

A CONTEXT-BASED SOFTWARE

RECONFIGURABLE SYSTEM FOR WIRELESS

SENSOR NETWORK

BY

ERONU EMMANUEL MAJIYEBO

Ph.D/SEET/2010/333

DEPARTMENT OF COMPUTER ENGINEERING,

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA

SEPTEMBER, 2014

i

A CONTEXT-BASED SOFTWARE

RECONFIGURABLE SYSTEM FOR WIRELESS

SENSOR NETWORK

BY

ERONU EMMANUEL MAJIYEBO

Ph.D/SEET/2010/333

THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL,

FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D)

IN COMPUTER ENGINEERING

 SEPTEMBER, 2014

ii

ABSTRACT

Wireless Sensor Network application entails deploying thousands of wireless sensor

nodes in unreachable locations. The inability to reconfigure each node in order to take

on new tasks poses a serious challenge to the continued operation of the entire system.

Several attempts have been made to address these challenges, of interest is one that

exploits design-time knowledge of the application scenario dynamics to construct and

implements a proactive runtime reconfiguration paradigm. However, It suffers two

defects: the possibility of capturing all anticipated reconfiguration needs can be

challenging, and the scarcely available memory space might not be sufficient to

accommodate codes written to address these needs. Moreover, even if it does, there is

the likelihood of redundant codes written to handle anticipated changes, which might

never occur, and invariably taking up scarcely available memory spaces. This research

work explores the use of context information to improve upon wireless sensor networks

reconfiguration processes. The research’s aim is to develop a software system that

dynamically reconfigures wireless sensor network operational functionalities optimally

based on evolving application context. In order to demonstrate the benefits of the

context based reconfiguration model, two contexts related input variables were used.

The first variable is obtain using a metric tool (PDE) devised for extracting context

information from the delta of two files (application related context). The second

variable entails the battery energy level state of the sensor node taken as an operational-

demand related context. A robust inference engine was developed based on the inferred

expert knowledge on memory related energy consumption pattern during the

reconfiguration process. The pattern studied and presented explains how delta size and

its orientation can influence energy consumption while reprogramming sensor nodes.

The resulting output from the fuzzy logic system controls when and which one of the

reconfiguration approaches should be implemented in order to prolong the battery life.

The model's performance was evaluated on an OMNet++ simulation platform using

pilot data obtained from a testbed composed of Microchips’ PIC32MX320F128H

microcontroller and MRF24J40MB transceiver. In a network of six nodes, two were

equipped with the developed model capability and the others were not. The overall

energy expended as read, erase and write were obtained from each node for the purpose

of comparison. Results obtained show that 65% of energy expended during the erasure

procedure is saved in nodes that adopt the context based reconfiguration model.

Similarly, 45% and 69% reduction in energy consumption were obtained for the read

and write procedures respectively. The research work was able to emphasise the

benefits of identifying, employing and managing the impact of contextual information

(Application/operational related) during wireless sensor network reconfiguration

procedure.

