledge-based rules that connect the inputs, and the outputs is 

based on the philosophy behind reprogramming of Flash memory. This philosophy has 

been presented in section 3.1.3.  

The fuzzy inference system is designed based on twelve rules listed below: 

i. if Delta_Orientation is Segment_Confined and Battery_State is Very_Ok then 

Reconfiguration_Approach is Difference_Approach; 
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ii. if Delta_Orientation is Segment_Confined and Battery_State is Critical then 

Reconfiguration_Approach is Suspend_Reconfiguration; 
 

iii. if Delta_Orientation is Segment_Confined and Battery_State is Fair then 

Reconfiguration_Approach is Difference_Approach; 
 

iv. if Delta_Orientation is Segment_Confined and Battery_State is Ok then 

Reconfiguration_Approach is Difference_Approach; 
 

v. if Delta_Orientation is Segment_Adjoint and Battery_State is Very_Ok then 

Reconfiguration_Approach is Modular_Approach; 
 

vi. if Delta_Orientation is Segment_Adjoint and Battery_State is Critical then 

Reconfiguration_Approach is Suspend_Reconfiguration; 
 

Vii if Delta_Orientation is Segment_Adjoint and Battery_State is Fair then 

Reconfiguration_Approach is Modular_Approach; 
 

Viii if Delta_Orientation is Segment_Adjoint and Battery_State is Ok then 

Reconfiguration_Approach is Modular_Approach 
 

ix. if Delta_Orientation is Segment_Disjoint and Battery_State is Very_Ok then 

Reconfiguration_Approach is Entire_Image_Approach; 

 
x. if Delta_Orientation is Segment_Disjoint and Battery_State is Critical then 

Reconfiguration_Approach is Suspend_Reconfiguration; 

 
xi. if Delta_Orientation is Segment_Disjoint and Battery_State is Fair then 

Reconfiguration_Approach is Suspend_Reconfiguration; and 

 
xii. if Delta_Orientation is Segment_Disjoint and Battery_State is Ok then 

Reconfiguration_Approach is Entire_Image_Approach. 

 

 

The qtfuzzylite development tool’s rule text editor (Figure 3.14) offers an easy way to 

examine and define the set of rules. Using these features, one can verify that all the 

defined rules are necessary, that no important rules are missing, and that the variations 

of the output variable are consistent with the designed system requirements. Optimising 

the entire system (Figure 3.15) behaviour is done easily and quickly by changing the set 

of rules, modifying the membership functions definitions, or selecting from the 

available defuzzification options. 
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3.2 Context-Based Reconfiguration System Evaluation 

3.2.1 Testbed Hardware Composition  

 

The Testbed features a powerful Microchip PIC32MX320F128H microcontroller and a 

Microchip MRF24J40MB transceiver for implementing low-cost Wireless Sensor 

Network. The Microchip PIC32MX320F128H adopted is an extremely powerful 

microcontroller support implementing a Microprocessor without Interlocked Pipeline 

Stages (MIPS) architecture can provide up-to 80 MIPS of computational power. The 

microcontroller implements in hardware the following: Serial Peripheral Interface (SPI), 

Inter-Integrated Circuit (I2C), Universal Asynchronous Receiver/Transmitter (UART), 

Controller Area Network (CAN) and Universal Serial Bus (USB) communication 

protocols easing the connection with external units. It implements a reduced instruction 

set computer (RISC) instruction set. The Memory can be fully addressable by Direct 

Memory Access (DMA) controllers and IEEE802.3 Media Access Control (MAC) layer 

is implemented on chip (http://ww1.microchip.com/). The TestBed Board comes with 

Full software support, including porting for Contiki OS. Plates 3.17, 3.18 and 3.19 

illustrate the hardware composition of the complete base station and the wireless sensor 

nodes respectively. 

The Microchip MRF24J40MB transceiver (see Plates 3.20) is used for accessing the 

IEEE802.15.4 channel. This transceiver was chosen for its extremely high coverage (up 

to 100m in open space at max power) and for its high configurability. The MRF24J40 is 

an IEEE 802.15.4™ Standard compliant 2.4 GHz RF transceiver 

(http://ww1.microchip.com/). It integrates the PHY and MAC functionality in a single 

chip solution. The MRF24J40 creates a low-cost, low-power, low data rate (250 or 625 

kbps) Wireless Personal Area Network (WPAN) device (http://ww1.microchip.com/). 
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The MRF24J40 interfaces to Microchip PIC microcontrollers via a 4-wire serial SPI 

interface, interrupt, wake and Reset pins. 

 

 

 

ZigBee 

Base Station  

Nodes in the Field 

Plate I: The Tesbed Hardware Composition 

Plate II: Base station Hardware Composition 
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The MRF24J40 provides hardware support for: 

•Energy Detection 

•Carrier Sense 

Plate III: Wireless Sensor Node Hardware 

Plate IV: The Microchip MRF24J40MB transceiver (http://ww1.microchip.com/) 
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•Three Clear Channel Assesement (CCA) Modes 

• Carrier Sense Multiple Access – Collision Avoidance (CSMA-CA) Algorithm 

•Automatic Packet Retransmission 

•Automatic Acknowledgment 

•Independent Transmit, Beacon and Guaranteed Time Slot – First in First out (GTS-

FIFO) Buffers 

•Security Engine supports Encryption and Decryption for Media Acess Control 

(MAC) Sub layer and Upper Layer 

These features reduce the processing load, allowing the use of low-cost 8-bit and 32-bit 

microcontrollers. 

 

3.2.2 Testbed Software Composition 

 

The embedded software system implemented in each source code runs on the Contiki 

operating system platform. Codes in Contiki run in either of two execution contexts: 

cooperative or pre-emptive. All Contiki programs are processes, which run in the 

cooperative context, whereas interrupts and real-time timers run in the pre-emptive 

context. A process is a piece of code that is run repeatedly by the OS.  They are 

typically started when the system boots, or when a module that contains a process is 

loaded into the system. Processes run when something happens, such as a timer firing or 

an external event occurring. 

 

Code running in the cooperative execution context is run sequentially with respect to 

other code in the cooperative context. Cooperative code must run to completion before 

other cooperatively scheduled code can run. Pre-emptive code may stop the cooperative 

code at any time. When pre-emptive code stops the cooperative code, the cooperative 

code will not be resumed until the pre-emptive code has completed. The pre-emptive 
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context is used by interrupt handlers in device drivers and by real-time tasks that have 

been scheduled for a specific deadline.  

The TestBed board support is fully integrated in Contiki build system. The Contiki 

system is designed to make it easy to compile Contiki applications either to a hardware 

platform or into a simulation platform by simply supplying different parameters to the 

make command, without having to edit makefiles or to modify the application code.  

3.3 Overall System Performance Evaluation  

3.3.1 Choice of Simulator  

The simulator adopted for the purpose of evaluation is the Castalia based on the 

OMNeT++ platform. Castalia is a simulator for WSN and networks of low-power 

embedded devices. It is used to test their distributed algorithms and/or protocols in 

realistic wireless channel, with a realistic node behaviour especially relating to access of 

the radio. The main features of Castalia are: 

 Advanced channel model based on empirically measured data. 

o  Model defines a map of path loss, not simply connections between nodes 

o Complex model for temporal variation of path loss 

o Fully supports mobility of the nodes 

o Interference is handled as received signal strength, not as a separate feature 

 Advanced radio model based on real radios for low-power communication. 

o Probability of the reception based on Signal to Inference plus Noise Ratio 

(SINR), packet size, Phase-Shift Keying (PSK) modulation type.  

o Frequency-Shift Keying (FSK) supported, custom modulation allowed by 

defining Signal to Noise – Bit Error Rate (SNR-BER) curve. 

o Multiple transmitter  power levels with individual node variations allowed 

o States with different power consumption and delays switching between them 
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o Realistic modelling of Received Signal Strength Indicator (RSSI) and carrier 

sensing 

  Extended sensing modelling provisions 

o Highly flexible physical process model. 

o Sensing device noise, bias, and power consumption. 

 Node clock drift 

 MAC and routing protocols are available. 

 Designed for adaptation and expansion. 

The Castalia architecture as depicted in Figure 3.16 indicates the interconnections 

between the sensor nodes. The nodes are linked via the wireless channel module. The 

arrows indicate message passing from one module to another. Each node sends its 

packet to the wireless channel, which then selects the appropriate node(s) that should 

receive the packet. The nodes are also linked through the physical processes that they 

monitor.  

There can be multiple physical processes, representing the multiple sensing devices 

(multiple sensing modalities) that a node has (http://castalia.npc.nicta.com.au). The 

node module is a composite one. Figure 3.17 shows the internal structure of the node 

composite module. The solid arrows signify message passing and the dashed arrows 

signify simple function calling. The application module is altered to simulate the 

Context based WSN reconfiguration model.   

 

http://castalia.npc.nicta.com.au/
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Figure 3.16: The Modules and their connections in Castalia 

(http://castalia.npc.nicta.com.au) 

Figure 3.17: The node composite module (http://castalia.npc.nicta.com.au) 

http://castalia.npc.nicta.com.au/
http://castalia.npc.nicta.com.au/
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This structure depicted in Figures 3.16 and 3.17 were implemented in Castalia with the 

use of the OMNeT++ NED language.  

 

3.3.2 Using OMNeT++ and Castalia Debugging and Reporting tool 

The OMNeT++ simulation kernel records the message exchanges during the simulation 

into an event log file. This log file can be analysed later with the Sequence Chart tool. 

The Sequence Chart tool, and shows how the message is routed between the different 

nodes in the network. The sequence chart is valuable for debugging, exploring or 

documenting the complex model behaviour.  

 

3.3.3 Simulation Setup 

Adopting the Castalia framework, a network of six wireless sensor nodes was setup on 

the OMNeT++ platform. One of the nodes SNode[0] serves as the agent that links all 

the other sensor nodes to the base station, three of the nodes SNode[2] , SNode[3] and 

SNode[5]  were programmed with  context based reconfiguration capabilities and the 

remaining other  two  nodes SNode[1] and SNode[4] take on default reconfiguration 

paradigm.  

The dataset obtained from the PDE and Fuzzy controller sub components were used to 

run the simulation platform. Erasure and writing energy, as well as the total energy 

consumption resulting from both erasure and writing operation were compared for the 

two sets of nodes. These results and the ensuing discussion are presented in chapter 

four. 

 

 



 

110 
 

3.4 Summary  

 

The design, development, and evaluation procedures used to achieve the research work 

aim and objectives were outlined and discussed in this chapter. 

The design process outlined the use of contextual information in reducing the cost of 

overheads during reconfiguration processes. Two categories of context related 

information were presented and discussed. These are the Application related context and 

the operational-demand related context. A design flow of how the two sets of 

information can be used to improve upon existing reconfiguration approaches were 

discussed in section 3.1.1.3. In order to use this information intelligently, the context 

information must be measurable and presented in a form that is concise so that 

appropriate decision on how and when best to effect a reconfiguration can be taken. 

Some of these information are generally imprecise, hence the selected decision-making 

system must have the capability to handle them. Two subcomponents devise to handle 

these requirements are the Precision Delta Extraction tool and a fuzzy logic controller. 

Details of these subcomponents’ specifications, requirement, design, development and 

evaluation procedures were presented in this chapter.  
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CHAPTER FOUR  

4.0            RESULTS AND DISCUSSION 

The results obtained while evaluating the context based WSN reconfiguration system 

were presented. First, the system’s sub components comprising of the Precision Delta 

Extraction module and the Fuzzy logic Controller related results were presented in 

section 4.1 and 4.2 respectively. The overall system’s performance is relayed in section 

4.3. Related discussions of the results were presented in subsequent subsections 4.4, 

4.4.1 and 4.4.2. 

4.1 Precise Delta Extraction Tool 

To evaluate the performance of the PDE, an application sample ‘remotepowerswitch.c’ 

built on the Contiki OS was used. The content of this sample application and other 

support files are listed in Appendix D. Changes effected at various source code’ 

program structure were applied to each application’s source code, each of the ensuing 

modified files paired with the original was compiled and their subsequent ELF files fed 

into the PDE. The Delta obtained, and other relevant information provided on the ELF 

profile form, are presented under related subsections 4.1.1.1, 4.1.1.2 and 4.1.1.3. 

4.1.1 ELF Profile of the ‘Remote Power Switch’ Sample   

                    Application  

 

Using the ELF profile front end of the PDE, the constituents of the generated 

‘remotepowerswitch.elf’ form in its original state (without any modifications) are 

presented in Table 4.1. The Profile’s front end as shown in Figure 4.1 indicates where 

these constituents were obtained from.  In addition, The ELF profile front end provides 

the following information:  
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i. A list of all loadable segments contained in the file. The information is 

obtained using Equation (3.9) as presented in chapter three. 

ii. The virtual and physical start address of each segment.  

iii. The total byte size of each segment  

iv. Whether ‘Execute’, ‘Read’ or ‘Write’ operations are allowed in the listed 

segments. 

v. It also indicates the unified Addressing scheme obtained to uniquely identify 

each data content within the ELF file. 

 

Table 4.1: List of ‘remotepowerswitch.elf’ ELF constituents 

Segment 

Number  

Number  of 

Sections 

Segment Byte size Segment Flags 

0 465 79, 988 Execute , Read 

1 65 2,152 Execute , Read 

2 4 1,788 Write, Read 

3 1 0 Read 

4 15 8,344 Write, Read 

5 2 912 Execute , Read 

6 1 36 Execute , Read 

7 1 4 Execute , Read 

8 1 4 Execute , Read 

9 1 4 Execute , Read 

10 1 4 Execute , Read 

 

Total bytes contained in File 

 

93,236 
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4.1.1.1 Case Study 1: Effecting Changes to ‘Constant Data ‘ 

Program Code Listing 1 and 2 show the highlighted section of the ‘Led.c’ source code 

where the change was made. In this case, the label definition ‘LEDS_RED’ used in the 

original source code has a value of ‘#2’ as indicated in the header file ‘Led.h’ in 

Program Code Listing 1. The label definition was altered to take on a new value of ‘#4’ 

represented by ‘LEDS_YELLOW’.  The two source codes (the original and the altered) 

were compiled and their generated ELF fed into the PDE. The delta obtained are 

illustrated in Figures 4.4, 4.5 and 4.6. 

 

 

 

 

#ifndef LEDS_GREEN 
#define LEDS_GREEN  1 
#endif /* LEDS_GREEN */ 
#ifndef LEDS_YELLOW 
#define LEDS_YELLOW  2 
#endif /* LEDS_YELLOW */ 
#ifndef LEDS_RED 
#define LEDS_RED  4 
#endif /* LEDS_RED */ 

Program Code Listing 1: Extract from ‘Led.h’ showing values assigned to     

                                         constant definitions used        

                     in  ‘Led.c’ 

Program Code Listing 2: Extract from ‘Led.C’ file showing original Constant         

Assignment (Case study1) 

 
void 
toggle_handler(void* request, void* response, uint8_t *buffer, uint16_t 
preferred_size, int32_t *offset) 
{ 
  leds_toggle(LEDS_RED); 
   
  PORTEbits.RE0 = !PORTEbits.RE0; 
} 
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The delta listing in Figure 4.4 was obtained from the ‘modifiedRpt.txt’ and the initial 

values as presented in the ‘originalRpt.txt’ file is shown in Program Code Listing 4. 

Program Code Listing 4 depicts the alteration in the data content to be exactly one byte 

in size. The change occurs at unified address location ‘0->276->3’ and has a  physical  

address  value of   ‘9D012014’. The extent of change does not affect the size of the 

entire firmware, and it is confined to just a segment in the program hence its orientation 

is of the segment confined type.  

 

Program Code Listing 3: Extract from ‘Led.C’ file showing modified Constant 

Assignment (Case study 1) 

void 
toggle_handler(void* request, void* response, uint8_t *buffer, uint16_t 

preferred_size, int32_t *offset) 
{ 
  leds_toggle(LEDS_YELLOW);   
  PORTEbits.RE0 = !PORTEbits.RE0; 
} 
  

SECTION NO.: 276; SECTION NAME: .text.toggle_handler; NAME INDEX.: 
2175 TYPE: ProgBits; LOAD ADDRESS: 9D012008; SIZE: 38   
              
 |  0->276->0 |  9D012008 |  27BDFFE8 
 |  0->276->1 |  9D01200C |  AFBF0014 
 |  0->276->2 |  9D012010 |  F404C8F 
 |  0->276->3 |  9D012014 |  24040004 
 |  0->276->4 |  9D012018 |  3C02BF88 
 |  0->276->5 |  9D01201C |  8C446110 
 |  0->276->6 |  9D012020 |  30840001 
 |  0->276->7 |  9D012024 |  2C840001 
 |  0->276->8 |  9D012028 |  8C436110 

Figure 4.2:   Original Data value of the file before effecting changes (Case 

study1) 

Original Data 

value  
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4.1.1.2 Case Study 2: Effecting Changes to ‘Flow of Control’ 

 

Similar procedures carried out in the previous sub-section were repeated for a scenario 

where ‘flow of control’ construct is introduced in the main application’s source codes. 

Program Code Listing 4 shows highlights of the introduced ‘flow of control’ construct. 

The isolated delta obtained were presented in Figure 4.5 and Figure 4.6. A collection of 

the delta is shown in Figure 4.5 while their distribution in the modified file is depicted 

in Figure 4.6. 

SECTION NO.: 276 ; SECTION NAME : .text.toggle_handler ; NAME INDEX.: 
2175 TYPE : ProgBits ; LOAD ADDRESS : 9D012008 ; SIZE : 38   
              
 |  0->276->0 |  9D012008 |  27BDFFE8 
 |  0->276->1 |  9D01200C |  AFBF0014 
 |  0->276->2 |  9D012010 |  F404C8F 
 |  0->276->3 |  9D012014 |  24040002 
 |  0->276->4 |  9D012018 |  3C02BF88 
 |  0->276->5 |  9D01201C |  8C446110 
 |  0->276->6 |  9D012020 |  30840001 
 |  0->276->7 |  9D012024 |  2C840001 

Figure 4.4:  Modified value of Data the file after effecting changes 

(Case study 1) 

 

Modified Data value  

SECTION : .text.toggle_handler COUNT : 1 

              

*0->276->3*24040004 

 
Shows a single 

modification has taken 

place- the change reported 

is a single byte. 

Address 

location of 

where change 

has taken 

place  
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toggle_handler(void* request, void* response, uint8_t *buffer, 
uint16_t preferred_size, int32_t *offset) 
{ 
  int decide = 0;  
 
if (decide = 1) 
 { 
   leds_toggle(LEDS_RED); 
   
    PORTEbits.RE0 = !PORTEbits.RE0; 
  } 
   else  
 { 
 leds_toggle(LEDS_YELLOW); 
   
    PORTEbits.RE0 = !PORTEbits.RE0; 
 
  } 
} 

Program Code Listing 4: Extract from ‘Led.C’ file showing the insertion of a 

‘Flow of Control’ code  construct (Case study 2) 

 

              
 SECTION : .text.process_thread_remote_power_switch COUNT : 3 
              
*0->150->6*24030059 
*0->150->10*24020059 
*0->150->24*24020059 

Figure 4.5: Delta as reported in the modified File (Case study 2) 
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4.1.1.3 Case Study 3: Effecting Changes to ‘Function’s Name’ 

In this case, changes were made to the original code by introducing some functions into 

the application’s source code. The deltas obtained were quite large and were unevenly 

distributed in the program memory map. These changes as reported by the PDE are 

depicted in Figure 4.7.  

SECTION NO.: 150 ; SECTION NAME : 
.text.process_thread_remote_power_switch ; NAME INDEX.: 142D TYPE : 
ProgBits ; LOAD ADDRESS : 9D00F268 ; SIZE : 84   
              
 |  0->150->0 |  9D00F268 |  27BDFFE8 
 |  0->150->1 |  9D00F26C |  AFBF0014 
 |  0->150->2 |  9D00F270 |  AFB00010 
 |  0->150->3 |  9D00F274 |  94820000 
 |  0->150->4 |  9D00F278 |  10400006 
 |  0->150->5 |  9D00F27C |  808021 
 |  0->150->6 |  9D00F280 |  24030059 
 |  0->150->7 |  9D00F284 |  54430014 
 |  0->150->8 |  9D00F288 |  A4800000 
 |  0->150->9 |  9D00F28C |  B403CB3 
 |  0->150->10 |  9D00F290 |  24020059 
 |  0->150->11 |  9D00F294 |  F4043E3 
 |  0->150->12 |  9D00F298 |  0 
 |  0->150->13 |  9D00F29C |  3C02BF88 
 |  0->150->14 |  9D00F2A0 |  8C436100 
 |  0->150->15 |  9D00F2A4 |  7C030004 
 |  0->150->16 |  9D00F2A8 |  AC436100 
 |  0->150->17 |  9D00F2AC |  3C02BF88 
 |  0->150->18 |  9D00F2B0 |  8C436110 
 |  0->150->19 |  9D00F2B4 |  7C030004 
 |  0->150->20 |  9D00F2B8 |  AC436110 
 |  0->150->21 |  9D00F2BC |  3C04A000 
 |  0->150->22 |  9D00F2C0 |  F4042CF 
 |  0->150->23 |  9D00F2C4 |  2484257C 
 |  0->150->24 |  9D00F2C8 |  24020059 
 |  0->150->25 |  9D00F2CC |  A6020000 
 |  0->150->26 |  9D00F2D0 |  B403CB7 
 |  0->150->27 |  9D00F2D4 |  24020001 
 |  0->150->28 |  9D00F2D8 |  24020003 
 |  0->150->29 |  9D00F2DC |  8FBF0014 
 |  0->150->30 |  9D00F2E0 |  8FB00010 
 |  0->150->31 |  9D00F2E4 |  3E00008 
 |  0->150->32 |  9D00F2E8 |  27BD0018 

Figure 4.6: PDE display delta results obtained from Case study 2 
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4.1.2 Summary of the results 

A summary of the results obtained in the three case studies earlier presented above is 

shown in Table 4.2. The results were categorised under the following: the delta(s) size, 

the physical address range of the delta(s), related ELF segments where the delta resides, 

delta orientation and the number of segment(s) involved.  

 

 

Table 4.2: A summary of results obtained for the three case studies 

Case 

study 

Title  Size of 

changes 

in byte  

Physical Address 

Range(s) 

ELF segment 

Name 

Orientation of 

Change in 

Memory 

(Delta 

Orientation) 

Number 

of 

Segment  
Start End 

        

1 Effecting 

Changes to 

‘Constant’ 

Data 

2 9D012014 9D012014 .text Segment 

confined 

1 

2 Effecting 

Changes to 

‘Flow of 

Control 

3 9D00F280 9D00F2C8 .text Segment 

confined 

1 

3 Effecting 

Changes to 

‘Function’s 

Name’ 

2725 9D000028 

9FC01280 

A00025FC 

BFC00014 

BFC02FF0 

9D013884 

9FC01984 

A0002784 

BFC00194 

BFC02FF0 

.text 

.vector 

.data 

.reset 

.config_BFC02FF0 

Segments 

Disjointed 

5 

 

 

4.2 Fuzzy Inference Engine 

The fuzzy inference engine’s performance is critical to achieving the set goals of every 

context based reconfiguration system for WSN. The details of its design have been 

extensively discussed in chapter three.  In order to demonstrate the designed fuzzy 

inference system’s application and performance, two simulated scenarios were used.   
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The first scenario is based on case study one (1) earlier presented in section 4.1.1.2. 

Here, the delta size of two (2) bytes is defined to belong to the segment-confined 

membership function (delta-orientation). Varying the battery’s energy level over the 

designated ranges as shown in Figure 4.8 always results in the ‘Difference-approach’ 

reconfiguration option being suggested (though of a degree of 0.001, even when the 

battery’s energy level is at a critical level).  