iii

TABLE OF CONTENTS

CONTENT PAGE

Title Page i

 Declaration ii

 Certification iii

 Acknowledgments iv

 Abstract v

 Table of Contents vi

 List of Tables x

 List of Figures xi

 List of Plates xiv

 Abbreviations xv

CHAPTER ONE

1.0 Introduction 1

1.1 Motivation 4

1.2 Problem Statement 7

1.3 Aim and Objectives 8

1.4 Limitation of Study 8

1.5 Scope of Study 9

1.6 Thesis Outline 9

CHAPTER TWO

2.0 Literature review 11

2.1 Wireless Sensor Network(WSN) 12

 2.1.1 Hardware and Software Components of WSN 14

 2.1.2 Simulation of WSN 16

2.2 Reconfiguration Computing 16

2.3 Impact of Reconfiguration Approaches 17

iv

 2.3.1 Memory space 18

 2.3.2 Energy consumption 18

2.4 Overview of Reconfiguration Approaches on Selected Platforms 19

 2.4.1 Processing Element 19

 2.4.2 Radio Frequency Transceiver 21

 2.4.3 Application 24

 2.4.4 Middleware 27

 2.4.5 Operating System 30

 2.4.5.1 TinyOS 31

 2.4.5.2 Sensor Operating System 34

 2.4.5.3 Contiki 34

 2.4.5.4 Mantis 35

2.5 Application of Artificial Intelligence to WSN related Issues 38

 2.5.1 Artificial Neural Networks 38

 2.5.2 Genetic Algorithm 40

 2.5.3 Fuzzy Logic System 41

2.6 Choice of AI Solution for WSN related Issues 43

2.7 Summary 46

CHAPTER THREE

3.0 Research Methodology 48

3.1 Context-Based Reconfiguration System Design 49

 3.1.1 Deriving a Context-Based Reconfigurable Model 49

 3.1.1.1 Application Related Context Information 49

 3.1.1.2 Operational-Demands Related Context Information 51

 3.1.1.3 The Model Description and Implementation 52

 3.1.2 Software Component for Application Related Context Extraction 59

 3.1.2.1 Precise Delta Extractor (PDE) Design and Implementation 59

 3.1.2.2 PDE Design Concept 60

 3.1.2.3 PDE Evaluation 63

v

 3.1.3 Flash Memory Energy Consumption Modelling 67

 3.1.3.1 Related Memory Re-Flashing Constraints 69

 3.1.3.2 Firmware Reconstruction Algorithm 71

 3.1.4 Adoption of Fuzzy Logic Controller 73

 3.1.4.1 Fuzzy Logic Controller 74

 3.1.4.2 Design and Implementation of the Fuzzy Logic Controller 76

 3.1.4.3 Modelling of the System Inputs and Output 78

 3.1.4.4 Fuzzy Inference Engine 83

3.2 Context-Based Reconfiguration System Evaluation 88

 3.2.1 Testbed Hardware Composition 88

 3.2.2 Testbed Software Composition 91

3.3 Overall System Performance Evaluation 92

 3.3.1 Choice of Simulator 92

 3.3.2 Using OMNeT++ and Castalia Result Reporting Tools. 95

 3.3.3 Simulation Setup 95

3.4 Summary 96

CHAPTER FOUR

4.0 Results and Discussion 97

4.1 Precise Delta Extraction Tool 97

 4.1.1 ELF Profile of the ‘Remote Power Switch’ Sample Application 97

 4.1.1.1 Case Study 1: Effecting Changes to ‘Constant Data ‘ 100

 4.1.1.2 Case Study 2: Effecting Changes to ‘Flow of Control’ 103

 4.1.1.3 Case Study 3: Effecting Changes to ‘Function’s Name’ 105

 4.1.2 Summary of Results 107

4.2 Fuzzy Inference Engine 107

4.3 Context-Based Reconfiguration system evaluation 113

4.4 PDE Utilisation Results and Discussion 118

 4.4.1 PDE Compared to Existing Difference Reconfiguration Algorithms 119

 4.4.2 Context-Based Reconfiguration system 120

vi

4.5 Summary 121

CHAPTER FIVE

5.0 Conclusion and Recommendations 122

 5.1 Conclusion 122

 5.2 Contribution to knowledge 124

 5.3 Recommendations 124

 References 126

 Appendices 135

vii

LIST OF TABLES

TABLE PAGE

2.1: Selected software definition in configuration file

27

2.2: Reconfiguration features, approaches, impact and comparative

advantages of TinyOS and SOS

36

2.3: Reconfiguration features, approaches, impact and comparative

advantages of Contiki and Mantis

37

3.1: Classification of Sensor types

51

3.2: Description of proposed Models parameter and associated

symbols

53

3.3: Description of ELF membership type symbols

60

3.4: Description of ELF membership type symbols

61

4.1: List of ‘remotepowerswitch.elf’ ELF constituents

98

4.2: A summary of results obtained for the three case studies

107

4.3: Results obtained for varied battery’s energy levels 108

4.4: Flash Memory Characteristic 115

viii

LIST OF FIGURES

FIGURE

PAGE

1.1: Exemplified scenario of context-aware inclined reconfigurable

WSN.

5

2.1: A typical example of a Wireless Sensor Network

12

2.1: Reconfigurable software and hardware

19

2.3: A Typical SDR Architecture

22

2.4: Block Diagram of Microchip Wireless

26

2.5; Reconfiguration Architecture

30

2.6: Structure of an Artificial Neuron

39

2.7: Popular ANN architectures: The connections shown in solid lines

and the context later makeup a feedforward NN. Addition of the

connections shown in dotted lines converts it into a recurrent

neural network.

39

2.8: A Fuzzy Logic System 41

2.9: An Overview of WSN challenges and the AI paradigms applied to

address them

45

3.1: Program Flow representation of Proposed Context based

Reconfiguration Model

55

3.2: Context based reconfigurable WSN model 56

3.3: Delta Extraction Front End

65

3.4: ELF Profile Display Front End

66

3.5: Flash Memory Segments - 4KB Example

68

3.6: Reconfigured data confined to a single segment

70

3.7: Reconfigured data spread over adjoining segment

70

3.8: Changes spread over several segments

71

3.9: Computation of Fuzzy Reprogramming Energy Cost 74

ix

3.10: The qtfuzzylite designer editor

79

3.11: Membership function for Delta Orientation input value

81

3.12: Membership functions for Battery energy state input value

82

3.13 Membership function for the Reconfiguration Approach Output

85

3.14 Qtfuzzylite development tool’s rule text editor

86

3.15 Complete Fuzzy control Platform

87

3.16: The Modules and their connections in Castalia

94

3.17: The node composite module

94

4.1; ELF profile of the ‘remotepowerswitch.elf’ file

99

4.2: Original Data value of the file before effecting changes (Case

study 1)

101

4.3: PDE display delta results obtained from Case study 1

102

4.4: Modified value of Data the file after effecting changes (Case study

1)

103

4.5: Delta as reported in the modified File (Case study 2)

104

4.6: PDE display delta results obtained from Case study 2

105

4.7: PDE display delta results obtained from Case study 3

106

4.8: Test demonstration based on Case study 1

109

4.9: Test demonstration based on Case study3 for Battery state set as

critical

110

4.10: Test demonstration based on Case study3 for Battery state

changing from Ok to fair

111

4.11: Test demonstration based on Case study3 for Battery state set to

Very Ok

112

4.12: A network of six wireless sensor nodes setup on the Omnet++

Platform

114

4.13: Sequence chart showing the history of the simulation carried out 116

x

4.14: Graphical plot made for deltas’ size less than program memory’s

segment Size with segment-confined orientation type

117

4.14: Graphical plot made for deltas’ size less than program memory’s

segment Size with segment-disjointed orientation type

117

xi

LIST OF PLATES

PLATE

PAGE

I: The Testbed Hardware Composition 89

II: Base station Hardware Composition 89

III: Wireless Sensor Node Hardware 90

IV: The Microchip MRF24J40MB transceiver 90

xii

ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Networks

BER Bit Error Rate

CAN Controller Area Network

CCA Clear Channel Assessment

CMOS Complementary Metal Oxide Semiconductor

CSMA-CA Carrier Sense Multiple Access-Collision Avoidance

DLM Dynamic Loadable Module

DMA Direct Memory Access

EEPROM Electrical Erasable Programmable Read Only Memory

ELF Execution Link File format

EOS Embedded Operating System

FCL Fuzzy Control Language

FIFO First in First out

FIS Fuzzy Inference System

FLC Fuzzy Logic Controller

FPGA Field Programmable Gate Array

FSK Frequency-Shift Keying

GNU Gnu’s Not Unix

GPRS General Packet Radio Services

GPS Global Positioning System

GSM Global System for Mobile

xiii

GTS Guaranteed Time Slots

HAA Hardware Abstraction Architecture

HDL Hardware Description Language

HEI Hot Electron Injection

HIL Hardware Independent Layer

HPL Hardware Presentation Layer

I2C Inter-Integrated Interface

MAC Media Access Control

MIPS Microprocessor without Interlocked Pipeline Stages

MLF Micro Lead Frame

NFT Nordheim Fowler Tunnelling

OS Operating System

PDE Precise Delta Extraction (scheme)

PHY Physical Layer

PSK Phase-shift keying

REOS Real-time Embedded Operating System

RF Radio Frequency

RFID Radio Frequency Identification

RISC Reduced Instruction Set Computer

RSSI Received Signal Strength Indicator

SDR Software Define Radio

SINR
Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

SPI Serial Peripheral Interface

xiv

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver/Transmitter

UWB Ultra-Wide Band

USB Universal Serial Bus

WIFI Wireless Fidelity

WIMAX Worldwide Interoperability for Microwave Access

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

15

CHAPTER ONE

1.0 INTRODUCTION

Wireless sensor network (WSN) is a collection of small-embedded devices

interconnected with the sole aim of sensing, processing, sharing and remotely relaying

data via known communication protocols. WSN applications are widespread and

increasingly growing by the day. Examples of these applications entail: military

sensing, physical security, air traffic control, traffic surveillance, video surveillance,

industrial and manufacturing automation, distributed robotics, health care monitoring

and delivery.Others are environmental monitoring, observatory purposes in weather and

earthquake monitoring, building and structural monitoring (Chong and Kumar, 2003).