 

The second scenario is based on the case study three. The delta size obtained as 

indicated in Table 4.2 is 2725, though the size is a single segment range; the delta’s 

orientation is of the disjointed nature. Figures 4.9, Figures 4.10 and Figures 4.11 show 

the various reconfiguration options selected based on varied battery’s energy levels.  

Table 4.3 shows the results obtained when the battery’s energy level was varied across 

its selected corresponding membership functions.  

 

 

Table 4.3: Results obtained for varied battery’s energy levels 

SN Battery state / 

Degree 

Reconfiguration Option / 

Degree  

Best Reconfiguration 

option/ Degree 
1 Critical  / 0.695 Suspend reconfiguration  / 0.670 Suspend reconfiguration  / 0.670 

2 Ok / 0.639 

Fair / 0.168 

Suspend reconfiguration  / 0.168 

Entire-Image-Approach  / 0.639 

Entire-Image-Approach  / 0.639 

3 Very Ok / 0.758  Entire-Image-Approach  / 0.670 Entire-Image-Approach  / 0.670 
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4.3 Context-Based Reconfiguration system evaluation 

Adopting the Castalia framework, a network of six wireless sensor nodes is setup on the 

Omnet++ platform (illustrated in Figure 4.12). One of the nodes SNode [0] is positioned 

to serve as the reconfiguration agent. The agent routes both Data and control messages 

from the base station to the other nodes (SNode [1], SNode [2], SNode [3], SNode [4] 

and SNode [5]) in the network. Three of the nodes SNode [2], SNode [3] and SNode [5]   

were programed with the context based reconfiguration capabilities and the remaining 

other two nodes SNode [1] and SNode [4] take on default reconfiguration paradigm. 

The set equipped with context based reconfiguration capabilities is tagged as group A 

while those with default reconfiguration paradigm tagged as group B. 

In order to evaluate the benefits of the context-based reconfiguration model, each node 

in the simulation setup is configured to take on default values of energy consumed per 

byte and per segment during program memory reprogramming operations (read, erase 

and write procedures). The intent is to ascertain whether there is a significant difference 

in the amount of energy consumed by the two set of nodes. The parameters used in 

configuring each node are listed in Table 4.4. These parameters were used in computing 

the read, erasure and write energy consumption values in the omnet++ simulation 

platform. The values were adopted from the literature (Han-Lin, Chia-Lin, and Hung-

Wei, 2008; Mathur, Desnoyers, Ganesan, Shenoy, 2006; Mohan, Bunker, Grupp, 

Gurumurthi, Stan, 2013,) and the datasheet of the testbed’s microcontroller 

(PIC32MX320F128H).  

The simulation procedure involves the transmission of a packet of data consisting of 

delta and control messages from the base station to each of the nodes (SNode [1], SNode 

[2], SNode [3], SNode [4] and SNode [5]) via SNode [0] as shown in Figure 4.12.  
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The sequence chart shown in Figure 4.13 illustrates the pattern of transmission and 

reception as implemented within the WSN. In addition, the sequence chart presents the 

history of the simulation carried out. The control message was derived from the output 

of the Fuzzy logic controller.  The integration of the fuzzy logic inference engine into 

the omnet++ simulation platform was implemented via the use of fuzzilite dataset 

(extract is provided in Appendix C) generated using the qtfuzzilite tool.  

 

Using a test delta size of 2725, delta orientation of the segment-confined type and 

battery energy state of ‘very ok’, the read, erasure, write and the total energy (a 

summation of read, erasure and write energy values) consumed were obtained and 

subsequently used to plot the graph shown in Figure 4.14. Similarly, using a test delta 

size of 2725, delta orientation of the segment-disjoint type and battery energy state of 

‘very ok’, the read, erasure, write and the  total energy ( a summation of read, erasure 

and write energy values) consumed were obtained and subsequently used to plot the 

graph shown in Figure 4.15.  

 

Table 4.4: Flash Memory Characteristic (Han-Lin, Chia-Lin, and Hung-Wei, 2008) 

Procedure Scope Energy(µ J) 

 Read Write Erase 

Per Byte 0.004 0.009 0.047 

Segment/Page 0.0679 7.66 192.2 
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Figure 4.14: Graphical plot made for deltas’ size less than program memory’s 

segment Size, having segment-confined orientation type 
 

Figure 4.15: Graphical plot made for deltas’ size less than the program 

memory’s   segment size, having segment-disjoint orientation type 
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4.4 PDE Utilisation Results and Discussion  

The PDE isolates delta codes and provides information on the location in memory 

where appropriate changes are to be made in the new firmware. The information 

illustrated in Table 4.2 is useful in determining the size of delta involved and nature or 

characteristic of their distribution in the program memory.  

In case study one, it is observed that the size of delta is a single byte, this very small 

change can mean a lot in real WSN applications. One typical example involves altering 

the rate at which a sensor samples data in the field or taking an average of the number of 

samples acquired. These changes in most cases are limited to single byte size or integer 

size. Using the conventional approach will involve the erasure and rewriting of the 

entire program memory space or a substantial amount of the memory space if a loadable 

reprogramming approach is employed.  

In case study three, the delta distribution among segments in the flash memory is highly 

fragmented. These changes spread over five ELF segments, namely: (.text, .vector, 

.data, .reset, and .config_BFC02FF0). Even though the total number of bytes involved is 

relatively small (2725) compared to the actual memory size (128KB) of the 

PIC32MX320F128H microcontroller, the disjointed nature of the delta is best handled 

by reprogramming the entire available memory space.  

The   observations inferred from the above case studies were instrumental in devising an 

inference engine for the fuzzy logic subsystem employed in the context-based 

reconfiguration system for WSN. 

 

 



 

133 
 

4.4.1  PDE Compared to Existing Difference Reconfiguration Algorithms 

The limitations attributed to the difference-based approach as highlighted in section of 

section 2.4.5.1 were resolved using the precision delta extraction scheme.  The precision 

delta extraction scheme generate a unified address scheme, which concatenates the 

segment number, section number and the position of each data contained in the original 

image and the modified image file separately. The segment and section number are part 

of the Execution Link File format explained in Appendix A. The unified address scheme 

gives each set of data contained in the two files unique reference numbers that are 

similar. Hence, when any of the set of data is missing, its corresponding unified address 

ceases to exist, though its physical address might still exist, it will definitely point to 

another data. Similarly, when a set of new data is added, these new data acquire new 

unified addresses and invariably become easier to isolate. 

This approach rules out the need to generate the pair (Checksum, MD5 hash) for each 

block of the old image and new image for comparison, which subsequently reduces the 

cost of implementing expensive computations in the base station. Though  Panta, 

Bagchi and Midkiff (2011) tried to justify the use of the host computer in implementing 

their modified algorithm, issues of degrading performance  occasioned by delay in delta 

dissemination   can arise (especially in real time applications). Other variants of the 

Rysnc algorithm have been proposed and implemented: RDIFF (Milosh, Cuijipers and 

Lukkien, 2013), VCDIFF (Korn, MacDonald, Mogul and Vo, 2002), and BSDIFF 

(Percival, 2003). However, since they are derivatives of the original Rysnc algorithm, 

the lapses highlighted here are very much applicable. 
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4.4.2 Context-Based Reconfiguration system 

 

The graph shown in Figure 4.14 was obtained for group A set of nodes where the delta 

orientation is of the segment-confined type. In conventional reprogramming procedures, 

the entire program memory is erased and rewritten all over again with a new image even 

if the delta (change) is a minute fraction of the entire program memory space. Hence the 

result obtained in Figure 4.15, also represents what is obtainable for the second group of 

nodes (group B) for the delta-orientation set as segment-confined. However, when the 

delta orientation is of the segment-disjoint type and irrespective of what the delta size is, 

both groups A and B set of nodes adopt the conventional reconfiguration approach. 

Therefore, the results obtained are similar to that indicated in Figure 4.15.  

Comparing the two graphs indicates that 65% of energy expended during the erasure 

procedure is saved when the context based reconfiguration model is adopted. Similarly, 

45% and 69% reduction in energy consumption were obtained for the read and write 

procedures respectively. The implication is that quite a considerable amount of energy is 

wasted when very minute deltas with segment-confined orientation are involved.  

Additional contextual information are applicable. For example, the signal strength of 

each sensor node may vary over space and time. These can negatively affect the 

reconfiguration process especially where retransmission occurs severally due to poor 

signal reception occasioned by poor weather conditions. In such situation, the norm is to 

stop reconfiguration completely. However, in a context based reconfiguration approach, 

if the delta detected is relatively small that it can be handled with much less resources 

expended, then the reconfiguration process is allowed to take place.  
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4.5 Summary  

 

In this chapter, the results obtained while evaluating the context based WSN 

reconfiguration system were presented and discussed 

The roles of the PDE tool and that of the fuzzy logic controller in implementing the 

context based reconfiguration model were demonstrated. The fuzzy logic system 

ensures that reprogramming operations are only allowed when the conditions are right. 

The condition in this case depends on two contexts:  the nature and location of the delta 

in program memory and the state of energy available in a wireless sensor node’s battery. 

WSN reconfiguration related energy cost can be reduced considerably when both 

application and operational-demand related contexts are taken into consideration.  
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1     Conclusion 

 

In this research a software model that dynamically reconfigures wireless sensor network 

operational functionalities optimally based on evolving application context was 

developed. In realising the aim and objectives of the research work, a detailed review of 

existing reconfiguration approaches was conducted. The review findings highlighted the 

lapses associated with various reconfiguration approaches.  

The difference approach appears to be the most efficient reconfiguration paradigm to 

adopt, especially when the delta values are relatively small compared with the original 

firmware. However, the minimum size of the program memory that can be erased places 

some restriction on when such approach should be adopted. Hence, the limitation 

attributed to FLASH Memory invariably plays down on the advantages of the difference 

approach. As such in some cases, it is much better to erase the entire flash memory. The 

way round the problem is the adoption of some form of intelligence that controls or 

directs the sensor nodes to adopt the most appropriate and less energy consuming 

reconfiguration approach. This has been demonstrated via the use of Fuzzy logic system 

to enhance the sensor nodes ability to decide what reconfiguration paradigm to adopt 

under certain context. In addition, a novel software component that efficiently 

reprograms flash program memory while taking into consideration the ‘segment 

erasure’ constraint has been developed. 
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In realising the Context-based WSN reconfiguration software system, two main 

software components were developed. These three components are the Precise Delta 

Extractor (PDE), Efficient Program memory Re-flashing module and the Fuzzy logic 

Controller. The first provides information on the degree of changes resulting from the 

modification of an application as well as relaying the exact changes in bytes form. In 

addition, it provides fuzzified member set inputs (application context) to the fuzzy logic 

controller. The second component developed is based on expert knowledge of the 

energy consumption constraints associated with reprogramming procedures of wireless 

sensor nodes’ program memory. In addition, an algorithm intended to address 

reprogramming constraints associated with flash program memory was developed. 

The PDE Metric tool developed is an improvement over existing similar tools like the 

Rysnc and its variants. The PDE does not need tuning in order to reduce the overheads 

associated with Rysnc and its variants. The PDE provides concise physical address and 

virtual address of deltas. This information is useful for targeting delta locations and 

allowing reconfiguration procedures to be confined within a single segment of the Flash 

memory thereby saving enormous amount of energy expended when an entire program 

memory is reprogrammed. 

In order to demonstrate the benefits of the context based reconfiguration model, its 

performance was evaluated on an Omnet++ simulation platform using pilot data 

obtained from a testbed. The testbed is composed of Microchips’ PIC32MX320F128H 

microcontroller and MRF24J40MB transceiver. A two context related input variables 

were used. The delta-orientation information obtained from the ELF profile of the 

modified code served as the application related context and the Battery energy level 

state was taken as an operational-demand related context. Inferred expert knowledge on 

energy consumption pattern during reconfiguration processes was used to develop a 
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robust inference engine for the fuzzy logic controller. The resulting output from the 

fuzzy logic system controls when and which one of the reconfiguration approaches 

should be implemented in order to prolong the battery life. In a network of six nodes, 

two were equipped with the developed model capability and the others were not. The 

overall energy expended as read, erase and write were obtained from each node for the 

purpose of comparison. The results obtained show that about 65% of energy expended 

during the erasure procedure is saved in nodes that adopt the context based 

reconfiguration model. Similarly, 45% and 69% reduction in energy consumption were 

obtained for the read and write procedures respectively.  

5.2 Contribution to Knowledge  

 

i. Developed a much effective delta extraction algorithm and tool for the Contiki 

operating system adapted to adopt the difference reconfiguration approach. 

 

ii. Demonstrated the use of artificial intelligence (fuzzy logic) in wireless sensor 

network application to enable it manage its limited available resources 

efficiently during reprogramming procedures. 

 

iii. The model developed serves as a framework for developing an all-encompassing 

context base reconfigurable wireless sensor network. 

5.3     Recommendations  

 

i. Use of other Artificial Intelligence (AI) models like Artificial Neural Networks 

(ANN) should be explored. The fuzzy logic system is based on human 

reasoning, and it means modifications will need to be made to the inference 

engine intermittently as new application and operational context changes evolve. 
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However, an AI with real-time learning and adaptive capabilities allows the 

system to update itself. 

ii. Adoption and Implementation of multiple contexts variables is encouraged. For 

example, the influence of Interference, Signal strength on reconfiguration 

process in real life field situation can be explored. 
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APPENDIX A 
 

EXECUTION LINK FILE [ELF] STRUCTURE 

 

The ELF standard is intended to streamline software development by providing 

developers with a set of binary interface definitions that extend across multiple 

operating environments. This should reduce the number of different interface 

implementations, thereby reducing the need for recoding and recompiling code. 

 

 

File Format 

 

Object files participate in program linking (building a program) and program execution 

(running a program). For convenience and efficiency, the object file format provides 

parallel views of a file’s contents, reflecting the differing needs of these activities. 

Figure A.1 shows an object file’s organisation. 

 

 

Figure A.1: An object file’s organisation. 
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An ELF header resides at the beginning and holds a ‘‘road map’’ describing the file’s 

organization. Sections hold the bulk of object file information for the linking view 

instructions, data, symbol table, relocation information, and the program execution view 

of the file. Figure A.3 and figure A.4 shows the Program header and the Section header 

organisation respectively. 

 

  

Program header 

offset 

Section  header 

offset 

Program Segment 

type 

Figure A.2 : The ELF header organisation 
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Program Header  

Figure A.3 : The Program header organisation 

 

Figure A.4 : The Section header organisation 
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APPENDIX B 
 

PRECISION DELTA EXTRACTION SOURCE CODE 

 

PDE CODES  

using System; 
using System.IO; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Windows.Forms; 
 
 
namespace PDE 
{ 
    public partial class pde_platform : Form 
    { 
        public pde_platform() 
        { 
            InitializeComponent(); 
        } 
        // 
        Dictionary<string, string> gen_elf_old_Dict = new Dictionary<string, 
string>(); 
        Dictionary<string, string> gen_elf_new_Dict = new Dictionary<string, 
string>(); 
        // 
        List<extract> pde_para_list_old = new List<extract>(); 
        List<extract> pde_para_list_new = new List<extract>(); 
        // 
        List<extract> Rpt_Modified = new List<extract>(); 
        List<extract> Rpt_Addition= new List<extract>(); 
        List<extract> Rpt_Removed = new List<extract>(); 
 
 
        // 
        
       public double Total_lines_original ; 
       public double Total_lines_modified; 
       public double Total_lines_deleted; 
       public double Total_lines_added; 
        // 
       
              // 
         
        private void pde_platform_Load(object sender, EventArgs e) 
        { 
            int number_original_lines = 0; 
            int number_modified_lines = 0; 
 
            
            var listBox_parameter_list_1 = listBox_parameter_listing_1.Items; 
            var listBox_parameter_list_2 = listBox_parameter_listing_2.Items; 
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            var  pde_para_old = new pde_parameters(); 
            var pde_para_new = new pde_parameters(); 
            // 
            var Hex_old = new Hex_File_Content(); 
            var Hex_new= new Hex_File_Content(); 
            // 
           
            // 
            pde_para_old.obtain_pde_para("temp-sensor-5"); 
            pde_para_new.obtain_pde_para("temp-sensor-10"); 
             
            // 
 
             
 
           // 
            foreach (var pdex_1 in pde_para_old.Gen_elf_old) 
            { 
                listBox_parameter_list_1.Add("*" + pdex_1.unified_ptr + "*" + 
pdex_1.address + "*" + pdex_1.data); 
                pde_para_list_old.Add(new extract() { unified_ptr = 
pdex_1.unified_ptr, address = pdex_1.address, data = pdex_1.data ,section_name = 
pdex_1.section_name, segment_no = pdex_1.segment_no }); 
                gen_elf_old_Dict.Add(pdex_1.unified_ptr, pdex_1.data); 
                number_original_lines++; 
                
            } 
            // 
            Total_lines_original = number_original_lines; 
            label_original.Text = label_original.Text + " : " + 
number_original_lines.ToString(); 
            // 
            foreach (var pdex_2 in pde_para_new.Gen_elf_old) 
            { 
                listBox_parameter_list_2.Add("*" + pdex_2.unified_ptr + "*" + 
pdex_2.address + "*" + pdex_2.data); 
                pde_para_list_new.Add(new extract() { unified_ptr = 
pdex_2.unified_ptr, address = pdex_2.address, data = pdex_2.data, section_name = 
pdex_2.section_name, segment_no = pdex_2.segment_no }); 
                gen_elf_new_Dict.Add(pdex_2.unified_ptr, pdex_2.data); 
                number_modified_lines++; 
            } 
            // 
           // Total_lines_modified = number_modified_lines; 
            label_modified.Text = label_modified.Text + " : " + 
number_modified_lines.ToString(); 
            // 
        } 
 
        private void button1_Click(object sender, EventArgs e) 
        { 
 
            textBox_data.Text = gen_elf_old_Dict[textBox_key.Text]; 
             
        } 
 
        private void simple_2_Click(object sender, EventArgs e) 
        { 
            textBox_data.Text = gen_elf_new_Dict[textBox_key.Text]; 
             
        } 
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        private void diff_Click(object sender, EventArgs e) 
 
        { // 
            FileStream file_modified_report = 
File.Create(@"c:\CmdLine\Simple_Modified.txt"); 
            FileStream file_Addition_report = 
File.Create(@"c:\CmdLine\Simple_Addition.txt"); 
            FileStream file_Removed_report = 
File.Create(@"c:\CmdLine\Simple_Removed.txt"); 
            // 
            StreamWriter write_modified = new StreamWriter(file_modified_report); 
            StreamWriter write_Addition = new StreamWriter(file_Addition_report); 
            StreamWriter write_Removed = new StreamWriter(file_Removed_report); 
 
            // 
            int number_modified_content = 0; 
            int number_deleted_lines_code = 0; 
            // 
            int number_modified_content_inv = 0; 
            int number_deleted_lines_code_inv = 0; 
            // 
           var list_parameter_listing_diff = 
listBox_parameter_listing_diff.Items; 
           var  list_Not_Capture =  listBox_Not_Capture.Items; 
            // 
           var list_parameter_listing_diff_inv = 
listBox_parameter_listing_diff_inv.Items; 
           var list_Not_Capture_inv = listBox_Not_Capture_inv.Items; 
 
                       
            // 
            foreach (var cont in pde_para_list_old) 
            { 
                if (gen_elf_new_Dict.ContainsKey(cont.unified_ptr)) 
                { 
                    if (gen_elf_old_Dict[cont.unified_ptr] != 
gen_elf_new_Dict[cont.unified_ptr]) 
                    { 
 
                        list_parameter_listing_diff.Add("*" + cont.unified_ptr + 
"*" + cont.data); // modification detected 
                        Rpt_Modified.Add(new extract() { unified_ptr = 
cont.unified_ptr, address = cont.address, data = cont.data, section_name = 
cont.section_name,segment_no = cont.segment_no }); 
                        number_modified_content++; 
                    } 
                } 
                else 
                { 
                    list_Not_Capture.Add("*" + cont.unified_ptr + "*" + 
cont.data); // Present in orignal but not in modified 
                    Rpt_Removed.Add(new extract() { unified_ptr = 
cont.unified_ptr, address = cont.address, data = cont.data, section_name = 
cont.section_name, segment_no = cont.segment_no }); 
                    // 
                   // write_Removed.WriteLine(" | " + cont.unified_ptr + " | " + 
cont.data); 
                    // 
                    number_deleted_lines_code++; 
                } 
            } 
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            // 
            Total_lines_deleted = number_deleted_lines_code; 
            Total_lines_modified = number_modified_content; 
            // 
            
 
            // 
            label_modified_cont.Text = label_modified_cont.Text + " : " + 
number_modified_content.ToString(); 
            label_deleted.Text = label_deleted.Text + " : " + 
number_deleted_lines_code.ToString(); 
            // 
                      
            // 
            foreach (var contx in pde_para_list_new) 
            { 
                if (gen_elf_old_Dict.ContainsKey(contx.unified_ptr)) 
                { 
                    if (gen_elf_old_Dict[contx.unified_ptr] != 
gen_elf_new_Dict[contx.unified_ptr]) 
                    { 
                        list_parameter_listing_diff_inv.Add("*" + 
contx.unified_ptr + "*" + contx.data); // modification detected 
                          // 
                       // write_modified.WriteLine(" | " + contx.unified_ptr + " 
| " + contx.data); 
                        // SECTION DISPLAYED  
                        
                        number_modified_content_inv++; 
                    } 
                } 
                else 
                { 
                    list_Not_Capture_inv.Add("*" + contx.unified_ptr + "*" + 
contx.data); // Present in modified but not in original 
                   // write_Addition.WriteLine(" | " + contx.unified_ptr + " | " 
+ contx.data); 
                    Rpt_Addition.Add(new extract() { unified_ptr = 
contx.unified_ptr, address = contx.address, data = contx.data, section_name = 
contx.section_name, segment_no = contx.segment_no }); 
                    number_deleted_lines_code_inv++; 
                } 
            } 
            // REPORT ON CHANGES TO FILE 
            var pde_para_old = new pde_parameters(); 
            var pde_para_new = new pde_parameters(); 
 
            pde_para_old.obtain_pde_para("temp-sensor-5"); 
            pde_para_new.obtain_pde_para("temp-sensor-10"); 
 
            write_modified.WriteLine(" MODIFIED WRT ORIGINAL   "); 
            write_modified.WriteLine("             "); 
            // 
            write_Removed.WriteLine(" REMOVED  WRT ORIGINAL   "); 
            write_Removed.WriteLine("             "); 
            // 
            write_Addition.WriteLine(" ADDITION WRT MODIFIED    "); 
            write_Addition.WriteLine("             "); 
            // 
            for (int secn = 0; secn < pde_para_old.Sections_captured.Count()-1; 
secn++) 
            { 
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                write_Addition.WriteLine(" SECTION : " + 
pde_para_old.Sections_captured.ElementAt(secn) + " COUNT : " + 
Rpt_Addition.Where(x => x.section_name == 
pde_para_old.Sections_captured.ElementAt(secn)).Count()); 
                write_Addition.WriteLine("             "); 
                // 
                write_Removed.WriteLine(" SECTION : " + 
pde_para_old.Sections_captured.ElementAt(secn) + " COUNT : " + 
Rpt_Removed.Where(x => x.section_name == 
pde_para_old.Sections_captured.ElementAt(secn)).Count()); 
                write_Removed.WriteLine("             "); 
                // 
                write_modified.WriteLine(" SECTION : " + 
pde_para_old.Sections_captured.ElementAt(secn) + " COUNT : " + 
Rpt_Modified.Where(x => x.section_name == 
pde_para_old.Sections_captured.ElementAt(secn)).Count()); 
                write_modified.WriteLine("             "); 
 
                foreach (var capturedx in Rpt_Modified.Where(x => x.section_name 
== pde_para_old.Sections_captured.ElementAt(secn))) 
                { 
                    // 
                    write_modified.WriteLine("*" + capturedx.unified_ptr + "*" + 
capturedx.data); 
                    // 
                } 
 
 
                foreach (var capturedy in Rpt_Addition.Where(x => x.section_name 
== pde_para_old.Sections_captured.ElementAt(secn))) 
                { 
                    // 
                    write_Addition.WriteLine("*" + capturedy.unified_ptr + "*" + 
capturedy.data); 
                    // 
                } 
 
                foreach (var capturedz in Rpt_Removed.Where(x => x.section_name 
== pde_para_old.Sections_captured.ElementAt(secn))) 
                { 
                    // 
                    write_Removed.WriteLine("*" + capturedz.unified_ptr + "*" + 
capturedz.data); 
                    // 
                } 
             