The small embedded devices commonly referred to as wireless sensor nodes share or

relay data to the base station by employing various communication models. A number

of communication models exist as follows: direct, multi-hop and clustering. The node

consists of sensors, processing elements (microcontrollers), radio communication

interface and a power source (battery and solar). The sensors detect and measure

physical phenomena such as temperature, light, magnetic field, pressure, acceleration,

current and ultrasound.

A typical WSN application entails deploying hundreds or thousands of wireless sensor

nodes in unreachable locations. Examples of these applications are as follows:

surveillance, environmental monitoring, oil and gas pipeline monitoring (Misra and

Eronu, 2012). When there is a change in the operational needs of the system or new

functionalities are required in such application, reconfiguration of either the entire

network or individual sensor nodes become inevitable. The inability to effect these

changes could pose a serious challenge to the continued operation of the entire system

16

(Misra and Eronu, 2012). Other issues that could warrant the need for a reconfigurable

WSN are bug fixes (Hinkelmann, Reinhardt and Glesner, 2008) , regular code updates

(Kulkarni, Sanyal, Al-Qaheri and Sanyal, 2009), security challenges (Portilla, Otero,

De la Torre, Riesgo, Stecklina, Peter and Langendorfer, 2010), RF communication link

(Ramamurthy, Prabhu and Gadh, 2004) and efficient energy management.

Altering system functionality in both real-time or design time involves making changes

to either the hardware component or software component or both components. The

altering process could in some cases (Krishna, Bagchi and Khalil, 2009) be referred to

as ‘Reprogramming’ , and in some other cases (Muralidhar and Rao, 2008) it is

considered as ‘Reconfiguration’. When only the software component is involved, it is

termed ‘Reprogramming’. Likewise, the term "Reconfiguration” is used when the

Hardware components are involved. Probably in agreement with this proposition,

Compton and Hauck (2002) described reconfigurable systems as devices that

incorporate some form of hardware programmability. However, in this thesis, both

terms are used interchangeably. Both terms refer to ‘an act or process of effecting a

change’ to the system’s underlying codes or instructions (high-level or low-level

languages and Hardware Description Language (HDL)). The aim is to alter its initial

functions. Some other words often used to connote reconfiguration in certain literature

are ‘updating' , 'adaptation' or ‘Adapting’ (Brown and Sreenan, 2006; Han, Kumar, Shea

and Srivastava, 2005). Stating these definitions clearly prevent misapprehension due to

the use of different words or terms meant to explain the same concept.

Good design criteria demand that for a system to be cost-effective, it should possess

attributes that enable it take cognisance of the resources around its immediate and

remote environments. It should autonomously or remotely be directed to perform new

tasks or implement existing task more efficiently. The adoption of Context-driven and

17

context-aware paradigm in distributed systems is on the increase, as such WSN should

not be an exception (Silva and Vuran, 2010).

Sensor network application can be expensive to implement, especially when large-scale

projects are involved. Being able to manage network resources and tailor their use

towards several other applications other than what they were initially designed for can

be a daunting task. Application objectives, anticipated constraints, resource managerial

strategies and other surrounding factors, when well spelt out in the design model,

simplify the complexity arising from adapting WSN to newer applications. Identifying

these factors requires a careful analysis of the entire WSN operational environment.

When these factors are considered as a source of relevant contextual information, then

reconfiguring WSN becomes much easier. In this perspective, the intent is to understudy

context-related approaches as they relate to reconfiguration computing and by extension

reconfigurable WSN.

Baldauf, Dustdar, and Rosenberg (2007) described context-aware systems as systems

that can alter their mode of operation to suit the current context without explicit user

intervention thereby increasing the systems usability and effectiveness. Context

awareness is commonly used in systems whose operation or responses are influenced by

certain defined surrounding factors. The concept of context-aware systems allows

applications to gather context data and adapt their operational behaviour accordingly.

These applications can function without explicit intervention and thereby increase their

usability and effectiveness within the context of the environment where they operate

(Baldauf et al., 2007). Context-driven allows a system to assign resources on current

and relevant tasks, rather than just processing predefined applications. Equipping the

node with relevant context sensing capabilities enables it to estimate future context

requirements. When these requirements are used appropriately, the network can be

18

configured to perform more optimally. Management systems can guess about what kind

of tasks will be required in the near future and consider it when allocating resources.

Hence, effecting the sensor nodes’ reconfiguration processes based on contextual

information can be helpful in several ways. For example, deciding on when and how to

effect a reconfiguration process can result in reducing the system’s operational cost.

This cost invariably entails energy consumed and memory size utilised by the nodes

during the reconfiguration process.

1.1 Motivation

In order to appreciate the benefit of such a context-based reconfigurable paradigm,

consider a WSN application scenario as depicted in Figure 1.1. The application is

intended to be deployed and utilised in an urban setting, and the nodes have the

capability to reconfigure themselves autonomously. In addition, they can as well be

remotely reconfigured to use any desired particular communication standard (RFID,

Bluetooth, UWB, Zigbee, GSM, GPRS, WIFI or WiMax). Taking into consideration

also that in most urban settings, fully installed and operational communication

infrastructure supporting known communication standards is virtually everywhere. If

the earlier mentioned considerations are viable, then the WSN can be remotely

reconfigured to take advantage of the available infrastructure (gateways and base

stations) already on the ground instead of setting up new ones. Adopting the intended

model reduces the cost of deploying and installing new gateways and possibly new base

stations.

19

The nodes can easily adopt future communication standards whenever they become

available. Instead of retrieving older nodes and replacing them with newer ones, the

older ones can simply be reconfigured on the fly thereby enabling them to function

within evolving context requirements.