             
             
             
            } 
 
 
            // 
            Total_lines_added = number_deleted_lines_code_inv; 
            label_modified_cont_inv.Text = label_modified_cont_inv.Text + " : " + 
number_modified_content_inv.ToString(); 
            label_deleted_inv.Text = label_deleted_inv.Text + " : " + 
number_deleted_lines_code_inv.ToString(); 
            // 
            
            // 
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            label_mofified_percent.Text = label_mofified_percent.Text + 
(Total_lines_modified / Total_lines_original * 100).ToString(); 
            label_delete_percent.Text= label_delete_percent.Text + 
(Total_lines_deleted / Total_lines_original * 100).ToString(); 
            label_added_percent.Text = label_added_percent.Text + 
(Total_lines_added / Total_lines_original * 100).ToString(); 
 
 
            // 
 
            write_modified.Close(); 
            file_modified_report.Close(); 
            // 
            write_Addition.Close(); 
            file_Addition_report.Close(); 
            // 
            write_Removed.Close(); 
            file_Removed_report.Close(); 
            // 
        } 
 
        private void button1_Click_1(object sender, EventArgs e) 
        { 
           var showform = new PDE.Form_Hex_viewer(); 
            showform.Show(); 
 
        } 
 
        private void button2_Click(object sender, EventArgs e) 
        { 
            var showform = new PDE.Form1(); 
            showform.Show(); 
        } 
 
    } 
} 
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APPENDIX C 
 

Fuzzilite C++ codes 

FuzzyLite Dataset 

 

 

Fuzzilite C++ codes 

fl::Engine* engine = new fl::Engine; 

engine->setName("Reconfig"); 

 

fl::InputVariable* inputVariable1 = new fl::InputVariable; 

inputVariable1->setEnabled(true); 

inputVariable1->setName("Delta_Orientation"); 

inputVariable1->setRange(0.000, 10240.000); 

inputVariable1->addTerm(new fl::Triangle("Segment_Confined", 0.000, 2048.000, 

4096.000)); 

inputVariable1->addTerm(new fl::Triangle("Segment_Adjoint", 2048.000, 4710.400, 

8230.000)); 

inputVariable1->addTerm(new fl::Ramp("Segment_Disjoint", 6451.200, 10240.000)); 

engine->addInputVariable(inputVariable1); 

 

fl::InputVariable* inputVariable2 = new fl::InputVariable; 

inputVariable2->setEnabled(true); 

inputVariable2->setName("Battery_State"); 

inputVariable2->setRange(0.000, 1850.000); 

inputVariable2->addTerm(new fl::Ramp("Very_Ok", 1185.000, 1850.000)); 

inputVariable2->addTerm(new fl::Ramp("Critical", 370.000, 0.000)); 

inputVariable2->addTerm(new fl::Triangle("Fair", 148.000, 592.000, 943.500)); 

inputVariable2->addTerm(new fl::Triangle("Ok", 648.000, 1018.000, 1351.000)); 

engine->addInputVariable(inputVariable2); 

 

fl::OutputVariable* outputVariable = new fl::OutputVariable; 

outputVariable->setEnabled(true); 

outputVariable->setName("Reconfiguration_Approach"); 

outputVariable->setRange(0.000, 10.000); 

outputVariable->fuzzyOutput()->setAccumulation(new fl::AlgebraicSum); 

outputVariable->setDefuzzifier(new fl::Centroid(200)); 

outputVariable->setDefaultValue(fl::nan); 

outputVariable->setLockValidOutput(false); 

outputVariable->setLockOutputRange(false); 

outputVariable->addTerm(new fl::Triangle("Difference_Approach", 2.100, 2.500, 

5.000)); 

outputVariable->addTerm(new fl::Triangle("Modular_Approach", 3.900, 5.500, 

7.700)); 

outputVariable->addTerm(new fl::Triangle("Entire_Image_Approach", 6.300, 8.100, 

10.000)); 
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outputVariable->addTerm(new fl::Triangle("Suspend_Reconfiguration", 0.000, 0.000, 

2.600)); 

engine->addOutputVariable(outputVariable); 

 

fl::RuleBlock* ruleBlock = new fl::RuleBlock; 

ruleBlock->setEnabled(true); 

ruleBlock->setName(""); 

ruleBlock->setConjunction(new fl::Minimum); 

ruleBlock->setDisjunction(new fl::AlgebraicSum); 

ruleBlock->setActivation(new fl::Minimum); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and 

Battery_State is Very_Ok then Reconfiguration_Approach is Difference_Approach", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and 

Battery_State is Critical then Reconfiguration_Approach is Suspend_Reconfiguration", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and 

Battery_State is Fair then Reconfiguration_Approach is Difference_Approach", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and 

Battery_State is Ok then Reconfiguration_Approach is Difference_Approach", engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and 

Battery_State is Very_Ok then Reconfiguration_Approach is Modular_Approach", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and 

Battery_State is Critical then Reconfiguration_Approach is Suspend_Reconfiguration", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and 

Battery_State is Fair then Reconfiguration_Approach is Modular_Approach", engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and 

Battery_State is Ok then Reconfiguration_Approach is Modular_Approach", engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and 

Battery_State is Very_Ok then Reconfiguration_Approach is Entire_Image_Approach", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and 

Battery_State is Critical then Reconfiguration_Approach is Suspend_Reconfiguration", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and 

Battery_State is Fair then Reconfiguration_Approach is Suspend_Reconfiguration", 

engine)); 

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and 

Battery_State is Ok then Reconfiguration_Approach is Entire_Image_Approach", 

engine)); 

engine->addRuleBlock(ruleBlock); 
 

 

FuzzyLite Dataset 
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Delta_Orientation  Battery_State   Reconfiguration_Approach 

 

0.000    1776.000   nan 

0.000    1794.500   nan 

0.000    1813.000   nan 

0.000    1831.500   nan 

0.000    1850.000   nan 

102.400   0.000    1.269 

102.400   18.500   1.269 

102.400  37.000   1.269 

102.400   55.500   1.269 

102.400   74.000   1.269 

102.400   92.500   1.269 

102.400   111.000   1.269 

102.400   129.500   1.269 

102.400   148.000   1.269 

102.400   166.500  2.359 

102.400   185.000  2.459 

102.400  203.500    2.459 

102.400   222.000   2.459 

102.400   240.500   2.459 

102.400   259.000   2.459 

102.400   277.500   2.459 

102.400   296.000   2.459 

102.400   314.500  2.459 

102.400   333.000   2.459 

102.400   351.500   2.459 

102.400   370.000   3.520 

102.400   388.500   3.520 

102.400   407.000   3.520 

102.400   425.500   3.520 

102.400   444.000   3.520 

102.400   462.500  3.520 

102.400   481.000   3.520 

102.400   499.500   3.520 

102.400   518.000   3.520 

102.400   536.500   3.520 

102.400   555.000  3.520 

102.400   573.500   3.520 

102.400   592.000   3.520 

102.400   610.500   3.520 

102.400   629.000   3.520 

102.400   647.500  3.520 

102.400   666.000   3.521 

102.400   684.500   3.521 

102.400   703.000   3.521 

102.400   721.500   3.521 

102.400   740.000   3.521 

102.400 758.500 3.521 

102.400 777.000 3.521 
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102.400 795.500 3.521 

102.400 814.000 3.521 

102.400 832.500 3.521 

102.400 851.000 3.521 

102.400 869.500 3.521 

102.400 888.000 3.521 

102.400 906.500 3.521 

102.400 925.000 3.521 

102.400 943.500 3.520 

102.400 962.000 3.520 

102.400 980.500 3.520 

102.400 999.000 3.520 

102.400 1017.500 3.520 

102.400 1036.000 3.520 

102.400 1054.500 3.520 

102.400 1073.000 3.520 

102.400 1091.500 3.520 

102.400 1110.000 3.520 

102.400 1128.500 3.520 

102.400 1147.000 3.520 

102.400 1165.500 3.520 

102.400 1184.000 3.520 

102.400 1202.500 3.525 

102.400 1221.000 3.521 

102.400 1239.500 3.521 

102.400 1258.000 3.521 

102.400 1276.500 3.521 

102.400 1295.000 3.521 

102.400 1313.500 3.521 

102.400 1332.000 3.521 

102.400 1350.500 3.521 

102.400 1369.000 3.520 

102.400 1387.500 3.520 

102.400 1406.000 3.520 

102.400 1424.500 3.520 

102.400 1443.000 3.520 

102.400 1461.500 3.520 

102.400 1480.000 3.520 

102.400 1498.500 3.520 

102.400 1517.000 3.520 

102.400 1535.500 3.520 

102.400 1554.000 3.520 

102.400 1572.500 3.520 

102.400 1591.000 3.520 

102.400 1609.500 3.520 

102.400 1628.000 3.520 

102.400 1646.500 3.520 

102.400 1665.000 3.520 

102.400 1683.500 3.520 

102.400 1702.000 3.520 
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102.400 1720.500 3.520 

102.400 1739.000 3.520 

102.400 1757.500 3.520 

102.400 1776.000 3.520 

102.400 1794.500 3.520 

102.400 1813.000 3.520 

102.400 1831.500 3.520 

102.400 1850.000 3.520 

204.800 0.000 1.236 

204.800 18.500 1.236 

204.800 37.000 1.236 

204.800 55.500 1.236 

204.800 74.000 1.236 

204.800 92.500 1.236 

204.800 111.000 1.236 

204.800 129.500 1.236 

204.800 148.000 1.236 

204.800 166.500 1.977 

204.800 185.000 2.335 

204.800 203.500 2.430 

204.800 222.000 2.430 

204.800 240.500 2.430 

204.800 259.000 2.430 

204.800 277.500 2.430 

204.800 296.000 2.430 

204.800 314.500 2.430 

204.800 333.000 2.430 

204.800 351.500 2.798 

204.800 370.000 3.498 

204.800 388.500 3.498 

204.800 407.000 3.498 

204.800 425.500 3.498 

204.800 444.000 3.498 

204.800 462.500 3.498 

204.800 481.000 3.498 

204.800 499.500 3.498 

204.800 518.000 3.498 

204.800 536.500 3.498 

204.800 555.000 3.498 

204.800 573.500 3.498 

204.800 592.000 3.498 

204.800 610.500 3.498 

204.800 629.000 3.498 

204.800 647.500 3.498 

204.800 666.000 3.506 

204.800 684.500 3.499 

204.800 703.000 3.499 

204.800 721.500 3.499 

204.800 740.000 3.499 

204.800 758.500 3.499 
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204.800 777.000 3.499 