Capturing and using context information during reconfiguration processes can be

helpful in intelligently managing the node's resources. This guaranty optimal

performance and efficient use of scarce available resources (energy and memory space)

In view of these needs and observed deficiencies in existing approaches, the research

work is intended to address the following:

Figure 1.1: Exemplified scenario of context-aware inclined reconfigurable WSN

20

 Reduce the presence of redundant codes, thereby lessening the size of the

firmware deployed to the wireless sensor nodes;

 Enhance the flexibility of reuse; allow real-time user input during

reconfiguration processes and autonomous reconfiguration using fuzzy logic

in decision making;

 Establish a two-way interactive platform between the reconfiguring agent

(user via base station) and the reconfigured (sensor node) and by extension

the entire wireless sensor network. The two-way interactive platform enables

the base station to assess the state of the sensor node through the contextual

information it relayed. In addition, coupled with other relevant information

(operational related contextual information), the system then decides when

and how or what manner of reconfiguration should be employed. The aim is

to ensure that the entire network performs efficiently and optimally manages

the available resources (memory usage and energy consumption)

 Include artificial intelligence techniques (fuzzy logic) in reconfiguration

processes to enable the entire system autonomously respond to evolving

changes especially in unfriendly environments.

The benefits of the model are to reduce energy consumption rate and effect a reduction

in the amount of memory-space used while reprogramming a wireless sensor node. The

inclusion of artificial intelligence techniques (fuzzy logic) in reconfiguration processes

enables the entire system to respond to evolving changes in an unfriendly environment.

1.2 Problem Statement

21

Steine, Ngo, Oliver, Geilen, Basten, Fohler and Decotgnie (2011) introduced an

approach that exploits design-time knowledge of the application scenario dynamics to

construct and implements a proactive runtime reconfiguration paradigm. However, two

challenging issues are apparent here: , the possibility of capturing all anticipated

reconfiguration needs can be challenging, and the scarcely available memory space

might not be sufficient to accommodate codes written to address these needs. Moreover,

even if it does, there is the likelihood of redundant codes written to handle anticipated

changes, which might never occur, and invariably taking up scarcely available memory

spaces. A review of existing reconfiguration approaches and related challenges (energy

consumption rate and memory space) is reported in Eronu, Misra and Aibinu (2013).

In addition, implementing WSN reconfiguration may depend on whether it is needful,

urgent, or sustainable. For example, instead of effecting reconfiguration procedure

during unfavourable weather conditions, it may be needful to delay the process and then

resume when the conditions become favourable. In extreme cases, it is advisable to stop

the process completely when the available energy in the node cannot sufficiently sustain

the reconfiguration process. Where the second option is the norm, the sensor node might

not be able to implement new functionalities but it can still be utilised for other

purposes not dependent on the update. The ability to take decisions of this nature is

largely confined to the human domain. However, Artificial Intelligence (AI) techniques

like the Fuzzy Logic and Artificial Neural Network allow machines to mimic human

cognitive capabilities. Importantly, the problem needs to be presented as defined input

variables and the output variables make-up the solutions. Solutions are obtained from

the analyses of processed input variables in conformity with a set of rules that are based

or derived from expert knowledge.

22

1.3 Aim and Objectives

The aim of this research is to develop a software system that dynamically reconfigures

wireless sensor network operational functionalities optimally based on evolving

application context. In order to realise the aforementioned aim, the under listed set of

objectives were actualised and used to devise result-oriented procedures:

I. To devise a WSN context based reconfiguration model;

II. To design and implement a metric utility for measuring the degree of

changes made in modified application source codes and relaying the exact

changes;

III. To integrate and use fuzzy logic controller in deciding the most appropriate

reconfiguration approach to adopt in response to evolving application or

operational context; and

IV. To evaluate the performance of the developed system.

1.4 Limitation of Study

The Execution Link File (ELF) format adopted for developing the Precision Delta

Extraction (PDE) tool in this work is not implemented in certain operating systems like

the TinyOS. Hence, this limitation has constrained most of the work to only sensors

nodes that employ the ELF format in their firmware generation and deployment.

1.5 Scope of Study

Several reconfiguration approaches are currently being implemented at various layers of

the sensor node architecture. Majority of these approaches are still under development;

that is, research are still on and their possible adoption in real life application scenario

23

appears remote. For example, the use of field programmable gate arrays (FPGA) to

actualise reconfigurable processors or rather soft-processors for wireless sensor nodes is

not feasible now. More detailed information on the implementation of selected

reconfiguration approaches at four layers is presented in Chapter Two. However, in this

research work, the design and implementation processes are confined to the operating

system platform.

1.6 Thesis Outline

The general introduction, statement of the problem, the aim, objectives and justification

of the work were presented in this Chapter. Chapter Two presents a review of several

wireless sensor reconfiguration research works from the following perspective: the

driving factors necessitating reconfiguration needs, previous and current reconfiguration

approaches at some selected layers of the sensor node. The four selected layers are

namely: the application, middleware, processing elements and the operating system

layers. In addition, challenges and lapses associated with these approaches as

implemented in the various layers were also presented. Also, further discussion on how

these lapses can be addressed using surrounding contextual information presented. In

Chapter Three, a detailed description of the research methodology presented. The

description spans over the design and development of the context based reconfiguration

software system for wireless sensor network model. The formulation and application of

two additional subcomponents namely the precise delta extraction tool and a fuzzy logic

controller were discussed. In addition, the testbed composition and setup for evaluating

the model’s pilot data, and the simulation tool employed to evaluate the model on a

larger scale are presented. Chapter Four presents the results and discussion of the

24

research. Finally, Chapter Five presents some concluding remarks and

recommendations for future works.

25

CHAPTER TWO

2.0 LITERATURE REVIEW

Research efforts towards devising the most efficient and appropriate approach in

realising WSN whose operational and functional capabilities can be altered on-the-fly

have been on for quite a long time now. This chapter presents a review of previous and

current reconfiguration approaches at some selected layers of the sensor node. The four

selected layers are namely: the Processing Elements, Radio Frequency Transceiver,

Application, Middleware, and the Operating System layers. Brief background

information on the impact of reconfiguration processes on WSN operations was

conveyed. In addition, challenges and lapses associated with these approaches as

implemented in the various layers were also presented.

Much work is concentrated on the operating system layer, and its related

reconfiguration approaches because of its widespread adoption as reported in most

literatures. The different paradigms employed by some selected number of operating

systems tailored for the WSN application were reviewed. Comparative studies of the

energy cost of implementing the various approaches reviewed are also presented in this

chapter.