204.800 795.500 3.499 

204.800 814.000 3.499 

204.800 832.500 3.499 

204.800 851.000 3.499 

204.800 869.500 3.499 

204.800 888.000 3.499 

204.800 906.500 3.499 

204.800 925.000 3.505 

204.800 943.500 3.498 

204.800 962.000 3.498 

204.800 980.500 3.498 

204.800 999.000 3.498 

204.800 1017.500 3.498 

204.800 1036.000 3.498 

204.800 1054.500 3.498 

204.800 1073.000 3.498 

204.800 1091.500 3.498 

204.800 1110.000 3.498 

204.800 1128.500 3.498 

204.800 1147.000 3.498 

204.800 1165.500 3.498 

204.800 1184.000 3.498 

204.800 1202.500 3.506 

204.800 1221.000 3.505 

204.800 1239.500 3.502 

204.800 1258.000 3.499 

204.800 1276.500 3.499 

204.800 1295.000 3.499 

204.800 1313.500 3.499 

204.800 1332.000 3.505 

204.800 1350.500 3.499 

204.800 1369.000 3.498 

204.800 1387.500 3.498 

204.800 1406.000 3.498 

204.800 1424.500 3.498 

204.800 1443.000 3.498 

204.800 1461.500 3.498 

204.800 1480.000 3.498 

204.800 1498.500 3.498 

204.800 1517.000 3.498 

204.800 1535.500 3.498 

204.800 1554.000 3.498 

204.800 1572.500 3.498 

204.800 1591.000 3.498 

204.800 1609.500 3.498 

204.800 1628.000 3.498 

204.800 1646.500 3.498 

204.800 1665.000 3.498 

204.800 1683.500 3.498 
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204.800 1702.000 3.498 

204.800 1720.500 3.498 

204.800 1739.000 3.498 

204.800 1757.500 3.498 

204.800 1776.000 3.498 

204.800 1794.500 3.498 

204.800 1813.000 3.498 

204.800 1831.500 3.498 

204.800 1850.000 3.498 

307.200 0.000 1.205 

307.200 18.500 1.205 

307.200 37.000 1.205 

307.200 55.500 1.205 

307.200 74.000 1.205 

307.200 92.500 1.205 

307.200 111.000 1.205 

307.200 129.500 1.205 

307.200 148.000 1.205 

307.200 166.500 1.777 

307.200 185.000 2.104 

307.200 203.500 2.312 

307.200 222.000 2.402 

307.200 240.500 2.402 

307.200 259.000 2.402 

307.200 277.500 2.402 

307.200 296.000 2.402 

307.200 314.500 2.402 

307.200 333.000 2.625 

307.200 351.500 2.949 

307.200 370.000 3.473 

307.200 388.500 3.473 

307.200 407.000 3.473 

307.200 425.500 3.473 

307.200 444.000 3.473 

307.200 462.500 3.473 

307.200 481.000 3.473 

307.200 499.500 3.473 

307.200 518.000 3.473 

307.200 536.500 3.473 

307.200 555.000 3.473 

307.200 573.500 3.473 

307.200 592.000 3.473 

307.200 610.500 3.473 

307.200 629.000 3.473 

307.200 647.500 3.473 

307.200 666.000 3.486 

307.200 684.500 3.485 

307.200 703.000 3.476 

307.200 721.500 3.475 

307.200 740.000 3.475 
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307.200 758.500 3.475 

307.200 777.000 3.475 

307.200 795.500 3.475 

307.200 814.000 3.475 

307.200 832.500 3.475 

307.200 851.000 3.475 

307.200 869.500 3.475 

307.200 888.000 3.475 

307.200 906.500 3.484 

307.200 925.000 3.486 

307.200 943.500 3.473 

307.200 962.000 3.473 

307.200 980.500 3.473 

307.200 999.000 3.473 

307.200 1017.500 3.473 

307.200 1036.000 3.473 

307.200 1054.500 3.473 

307.200 1073.000 3.473 

307.200 1091.500 3.473 

307.200 1110.000 3.473 

307.200 1128.500 3.473 

307.200 1147.000 3.473 

307.200 1165.500 3.473 

307.200 1184.000 3.473 

307.200 1202.500 3.483 

307.200 1221.000 3.486 

307.200 1239.500 3.486 

307.200 1258.000 3.484 

307.200 1276.500 3.478 

307.200 1295.000 3.475 

307.200 1313.500 3.483 

307.200 1332.000 3.486 

307.200 1350.500 3.474 

307.200 1369.000 3.473 

307.200 1387.500 3.473 

307.200 1406.000 3.473 

307.200 1424.500 3.473 

307.200 1443.000 3.473 

307.200 1461.500 3.473 

307.200 1480.000 3.473 

307.200 1498.500 3.473 

307.200 1517.000 3.473 

307.200 1535.500 3.473 

307.200 1554.000 3.473 

307.200 1572.500 3.473 

307.200 1591.000 3.473 

307.200 1609.500 3.473 

307.200 1628.000 3.473 

307.200 1646.500 3.473 

307.200 1665.000 3.473 
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307.200 1683.500 3.473 

307.200 1702.000 3.473 

307.200 1720.500 3.473 

307.200 1739.000 3.473 

307.200 1757.500 3.473 

307.200 1776.000 3.473 

307.200 1794.500 3.473 

307.200 1813.000 3.473 

307.200 1831.500 3.473 

307.200 1850.000 3.473 

409.600 0.000 1.175 

409.600 18.500 1.175 

409.600 37.000 1.175 

409.600 55.500 1.175 

409.600 74.000 1.175 

409.600 92.500 1.175 

409.600 111.000 1.175 

409.600 129.500 1.175 

409.600 148.000 1.175 

409.600 166.500 1.648 

409.600 185.000 1.945 

409.600 203.500 2.146 

409.600 222.000 2.289 

409.600 240.500 2.374 

409.600 259.000 2.374 

409.600 277.500 2.374 

409.600 296.000 2.374 

409.600 314.500 2.534 

409.600 333.000 2.742 

409.600 351.500 3.026 

409.600 370.000 3.448 

409.600 388.500 3.448 

409.600 407.000 3.448 

409.600 425.500 3.448 

409.600 444.000 3.448 

409.600 462.500 3.448 

409.600 481.000 3.448 

409.600 499.500 3.448 

409.600 518.000 3.448 

409.600 536.500 3.448 

409.600 555.000 3.448 

409.600 573.500 3.448 

409.600 592.000 3.448 

409.600 610.500 3.448 

409.600 629.000 3.448 

409.600 647.500 3.448 

409.600 666.000 3.464 

409.600 684.500 3.467 

409.600 703.000 3.462 

409.600 721.500 3.452 
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409.600 740.000 3.452 

409.600 758.500 3.452 

409.600 777.000 3.452 

409.600 795.500 3.452 

409.600 814.000 3.452 

409.600 832.500 3.452 

409.600 851.000 3.452 

409.600 869.500 3.452 

409.600 888.000 3.460 

409.600 906.500 3.467 

409.600 925.000 3.464 

409.600 943.500 3.448 

409.600 962.000 3.448 

409.600 980.500 3.448 

409.600 999.000 3.448 

409.600 1017.500 3.448 

409.600 1036.000 3.448 

409.600 1054.500 3.448 

409.600 1073.000 3.448 

409.600 1091.500 3.448 

409.600 1110.000 3.448 

409.600 1128.500 3.448 

409.600 1147.000 3.448 

409.600 1165.500 3.448 

409.600 1184.000 3.448 

409.600 1202.500 3.459 

409.600 1221.000 3.464 

409.600 1239.500 3.467 

409.600 1258.000 3.467 

409.600 1276.500 3.463 

409.600 1295.000 3.467 

409.600 1313.500 3.468 

409.600 1332.000 3.464 

409.600 1350.500 3.449 

409.600 1369.000 3.448 

409.600 1387.500 3.448 

409.600 1406.000 3.448 

409.600 1424.500 3.448 

409.600 1443.000 3.448 

409.600 1461.500 3.448 

409.600 1480.000 3.448 

409.600 1498.500 3.448 

409.600 1517.000 3.448 

409.600 1535.500 3.448 

409.600 1554.000 3.448 

409.600 1572.500 3.448 

409.600 1591.000 3.448 

409.600 1609.500 3.448 

409.600 1628.000 3.448 

409.600 1646.500 3.448 
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409.600 1665.000 3.448 

409.600 1683.500 3.448 

409.600 1702.000 3.448 

409.600 1720.500 3.448 

409.600 1739.000 3.448 

409.600 1757.500 3.448 

409.600 1776.000 3.448 

409.600 1794.500 3.448 

409.600 1813.000 3.448 

409.600 1831.500 3.448 

409.600 1850.000 3.448 

512.000 0.000 1.145 

512.000 18.500 1.145 

512.000 37.000 1.145 

512.000 55.500 1.145 

512.000 74.000 1.145 

512.000 92.500 1.145 

512.000 111.000 1.145 

512.000 129.500 1.145 

512.000 148.000 1.145 

512.000 166.500 1.554 

512.000 185.000 1.827 

512.000 203.500 2.019 

512.000 222.000 2.160 

512.000 240.500 2.267 

512.000 259.000 2.348 

512.000 277.500 2.348 

512.000 296.000 2.471 

512.000 314.500 2.624 

512.000 333.000 2.816 

512.000 351.500 3.071 

512.000 370.000 3.425 

512.000 388.500 3.425 

512.000 407.000 3.425 

512.000 425.500 3.425 

512.000 444.000 3.425 

512.000 462.500 3.425 

512.000 481.000 3.425 

512.000 499.500 3.425 

512.000 518.000 3.425 

512.000 536.500 3.425 

512.000 555.000 3.425 

512.000 573.500 3.425 

512.000 592.000 3.425 

512.000 610.500 3.425 

512.000 629.000 3.425 

512.000 647.500 3.425 

512.000 666.000 3.443 

512.000 684.500 3.449 

512.000 703.000 3.448 
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512.000 721.500 3.440 

512.000 740.000 3.431 

512.000 758.500 3.431 

512.000 777.000 3.431 

512.000 795.500 3.431 

512.000 814.000 3.431 

512.000 832.500 3.431 

512.000 851.000 3.431 

512.000 869.500 3.439 

512.000 888.000 3.446 

512.000 906.500 3.450 

512.000 925.000 3.444 

512.000 943.500 3.425 

512.000 962.000 3.425 

512.000 980.500 3.425 

512.000 999.000 3.425 

512.000 1017.500 3.425 

512.000 1036.000 3.425 

512.000 1054.500 3.425 

512.000 1073.000 3.425 

512.000 1091.500 3.425 

512.000 1110.000 3.425 

512.000 1128.500 3.425 

512.000 1147.000 3.425 

512.000 1165.500 3.425 

512.000 1184.000 3.425 

512.000 1202.500 3.437 

512.000 1221.000 3.444 

512.000 1239.500 3.448 

512.000 1258.000 3.450 

512.000 1276.500 3.457 

512.000 1295.000 3.467 

512.000 1313.500 3.468 

512.000 1332.000 3.456 

512.000 1350.500 3.427 

512.000 1369.000 3.425 

512.000 1387.500 3.425 

512.000 1406.000 3.425 

512.000 1424.500 3.425 

512.000 1443.000 3.425 

512.000 1461.500 3.425 

512.000 1480.000 3.425 

512.000 1498.500 3.425 

512.000 1517.000 3.425 

512.000 1535.500 3.425 

512.000 1554.000 3.425 

512.000 1572.500 3.425 

512.000 1591.000 3.425 

512.000 1609.500 3.425 

512.000 1628.000 3.425 
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512.000 1646.500 3.425 

512.000 1665.000 3.425 

512.000 1683.500 3.425 

512.000 1702.000 3.425 

512.000 1720.500 3.425 

512.000 1739.000 3.425 

512.000 1757.500 3.425 

512.000 1776.000 3.425 

512.000 1794.500 3.425 

512.000 1813.000 3.425 

512.000 1831.500 3.425 

512.000 1850.000 3.425 

614.400 0.000 1.117 

614.400 18.500 1.117 

614.400 37.000 1.117 

614.400 55.500 1.117 

614.400 74.000 1.117 

614.400 92.500 1.117 

614.400 111.000 1.117 

614.400 129.500 1.117 

614.400 148.000 1.117 

614.400 166.500 1.480 

614.400 185.000 1.733 

614.400 203.500 1.918 

614.400 222.000 2.056 

614.400 240.500 2.162 

614.400 259.000 2.245 

614.400 277.500 2.411 

614.400 296.000 2.541 

614.400 314.500 2.685 

614.400 333.000 2.864 

614.400 351.500 3.094 

614.400 370.000 3.401 

614.400 388.500 3.401 

614.400 407.000 3.401 

614.400 425.500 3.401 

614.400 444.000 3.401 

614.400 462.500 3.401 

614.400 481.000 3.401 

614.400 499.500 3.401 

614.400 518.000 3.401 

614.400 536.500 3.401 

614.400 555.000 3.401 

614.400 573.500 3.401 

614.400 592.000 3.401 

614.400 610.500 3.401 

614.400 629.000 3.401 

614.400 647.500 3.401 

614.400 666.000 3.421 

614.400 684.500 3.430 
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614.400 703.000 3.431 

614.400 721.500 3.426 

614.400 740.000 3.420 

614.400 758.500 3.410 

614.400 777.000 3.410 

614.400 795.500 3.410 

614.400 814.000 3.410 

614.400 832.500 3.410 

614.400 851.000 3.417 

614.400 869.500 3.425 

614.400 888.000 3.430 

614.400 906.500 3.430 

614.400 925.000 3.422 

614.400 943.500 3.401 

614.400 962.000 3.401 

614.400 980.500 3.401 

614.400 999.000 3.401 

614.400 1017.500 3.401 

614.400 1036.000 3.401 

614.400 1054.500 3.401 

614.400 1073.000 3.401 

614.400 1091.500 3.401 

614.400 1110.000 3.401 

614.400 1128.500 3.401 

614.400 1147.000 3.401 

614.400 1165.500 3.401 

614.400 1184.000 3.401 

614.400 1202.500 3.414 

614.400 1221.000 3.422 

614.400 1239.500 3.428 

614.400 1258.000 3.439 

614.400 1276.500 3.457 

614.400 1295.000 3.467 

614.400 1313.500 3.468 

614.400 1332.000 3.456 

614.400 1350.500 3.427 

614.400 1369.000 3.412 

614.400 1387.500 3.401 

614.400 1406.000 3.401 

614.400 1424.500 3.401 

614.400 1443.000 3.401 

614.400 1461.500 3.401 

614.400 1480.000 3.401 

614.400 1498.500 3.401 

614.400 1517.000 3.401 

614.400 1535.500 3.401 

614.400 1554.000 3.401 

614.400 1572.500 3.401 

614.400 1591.000 3.401 

614.400 1609.500 3.401 
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614.400 1628.000 3.401 

614.400 1646.500 3.401 

614.400 1665.000 3.401 

614.400 1683.500 3.401 

614.400 1702.000 3.401 

614.400 1720.500 3.401 

614.400 1739.000 3.401 

614.400 1757.500 3.401 

614.400 1776.000 3.401 

614.400 1794.500 3.401 

614.400 1813.000 3.401 

614.400 1831.500 3.401 

614.400 1850.000 3.401 

716.800 0.000 1.089 

716.800 18.500 1.089 

716.800 37.000 1.089 

716.800 55.500 1.089 

716.800 74.000 1.089 

716.800 92.500 1.089 

716.800 111.000 1.089 

716.800 129.500 1.089 

716.800 148.000 1.089 

716.800 166.500 1.419 

716.800 185.000 1.657 

716.800 203.500 1.834 

716.800 222.000 1.969 

716.800 240.500 2.074 

716.800 259.000 2.245 

716.800 277.500 2.411 

716.800 296.000 2.576 

716.800 314.500 2.729 

716.800 333.000 2.897 

716.800 351.500 3.107 

716.800 370.000 3.379 

716.800 388.500 3.379 

716.800 407.000 3.379 

716.800 425.500 3.379 

716.800 444.000 3.379 

716.800 462.500 3.379 

716.800 481.000 3.379 

716.800 499.500 3.379 

716.800 518.000 3.379 

716.800 536.500 3.379 

716.800 555.000 3.379 

716.800 573.500 3.379 

716.800 592.000 3.379 

716.800 610.500 3.379 

716.800 629.000 3.379 

716.800 647.500 3.379 

716.800 666.000 3.400 
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716.800 684.500 3.411 

716.800 703.000 3.415 

716.800 721.500 3.412 

716.800 740.000 3.408 

716.800 758.500 3.400 

716.800 777.000 3.392 

716.800 795.500 3.392 

716.800 814.000 3.392 

716.800 832.500 3.397 

716.800 851.000 3.406 

716.800 869.500 3.412 

716.800 888.000 3.414 

716.800 906.500 3.412 

716.800 925.000 3.401 

716.800 943.500 3.379 

716.800 962.000 3.379 

716.800 980.500 3.379 

716.800 999.000 3.379 

716.800 1017.500 3.379 

716.800 1036.000 3.379 

716.800 1054.500 3.379 

716.800 1073.000 3.379 

716.800 1091.500 3.379 

716.800 1110.000 3.379 

716.800 1128.500 3.379 

716.800 1147.000 3.379 

716.800 1165.500 3.379 

716.800 1184.000 3.379 

716.800 1202.500 3.392 

716.800 1221.000 3.402 

716.800 1239.500 3.414 

716.800 1258.000 3.439 

716.800 1276.500 3.457 

716.800 1295.000 3.467 

716.800 1313.500 3.468 

716.800 1332.000 3.456 

716.800 1350.500 3.427 

716.800 1369.000 3.412 

716.800 1387.500 3.399 

716.800 1406.000 3.387 

716.800 1424.500 3.379 

716.800 1443.000 3.379 

716.800 1461.500 3.379 

716.800 1480.000 3.379 

716.800 1498.500 3.379 

716.800 1517.000 3.379 

716.800 1535.500 3.379 

716.800 1554.000 3.379 

716.800 1572.500 3.379 

716.800 1591.000 3.379 
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716.800 1609.500 3.379 

716.800 1628.000 3.379 

716.800 1646.500 3.379 

716.800 1665.000 3.379 

716.800 1683.500 3.379 

716.800 1702.000 3.379 

716.800 1720.500 3.379 

716.800 1739.000 3.379 

716.800 1757.500 3.379 

716.800 1776.000 3.379 

716.800 1794.500 3.379 

716.800 1813.000 3.379 

716.800 1831.500 3.379 

716.800 1850.000 3.379 

819.200 0.000 1.062 

819.200 18.500 1.062 

819.200 37.000 1.062 

819.200 55.500 1.062 

819.200 74.000 1.062 

819.200 92.500 1.062 

819.200 111.000 1.062 

819.200 129.500 1.062 

819.200 148.000 1.062 

819.200 166.500 1.367 

819.200 185.000 1.592 

819.200 203.500 1.762 

819.200 222.000 1.895 

819.200 240.500 2.074 

819.200 259.000 2.245 

819.200 277.500 2.411 

819.200 296.000 2.576 

819.200 314.500 2.746 

819.200 333.000 2.917 

819.200 351.500 3.111 

819.200 370.000 3.357 

819.200 388.500 3.357 

819.200 407.000 3.357 

819.200 425.500 3.357 

819.200 444.000 3.357 

819.200 462.500 3.357 

819.200 481.000 3.357 

819.200 499.500 3.357 

819.200 518.000 3.357 

819.200 536.500 3.357 

819.200 555.000 3.357 

819.200 573.500 3.357 

819.200 592.000 3.357 

819.200 610.500 3.357 

819.200 629.000 3.357 

819.200 647.500 3.357 
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819.200 666.000 3.380 

819.200 684.500 3.392 

819.200 703.000 3.398 

819.200 721.500 3.398 

819.200 740.000 3.395 

819.200 758.500 3.389 

819.200 777.000 3.382 

819.200 795.500 3.374 

819.200 814.000 3.379 

819.200 832.500 3.387 

819.200 851.000 3.394 

819.200 869.500 3.397 

819.200 888.000 3.398 

819.200 906.500 3.394 

819.200 925.000 3.381 

819.200 943.500 3.357 

819.200 962.000 3.357 

819.200 980.500 3.357 

819.200 999.000 3.357 

819.200 1017.500 3.357 

819.200 1036.000 3.357 

819.200 1054.500 3.357 

819.200 1073.000 3.357 

819.200 1091.500 3.357 

819.200 1110.000 3.357 

819.200 1128.500 3.357 

819.200 1147.000 3.357 

819.200 1165.500 3.357 

819.200 1184.000 3.357 

819.200 1202.500 3.371 

819.200 1221.000 3.385 

819.200 1239.500 3.414 

819.200 1258.000 3.439 

819.200 1276.500 3.457 

819.200 1295.000 3.467 

819.200 1313.500 3.468 

819.200 1332.000 3.456 

819.200 1350.500 3.427 

819.200 1369.000 3.412 

819.200 1387.500 3.399 

819.200 1406.000 3.387 

819.200 1424.500 3.375 

819.200 1443.000 3.363 

819.200 1461.500 3.357 

819.200 1480.000 3.357 

819.200 1498.500 3.357 

819.200 1517.000 3.357 

819.200 1535.500 3.357 

819.200 1554.000 3.357 

819.200 1572.500 3.357 
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819.200 1591.000 3.357 

819.200 1609.500 3.357 

819.200 1628.000 3.357 

819.200 1646.500 3.357 

819.200 1665.000 3.357 

819.200 1683.500 3.357 

819.200 1702.000 3.357 

819.200 1720.500 3.357 

819.200 1739.000 3.357 

819.200 1757.500 3.357 

819.200 1776.000 3.357 

819.200 1794.500 3.357 

819.200 1813.000 3.357 

819.200 1831.500 3.357 

819.200 1850.000 3.357 

921.600 0.000 1.036 

921.600 18.500 1.036 

921.600 37.000 1.036 

921.600 55.500 1.036 

921.600 74.000 1.036 

921.600 92.500 1.036 

921.600 111.000 1.036 

921.600 129.500 1.036 

921.600 148.000 1.036 

921.600 166.500 1.322 

921.600 185.000 1.536 

921.600 203.500 1.701 

921.600 222.000 1.895 

921.600 240.500 2.074 

921.600 259.000 2.245 

921.600 277.500 2.411 

921.600 296.000 2.576 

921.600 314.500 2.746 

921.600 333.000 2.922 

921.600 351.500 3.111 

921.600 370.000 3.336 

921.600 388.500 3.336 

921.600 407.000 3.336 

921.600 425.500 3.336 

921.600 444.000 3.336 

921.600 462.500 3.336 

921.600 481.000 3.336 

921.600 499.500 3.336 

921.600 518.000 3.336 

921.600 536.500 3.336 

921.600 555.000 3.336 

921.600 573.500 3.336 

921.600 592.000 3.336 

921.600 610.500 3.336 

921.600 629.000 3.336 
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921.600 647.500 3.336 

921.600 666.000 3.359 

921.600 684.500 3.374 

921.600 703.000 3.381 

921.600 721.500 3.383 

921.600 740.000 3.382 

921.600 758.500 3.378 

921.600 777.000 3.372 

921.600 795.500 3.371 

921.600 814.000 3.370 

921.600 832.500 3.376 

921.600 851.000 3.381 

921.600 869.500 3.383 

921.600 888.000 3.382 

921.600 906.500 3.375 

921.600 925.000 3.361 

921.600 943.500 3.336 

921.600 962.000 3.336 

921.600 980.500 3.336 

921.600 999.000 3.336 

921.600 1017.500 3.336 

921.600 1036.000 3.336 

921.600 1054.500 3.336 

921.600 1073.000 3.336 

921.600 1091.500 3.336 

921.600 1110.000 3.336 

921.600 1128.500 3.336 

921.600 1147.000 3.336 

921.600 1165.500 3.336 

921.600 1184.000 3.336 

921.600 1202.500 3.352 

921.600 1221.000 3.385 

921.600 1239.500 3.414 

921.600 1258.000 3.439 

921.600 1276.500 3.457 

921.600 1295.000 3.467 

921.600 1313.500 3.468 

921.600 1332.000 3.456 

921.600 1350.500 3.427 

921.600 1369.000 3.412 

921.600 1387.500 3.399 

921.600 1406.000 3.387 

921.600 1424.500 3.375 

921.600 1443.000 3.363 

921.600 1461.500 3.350 

921.600 1480.000 3.339 

921.600 1498.500 3.336 

921.600 1517.000 3.336 

921.600 1535.500 3.336 

921.600 1554.000 3.336 
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921.600 1572.500 3.336 