Attempts to use context information in WSN applications were reviewed and

subsequently reported. Studies indicate that limited efforts were directed towards the

use of contextual information in addressing WSN reconfiguration issues especially

those related to its resource management. In addition, the use of Artificial Intelligence

(AI) to manage WSN related resource-constraint problems, which were mainly at

experimental stages were presented. The review highlighted some of the milestones

26

archived from previous attempts to employ contextual information and AI in addressing

WSN resource-constrained issues. The findings indicate that not much work has been

concentrated in WSN related reconfiguration problems

2.1 Wireless Sensor Network (WSN)

The WSN (see Figure 2.1) is built of few to several hundred or even thousands of sensor

nodes. Each node is connected to one or more sensors. Each sensor network node

consist of several parts: a radio transceiver with an internal antenna or connection to an

external antenna, a microcontroller, an electronic circuit for interfacing with the sensors

and an energy source, usually a battery or an embedded form of energy harvesting. The

topology of the WSNs can vary from a simple star network to an

advanced multihop wireless mesh network.

The propagation technique between the hops of the network can be routing or flooding

Figure 2.1: A typical example of a Wireless Sensor Network (www.virtual-labs.ac.in)

http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Transceiver
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Battery_(electricity)
http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Mesh_networking
http://en.wikipedia.org/wiki/Wireless_mesh_network
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Flooding_algorithm
http://r.search.yahoo.com/_ylt=AwrB8pyuujRUR1cA7hijzbkF;_ylu=X3oDMTBxNG1oMmE2BHNlYwNmcC1hdHRyaWIEc2xrA3J1cmwEaXQD/RV=2/RE=1412770606/RO=11/RU=http%3a%2f%2fvirtual-labs.ac.in%2fcse28%2fant%2fant%2f8%2ftheory%2f/RK=0/RS=qGDAdgo3pE.976Rl4SzGMxHEXv0-

27

The main characteristics of a WSN include:

 Power consumption constraints for nodes using batteries or energy harvesting

 Ability to cope with node failures (resilience)

 Mobility of nodes

 Heterogeneity of nodes

 Scalability to large scale of deployment

 Ability to withstand harsh environmental conditions

 Ease of use

 Cross-layer design

Cross-layer is becoming an important studying area for wireless communications. In

addition, the traditional layered approach presents three main problems:

 Traditional layered approach cannot share different information among different

layers，which leads to each layer not having complete information. The

traditional layered approach cannot guarantee the optimization of the entire

network.

 The traditional layered approach does not have the ability to adapt to the

environmental change.

 Because of the interference between the different users, access confliction,

fading, and the change of environment in the wireless sensor networks,

traditional layered approach for wired networks is not applicable to wireless

networks.

http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/Resilience_(network)
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/w/index.php?title=Cross-layer&action=edit&redlink=1

28

2.1.1 Hardware and Software components of WSN

One major challenge in a WSN is to produce low cost and tiny sensor nodes. Many of

the nodes are still in the research and development stage, particularly their software.

Also, inherent to sensor network adoption is the use of very low power methods for

radio communication and data acquisition.

In many applications, a WSN communicates with a Local Area Network or Wide Area

Network through base stations or a gateway. The base stations are one or more

components of the WSN with much more computational, energy and communication

resources. They act as a gateway between sensor nodes and the end user as they

typically forward data from the WSN on to a server. Other components in routing based

networks are routers, designed to compute, calculate and distribute the routing tables.

The Gateway acts as a bridge between the WSN and the other network. This enables

data to be stored and processed by devices with more resources, for example, in a

remotely located server.

Energy is the scarcest resource of WSN nodes, and it determines the lifetime of WSNs.

WSNs may be deployed in large numbers in various environments, including remote

and hostile regions, where ad hoc communications are a key component. For this

reason, algorithms and protocols need to address the following issues:

 Lifetime maximization

 Robustness and fault tolerance

 Self-configuration

Lifetime maximization: Energy/Power Consumption of the sensing device should be

minimised and sensor nodes should be energy efficient since their limited energy

resource determines their lifetime. To conserve power the nodes normally turn off the

http://en.wikipedia.org/wiki/Local_Area_Network
http://en.wikipedia.org/wiki/Wide_Area_Network
http://en.wikipedia.org/wiki/Wide_Area_Network
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Server_(computing)

29

radio transceiver when not in use. Some of the important topics in WSN software

research are:

 Operating systems

 Security

 Mobility

 Usability

 Maintenance

Operating systems for wireless sensor network nodes are typically less complex than

general-purpose operating systems. Wireless sensor nodes strongly resemble embedded

systems, for two reasons. First, wireless sensor networks are typically deployed with a

particular application in mind, rather than as a general platform. Second, a need for low

costs and low power leads most wireless sensor nodes to have low-power

microcontrollers ensuring that mechanisms such as virtual memory are either

unnecessary or too expensive to implement.

TinyOS is perhaps the first operating system specifically designed for wireless sensor

networks. TinyOS is based on an event-driven programming model instead

of multithreading. TinyOS programs are composed of event handlers and tasks with

run-to-completion semantics. When an external event occurs, such as an incoming data

packet or a sensor reading, TinyOS signals the appropriate event handler to handle the

event. Event handlers can post tasks that are scheduled by the TinyOS kernel some time

later. Contiki uses a simpler programming style in C while providing advances such

as 6LoWPAN and Protothreads.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/TinyOS
http://en.wikipedia.org/wiki/Event-driven_programming
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Contiki
http://en.wikipedia.org/wiki/6LoWPAN
http://en.wikipedia.org/wiki/Protothreads

30

2.1.2 Simulation of WSNs

At present, agent-based modelling and simulation are the only paradigm, which allows

the simulation of complex behaviour in the environments of wireless sensors (such as

flocking). Agent-based simulation of wireless sensor and ad hoc networks is a relatively

new paradigm. Network simulators like OPNET, OMNeT++, NetSim, and NS2 can be

used to simulate a wireless sensor network.

2.2 Reconfigurable Computing

Reconfigurable computing is a computer architecture combining some of the flexibility

of software with the high performance of hardware by processing with very flexible

high-speed computing fabrics like field-programmable gate arrays (FPGAs). The

principal difference when compared to using ordinary microprocessors is the ability to

make substantial changes to the datapath itself in addition to the control flow. On the

other hand, the main difference with custom hardware, i.e. application-specific

integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by

"loading" a new circuit on the reconfigurable fabric.

Reconfigurable computing technologies offer the promise of substantial performance

gains over traditional architectures via the customizing, even at run-time, the topology

of the underlying architecture to match the specific needs of a given application.

Contemporary configurable architectures allow for the definition of architectures with

functional and storage units that match in function, bit-width and control structures the

specific needs of a given computation. For example, one can define a numerically

intensive architecture for digital signal processing with specific number of input/output

channels meeting specific timing requirements and/or organise internal RAM modules

with a given bandwidth to match the processing rate of the functional units. The

http://en.wikipedia.org/wiki/OPNET
http://en.wikipedia.org/wiki/OMNeT%2B%2B
http://en.wikipedia.org/wiki/NetSim
http://en.wikipedia.org/wiki/NS2
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Datapath
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit

31

flexibility enabled by reconfiguration is also seen as a basic technique for overcoming

transient failures in emerging device structures.

There are two primary methods in traditional computing for the execution of algorithms.

The first is to use an Application Specific Integrated Circuit (ASIC), to perform the

operations in hardware. Because these ASICs are designed specifically to perform a

given computation, they are very fast and efficient when executing the exact

computation for which they were designed. However, after fabrication, the circuit

cannot be altered. Microprocessors are a far more flexible solution. Processors execute a

set of instructions to perform a computation. By changing the software instructions, the

functionality of the system is altered without changing the hardware. However, the

downside of this flexibility is that the performance suffers and is far below that of an

ASIC. The processor must read each instruction from memory, determine its meaning,

and only then execute it. This results in a high execution overhead for each operation.

Reconfigurable computing is intended to fill the gap between hardware and software,

and to achieve much higher performance than software potentially while maintaining a

higher level of flexibility than hardware.

2.3 Impact of Reconfiguration Approaches

Reconfiguration processes, though intended to improve upon the services and operation

of WSN, unfortunately, contribute to the system’s performance impediment. This

notably poses many reconfiguration challenges at all layers/platforms.

A measurement of performance related issues for the purpose of comparison can be

complicated. Several factors not directly related to the reconfiguration process can

impede a wireless sensor network performance. For example, propagation delays

resulting from Multipath phenomenon, especially in extreme cases of nulling. Nulling

32

refers to the cancellation of RF signal. The cancellations results in retransmission

attempts (Moerschel et al., 2007), which, invariably affects how long it takes for the

updates or reconfiguration process to be completed.

An assessment of these challenges confines this impediment to the following: Energy

demands of key active components of the sensor nodes and memory space required

when carrying out the reconfiguration process.

2.3.1 Memory space

Depending on the reconfiguration method employed, it is possible for a scheme to

consume a large portion of memory while storing an image or related patches. A

memory overlap could occur, thereby limiting the overall performance of the network.

It gains more significance in Operating Systems like Sensor Operating System (SOS)

where it is allocated dynamically at runtime (Balani, Han, Rengaswamy, Tsigkogiannis

and Srivastava, 2006).

2.3.2 Energy consumption

Reprogramming requires the transmission of new images (complete, patches, modular)

as updates from the base station to the individual nodes. In the course of implementing

this process, certain sections of the nodes’ memories (EEPROM or Flash memory) are

read from and written to. Sometimes, the whole process is repeated several times

because of erroneous transmission and reception of data via noisy communication

channel. Subsequently, this leads to an increase in the nodes processing power an

appreciable demand in consumption of scarce energy resources.

33

2.4 Overview of Reconfiguration Approaches on Selected Enabling Platforms

Similar Survey works on reconfigurable WSN seems to concentrate on software updates

alone (Chong and Kumar, 2003; Han, Kumar, Shea, and Srivastava, 2005; Kulkarni,

Sanyal, Al-Qaheri, and Sanyal, 2009; Yick, Mukherjee, and Ghosal, 2008). However,

this research work spans over reconfiguration approaches involving hardware

components as well. The reconfiguration approach viewed from two perspectives

involves those categorised under software and hardware groups. The software entails

the application layer, middleware and the operating system whereas hardware comprise

of the Processing element and the RF communication platform (Figure 2.2).

Reconfiguration-related issues and challenges in both the hardware and software

subcomponents are presented in this subsection.

2.4.1 Processing Element

The Processing Element consists of hardware platforms that handle the execution of

instructions within the sensor nodes. Reconfigurable WSN system nodes consisting of

Figure 2.2: Reconfigurable software and hardware

34

microcontrollers interfaced with detachable sensor and RF communication modules

makeup the bulk of commercial wireless sensor nodes available in the market. WSN

systems built around these processing elements are much easier to design and

implement (Leligou, Redondo, Zahariads, Retamosa, Karkazis, Papaefstathiou and

Voliotis, 2008). The Libelium waspmote (www.libelium.com) is one clear example of a

sensor node built around microcontrollers. The processing element in use is the

ATMEGA 128 microcontroller. The waspmotes architecture is modular in design. The

intention is to integrate only modules needed for a particular application in each device.

These modules can be changed or expanded to accommodate the WSN application’s

goal. Some examples of the services provided by these modules entails: providing an

enabling platform for interfacing an array of sensors; acquisition and storage of data

and providing platforms that allow the sensor node to effect transmission and reception

services by selectively adopting any of the available RF communication standards

(ZigBee/802.15.4, GSM/GPRS and GPS module)

Microcontrollers are most flexible, but they exhibit shortcomings in energy efficiency.

Field programmable gate arrays (FPGA) strike an optimal balance between computing

power, energy demands and flexibility (Tanaka, Fujita, Yanagisawa, Terada, and

Tsukamoto, 2008). As a result, FPGA based processors are emerging as a better option

for implementing reconfigurable WSNs at the processing element layer. These types of

processors also referred to as soft-core processors make up a class of software defined

and alterable processors. Typical examples of soft-core processors are the Microblaze

and NIOS II, which are products of Xilinx (www.xilinx.com) and Altera

(www.altera.com) respectively. Much work in this direction has been mostly

experimental (Compton and Hauck, 2002; Muralidhar and Rao, 2008). However, a good

number of commercial products have employed this option though in combination with

35

other processing platforms like Digital Signal Processors (www.libelium.com).

Muralidhar and Rao (2008) used FPGA (Cyclone II) from Altera (www.altera.com) to

implement a soft-processor, the NIOS. The soft-core characteristic of the NIOS II

processor enables the system designer to develop a custom processor core, to handle

intended WSN application’s requirement. The addition of predefined memory

management unit to the NIOS II soft processor allows its basic functionality to be

extended. Using the aforementioned technique, the designer can also define new custom

instructions and peripherals. Muralidhar and Rao (2008) employed the soft-processor

concept in achieving some level of hardware reconfiguration that increases the target

system’s efficiency and ease of adaptation, notwithstanding the wireless sensor node’s

small size (Muralidhar and Rao, 2008). In a related work, Khan and Vemuri (2005),

using the FPGA processing platform, devised a paradigm that prolongs the battery life

of a sensor node by ensuring that the rate of energy usage in conjunction with the task

being implemented is efficiently managed.