921.600 1591.000 3.336 

921.600 1609.500 3.336 

921.600 1628.000 3.336 

921.600 1646.500 3.336 

921.600 1665.000 3.336 

921.600 1683.500 3.336 

921.600 1702.000 3.336 

921.600 1720.500 3.336 

921.600 1739.000 3.336 

921.600 1757.500 3.336 

921.600 1776.000 3.336 

921.600 1794.500 3.336 

921.600 1813.000 3.336 

921.600 1831.500 3.336 

921.600 1850.000 3.336 

1024.000 0.000 1.011 

1024.000 18.500 1.011 

1024.000 37.000 1.011 

1024.000 55.500 1.011 

1024.000 74.000 1.011 

1024.000 92.500 1.011 

1024.000 111.000 1.011 

1024.000 129.500 1.011 

1024.000 148.000 1.011 

1024.000 166.500 1.282 

1024.000 185.000 1.488 

1024.000 203.500 1.701 

1024.000 222.000 1.895 

1024.000 240.500 2.074 

1024.000 259.000 2.245 

1024.000 277.500 2.411 

1024.000 296.000 2.576 

1024.000 314.500 2.746 

1024.000 333.000 2.922 

1024.000 351.500 3.111 

1024.000 370.000 3.317 

1024.000 388.500 3.317 

1024.000 407.000 3.317 

1024.000 425.500 3.317 

1024.000 444.000 3.317 

1024.000 462.500 3.317 

1024.000 481.000 3.317 

1024.000 499.500 3.317 

1024.000 518.000 3.317 

1024.000 536.500 3.317 

1024.000 555.000 3.317 

1024.000 573.500 3.317 

1024.000 592.000 3.317 

1024.000 610.500 3.317 
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1024.000 629.000 3.317 

1024.000 647.500 3.317 

1024.000 666.000 3.341 

1024.000 684.500 3.357 

1024.000 703.000 3.365 

1024.000 721.500 3.369 

1024.000 740.000 3.369 

1024.000 758.500 3.366 

1024.000 777.000 3.368 

1024.000 795.500 3.371 

1024.000 814.000 3.370 

1024.000 832.500 3.365 

1024.000 851.000 3.369 

1024.000 869.500 3.369 

1024.000 888.000 3.366 

1024.000 906.500 3.358 

1024.000 925.000 3.342 

1024.000 943.500 3.317 

1024.000 962.000 3.317 

1024.000 980.500 3.317 

1024.000 999.000 3.317 

1024.000 1017.500 3.317 

1024.000 1036.000 3.317 

1024.000 1054.500 3.317 

1024.000 1073.000 3.317 

1024.000 1091.500 3.317 

1024.000 1110.000 3.317 

1024.000 1128.500 3.317 

1024.000 1147.000 3.317 

1024.000 1165.500 3.317 

1024.000 1184.000 3.317 

1024.000 1202.500 3.352 

1024.000 1221.000 3.385 

1024.000 1239.500 3.414 

1024.000 1258.000 3.439 

1024.000 1276.500 3.457 

1024.000 1295.000 3.467 

1024.000 1313.500 3.468 

1024.000 1332.000 3.456 

1024.000 1350.500 3.427 

1024.000 1369.000 3.412 

1024.000 1387.500 3.399 

1024.000 1406.000 3.387 

1024.000 1424.500 3.375 

1024.000 1443.000 3.363 

1024.000 1461.500 3.350 

1024.000 1480.000 3.339 

1024.000 1498.500 3.328 

1024.000 1517.000 3.317 

1024.000 1535.500 3.317 
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1024.000 1554.000 3.317 

1024.000 1572.500 3.317 

1024.000 1591.000 3.317 

1024.000 1609.500 3.317 

1024.000 1628.000 3.317 

1024.000 1646.500 3.317 

1024.000 1665.000 3.317 

1024.000 1683.500 3.317 

1024.000 1702.000 3.317 

1024.000 1720.500 3.317 

1024.000 1739.000 3.317 

1024.000 1757.500 3.317 

1024.000 1776.000 3.317 

1024.000 1794.500 3.317 

1024.000 1813.000 3.317 

1024.000 1831.500 3.317 

1024.000 1850.000 3.317 
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APPENDIX D 

SAMPLE APPLICATION SOURCE CODE 

 

remotepowerswitch.c 
 

project-conf.h 
 

leds.h 
 

leds.c 
 

 

Source code:  ‘remotepowerswitch.c’ 

/* 
 * Remote Power Switch Example for the Seed-Eye Board 
 * Copyright (c) 2013, Giovanni Pellerano 
 *  
/ 
 
/** 
 * \file   remotepowerswitch.c 
 * \brief  Remote Power Switch Example for the Seed-Eye Board 
 * \author Giovanni Pellerano <giovanni.pellerano@evilaliv3.org> 
 * \date   2013-01-24 
 */ 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#include "contiki.h" 
#include "contiki-net.h" 
 
#include "erbium.h" 
 
#include "dev/leds.h" 
 
#include <p32xxxx.h> 
 
RESOURCE(toggle, METHOD_GET | METHOD_PUT | METHOD_POST, "actuators/powerswitch", 
"title=\"Red LED\";rt=\"Control\""); 
void 
toggle_handler(void* request, void* response, uint8_t *buffer, uint16_t 
preferred_size, int32_t *offset) 
{ 
  leds_toggle(LEDS_YELLOW); 
   
  PORTEbits.RE0 = !PORTEbits.RE0; 
} 
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PROCESS(remote_power_switch, "Remote Power Switch"); 
 
AUTOSTART_PROCESSES(&remote_power_switch); 
 
PROCESS_THREAD(remote_power_switch, ev, data) 
{ 
  PROCESS_BEGIN(); 
 
  rest_init_engine(); 
   
  TRISEbits.TRISE0 = 0; 
  PORTEbits.RE0 = 0; 
 
  rest_activate_resource(&resource_toggle); 
 
  while(1) { 
    PROCESS_WAIT_EVENT(); 
  } 
 
  PROCESS_END(); 
} 
 
/** @} */ 

 

 

Source code:  project-conf.h 
 
 
/* 
 * Copyright (c) 2010, Swedish Institute of Computer Science. 
 * All rights reserved. 
 * 
* 
 * 
 */ 
 
#ifndef __PROJECT_RPL_WEB_CONF_H__ 
#define __PROJECT_RPL_WEB_CONF_H__ 
 
#define SICSLOWPAN_CONF_FRAG      1 
 
/* Increase rpl-border-router IP-buffer when using 128. */ 
#ifndef REST_MAX_CHUNK_SIZE 
#define REST_MAX_CHUNK_SIZE          64 
#endif 
 
/* Multiplies with chunk size, be aware of memory constraints. */ 
#ifndef COAP_MAX_OPEN_TRANSACTIONS 
#define COAP_MAX_OPEN_TRANSACTIONS   2 
#endif 
 
/* Must be <= open transaction number. */ 
#ifndef COAP_MAX_OBSERVERS 
#define COAP_MAX_OBSERVERS           COAP_MAX_OPEN_TRANSACTIONS-1 
#endif 
 
#endif /* __PROJECT_RPL_WEB_CONF_H__ */ 
/* 
 * Copyright (c) 2005, Swedish Institute of Computer Science 
 * All rights reserved. 
 * 
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* 
 */ 
 

 

Source code:  ‘dev/leds.c’ 
 
 
#include "dev/leds.h" 
#include "sys/clock.h" 
#include "sys/energest.h" 
 
static unsigned char leds, invert; 
/*---------------------------------------------------------------------------*/ 
static void 
show_leds(unsigned char changed) 
{ 
  if(changed & LEDS_GREEN) { 
    /* Green did change */ 
    if((invert ^ leds) & LEDS_GREEN) { 
      ENERGEST_ON(ENERGEST_TYPE_LED_GREEN); 
    } else { 
      ENERGEST_OFF(ENERGEST_TYPE_LED_GREEN); 
    } 
  } 
  if(changed & LEDS_YELLOW) { 
    if((invert ^ leds) & LEDS_YELLOW) { 
      ENERGEST_ON(ENERGEST_TYPE_LED_YELLOW); 
    } else { 
      ENERGEST_OFF(ENERGEST_TYPE_LED_YELLOW); 
    } 
  } 
  if(changed & LEDS_RED) { 
    if((invert ^ leds) & LEDS_RED) { 
      ENERGEST_ON(ENERGEST_TYPE_LED_RED); 
    } else { 
      ENERGEST_OFF(ENERGEST_TYPE_LED_RED); 
    } 
  } 
  leds_arch_set(leds ^ invert); 
} 
/*---------------------------------------------------------------------------*/ 
void 
leds_init(void) 
{ 
  leds_arch_init(); 
  leds = invert = 0; 
} 
/*---------------------------------------------------------------------------*/ 
void 
leds_blink(void) 
{ 
  /* Blink all leds. */ 
  unsigned char inv; 
  inv = ~(leds ^ invert); 
  leds_invert(inv); 
 
  clock_delay(400); 
 
  leds_invert(inv); 
} 
/*---------------------------------------------------------------------------*/ 
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unsigned char 
leds_get(void) { 
  return leds_arch_get(); 
} 
/*---------------------------------------------------------------------------*/ 
void 
leds_on(unsigned char ledv) 
{ 
  unsigned char changed; 
  changed = (~leds) & ledv; 
  leds |= ledv; 
  show_leds(changed); 
} 
/*---------------------------------------------------------------------------*/ 
void 
leds_off(unsigned char ledv) 
{ 
  unsigned char changed; 
  changed = leds & ledv; 
  leds &= ~ledv; 
  show_leds(changed); 
} 
/*---------------------------------------------------------------------------*/ 
void 
leds_toggle(unsigned char ledv) 
{ 
  leds_invert(ledv); 
} 
/*---------------------------------------------------------------------------*/ 
/*   invert the invert register using the leds parameter */ 
void 
leds_invert(unsigned char ledv) { 
  invert = invert ^ ledv; 
  show_leds(ledv); 
} 
 
/*---------------------------------------------------------------------------*/ 

 

 

Source code:  ‘dev/leds.h’ 

 
#ifndef __LEDS_H__ 
#define __LEDS_H__ 
 
/* Allow platform to override LED numbering */ 
#include "contiki-conf.h" 
 
void leds_init(void); 
 
/** 
 * Blink all LEDs. 
 */ 
void leds_blink(void); 
 
#ifndef LEDS_GREEN 
#define LEDS_GREEN  1 
#endif /* LEDS_GREEN */ 
#ifndef LEDS_YELLOW 
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#define LEDS_YELLOW  2

 
 

 

#endif /* LEDS_YELLOW */ 
#ifndef LEDS_RED 
#define LEDS_RED  4 
#endif /* LEDS_RED */ 
#ifndef LEDS_BLUE 
#define LEDS_BLUE  LEDS_YELLOW 
#endif /* LEDS_BLUE */ 
 
#ifdef LEDS_CONF_ALL 
#define LEDS_ALL    LEDS_CONF_ALL 
#else /* LEDS_CONF_ALL */ 
#define LEDS_ALL    7 
#endif /* LEDS_CONF_ALL */ 
 
/** 
 * Returns the current status of all leds (respects invert) 
 */ 
unsigned char leds_get(void); 
void leds_on(unsigned char leds); 
void leds_off(unsigned char leds); 
void leds_toggle(unsigned char leds); 
void leds_invert(unsigned char leds); 
 
/** 
 * Leds implementation 
 */ 
void leds_arch_init(void); 
unsigned char leds_arch_get(void); 
void leds_arch_set(unsigned char leds); 
 
#endif /* __LEDS_H__ */ 
 ---*/ 

 

 