2.4.2 Radio Frequency Transceiver

The use of reconfigurable platforms like Field Programmable Gate Arrays and software-

defined radio technology allows transceivers that previously operate on a single radio

spectrum to operate on several other spectrums. Software Defined Radios (SDR)

involves the software implementation of hardware constituents of a communication

system (for example modulators, demodulators, detectors, filters and amplifiers) with an

implicit assumption of an analogue to digital conversion close to the antenna (Tuttlebee,

2002).

The term “Software Defined Radio” was used by Joseph Mitola, in his first publication

on the topic in 1999 (Yick, Mukherjee, and Ghosal, 2008; Dong, Chen, Liu and Bu,

2010). Software defined radios early development can be traced to the defense sector of

http://www.altera.com/

36

both the U.S. and Europe during the 1970s (Tuttlebee, 2002). SDR realisation is largely

attributed to the evolution and convergence of digital radio and innovations in software

technologies.

In SDR each of the major functions of the radio as depicted in Figure 2.3, which

includes the RF transceiver, contain reconfigurable features that can be altered on-the-

fly. This reconfiguration process is made possible by a blend of field-programmable

gate arrays (FPGAs), digital signal processors (DSPs) and general-purpose processors

(GPPs). The suitability of using an ASIC, FPGA, or DSP depends largely on the

following: Programmability, Level of integration, Development cycle, and Performance

and Power utilisation (http://www.sdrforum.org).

The benefits of SDR taken from SDRforum (http://www.sdrforum.org) are summarily

listed below:

 It allows new functionalities to be added to the existing communication

infrastructure with ease and at reduced cost;

Figure 2.3: A Typical SDR Architecture (http://www.sdrforum.org)

http://www.sdrforum.org/
http://www.sdrforum.org/
http://www.sdrforum.org/

37

 Service capacity is enhanced via capability upgrades. This is made possible

through remote software download;

 Enables end-users have access to ubiquitous wireless communications; allowing

ease of communication to any spectrum, whenever and in whatever mode thereby

reducing costs;

 Operational and maintenance (real-time debugging via over-the-air remote

reprogramming/reconfiguration) time as well as their associated cost can be

reduced significantly; and

 It enables a family of radio “products” to be implemented using common

platform architecture. This invariably facilitates speedy production to market

scenario.

A typical wireless sensor node is characterised by its small size and in most WSN

applications the smaller it is, the better. This explains why adopting SDRs for the

wireless sensor communication interface can become a challenging task. The challenges

stem from application requirements that span over small size and weight, limited power

consumption to long battery lifetime. Recent research efforts (Balani, Han,

Rengaswamy, Tsigkogiannis, and Srivastava, 2006; Fuentes and Gámez, 2011; Tanaka,

Fujita,Yanagisawa, Terada, and Tsukamoto, 2008; Linn, 2009) can accelerate the

developing of SDR wireless sensor node. Reviewing some of these works, equally lead

to new and inspiring research questions. Cafaro, Gradishar, and Guimaraes (2009)

reported a flexible integrated circuit transceiver operating from 10MHz to 4 GHz and

having a dimension of 5.0 mm x 5.4 mm in 90nm CMOS and housed in a 10mm x

10mm 132-pin dual row Micro Lead Frame (MLF) package. The reported transceiver

can handle as many protocols as possible. Considering its relatively small size, it can

38

effectively be adopted for SDR application tailored for wireless sensor node RF front

end.

The option of identifying and reducing software overheads in such a way that SDR

algorithm can be adopted in wireless sensor nodes was proposed by Linn (2009). Using

this approach, Linn (2009) invented an extremely efficient Verilog programming

technique that allows the cramming of SDR algorithms into the FPGA.

A good number of SDR development platforms and software tools are now readily

available for rapid development of SDR applications. Some of these tools (Universal

Software Radio Platform and GNU (Gnu’s Not Unix) Radio) have been largely used by

both the educational and commercial research bodies in conducting research in this

field. The “Lightweight Communications Architecture” or LCA is also being proposed

for use on smaller commercial platforms, with land-mobile radio (LMR) systems, which

can easily be adopted for wireless sensor nodes (Cafaro, Gradishar, and Guimaraes,

2009).

2.4.3 Application

Basic changes at the application layer to suit application needs involve the addition,

removal or editing of constants, variables and functions. In some cases the use of

compiler directives like ‘#define’ and ‘#if’ are used to selectively bypass the

compilation of program codes, modules or library functions in line with the application

specifications and requirements. Microchip wireless application programming interface

(Miapp) is one good example of a framework that provides an enabling platform for

reconfiguring WSN at the application layer (Yang, 2009). Similar other frameworks

also exist, and they are referred to as Application Programming Interface (API)

(www.libelium.com and www.digi.com).

http://www.libelium.com/
http://www.digi.com/

39

One of the primary objectives of the MiApp is to provide a communication-

programming interface through which the application developer can adopt or implement

different WSN communication protocol using appropriate RF transceivers without the

need to understand in details the workings of the physical layer or Media Access

Control layer (MAC).

The MiApp specification benefits WSN reconfiguration in a number of ways (Han,

Kumar, Shea, Kolher, and Srivastava, 2005; Yang, 2009):

 It allows developers to select wireless protocol at any phase of application

development with ease;

 As depicted in Figure 2.4, MiApp indirectly communicates with Microchip RF

transceivers through the Microchip Wireless Media Access Controller (MiMAC)

interface. MiMAC controls the lower interface of the Microchip propriety

wireless protocols, while MiApp regulates the higher interface of Microchip

propriety wireless protocols. Combined use of both MiApp and MiMAC gives

the application developer the flexibility of using different RF transceivers. Each

RF transceiver has varied capability in handling known wireless communication

protocols.

Support for WSN reconfiguration in MiApp is in two parts. First, it involves the

definition of configuration parameters (CONFIG_PARAMETER) within a

configuration file (using “#if define (CONFIG_PARAMETER)”, “#define C

CONFIG_PARAMETER”) and secondly, the inclusion of signatures of functions calls

to the Microchip proprietary wireless communication protocols. The configuration

parameters stipulate among others the requirements (the microntroller hardware

resources, peripheral and RF transceiver control pins) to be used and specifies or

decides what sections of the entire application source code should be compiled into the

40

firmware hex file using the appropriate compiler directive. Table 2.1 shows selected

samples of some configuration parameters.

Reconfiguration at the application layer is only possible at design time. In addition,

these changes cannot take effect except the source code is recompiled and redeployed.

The flexibility of reuse at this layer during run time is limited.

However, this limitation can be overcome if the user can capture the application’s real

time field experiences in the source code’s design and implementation. Steine, Ngo,

Oliver, Geilen, Basten, Fohler, and Decotgnie (2011) introduced an approach that

exploits design-time knowledge of the application scenario dynamics to construct and

implement a proactive runtime reconfiguration paradigm. The issues with this approach

Application

Configuration

User Application

MiApp

Protocol

MiWi
TM

 P2P

MiWi Mesh

Future Microchip

Propriety Wireless

Protocols

MiMAC

RF
Transceiver

Configuration

MRF24J40

Transceiver MRF49XA

Transceiver

Future

Microchip RF

Transceiver

Figure 2.4: Block Diagram of Microchip Wireless (Miwi) Stack (Yang, 2009)

41

are: First, the possibility of capturing all anticipated reconfiguration needs can be

challenging and secondly, the scarcely available memory space might not be sufficient

to accommodate codes written to address these needs. Moreover, even if it does, there is

the likelihood of redundant codes written to handle anticipated changes, which might

never occur, and invariably taking up scarcely available memory spaces.

Table 2.1: Selected software definition in the configuration file (Yang, 2009)

Example of Definition

Functionality

Comments

#define PROTOCOL_MIWI

#define PROTOCOL_P2P

Selects the Microchip

protocol to be used in

wireless application

Only a single protocol is allowed

#define MRF24J40

#define MRF49X

Specifies what type of

Microchip RF transceiver to

employ.

Only a single protocol is allowed

The MRF24J40 definition is a related

transceiver

#define ENABLE_SLEEP

This enables the RF

transceiver’s sleep mode

capability. It is meant to

reduce power consumption

whenever the system is in an

idle state.

The type of transceiver in use determines

whether the sleep mode can be activated or

not.

#define ENABLE_SECURITY

Enables Microchip’s

propriety protocol which

ensures that packets

reliability is guaranteed

The main components (security engine)

and attributes(security mode and keys) are

defined within a specification file meant

for every RF transceiver,

2.4.4 Middleware

A middleware is a software abstraction layer that exists between operating systems and

applications. It is meant to simplify operations, enable heterogeneity and masks the

basic hardware or software layers of sensor nodes (Graziosi, Pomante, and Pacifico,

2008). Also, they provide some degrees of abstraction of communication networks,

operating systems, programming languages and management of distributed applications,

42

via the use of API that encapsulates the access to the underlying mechanisms

(Alkhawaja, Ferreira and Albano, 2012). Middleware implementation in distributed

systems entails (Graziosi, Pomante, and Pacifico, 2008; Puder, Romer, and Pilhofer,

2006; Myerson, 2002) the following:

 Application manageable data representation and codification;

 Remote processing and monitoring;

 Open system interconnect (OSI) protocol compliant; and

 Location transparency (effect communication with distributed systems devices

by using the middleware capabilities, and suited to offer Quality of Service to

the application layer).

These implementation paradigms allow mobile distributed systems to have context-

aware capabilities. Implementing these traditional middleware functionalities in WSN

can be challenging because of the constraints (limited processing and energy resources)

associated with sensor nodes. As such, middleware implementation for reconfigurable

WSN is required to be of a lightweight type (Graziosi, Pomante, and Pacifico, 2008).

Few work done in this area has been published in notable literatures (Gámez, Cubo,

Fuentes and Pimentel, 2012; Graziosi, Pomante, and Pacifico, 2008; Hu, Ndulska, and

Robinson, 2006; Kjær, 2007). Graziosi, Pomante, and Pacifico (2008) presented a

middleware-based approach for WSN, which enables WSN to transport data across

heterogeneous networks. It also offers a homogenous API (Application Programming

Interface) for the related applications development.

Hu, Ndulska, and Robinson (2006) implemented a dependable context management

system at the middleware layer that dynamically locates and replaces failed sensors or

network based on context information derived from context sensing sources. The

system, as illustrated in Figure 2.5, is composed of the following layers:

43

 Context-aware applications layer - context information are obtained, analysed

and appropriate decisions taken at this layer to adapt the system to evolving

context.

 Reconfigurable context management layer – composed of several components

meant to store and evaluate context information according to the context models

and broadcasts this information through responses to queries and/or context

changes; and

 Context sensing layer – made up of context sources (sensors) and possibly

related processing components to transform acquired context data into context

information required by the application.

The intentions of Gámez et. al., (2012) were tailored towards implementing a context

aware architecture that can easily be adapted to several platforms via the use of a

model-driven configuration process approach. The model is designed to integrate new

contexts to the FamiWare family (Fuentes and Gámez, 2011) by producing context-

aware versions of the middleware for every application. The FamiWare, a family of

middleware for Ambient Intelligence is designed to be aware of contexts in sensor and

smartphone devices. It provides several monitoring services capable of acquiring

contexts from devices and users alike. In addition, it integrates a context-awareness

service that analyses and detects context changes as well.

44

2.4.5 Operating System

 Jun-Zhao (2010) categorises WSN reconfiguration paradigm in operating system (OS)

in terms of how much alteration is done to the original source code. The phrase

‘alteration’ refers to the addition of new codes, removal of existing codes or editing of

existing codes. This invariably means the introduction of a new task, the removal of no

longer needed task or an enhancement of an existing task respectively. Jun-Zhao (2010)

classified the OS reconfiguration approaches into three groups: the complete code

image replacement scheme, loadable module scheme and the difference scheme. The

complete code image replacement scheme involves overwriting the entire code memory

of a wireless sensor node with a new firmware. Examples of these implementations are

XNP (Jeong, Kim and Broad, 2012), Trickle (Levis, Patel, Culler and Shenker, 2004),

Deluge (Hui and Culler, 2004), Stream (Krishna, Bagchi, and Khalil, 2009) and Mate

(Levis, and Culler, 2002). The Loadable module approach effects changes at the

Figure 2.5: Reconfiguration Architecture (Hu, Ndulska, and Robinson, 2006)

45

modular level; this also means the OS framework is modular in setup. It also allows for

the addition and removal of new application task packaged in modular form. However,

use of large memory space and demand for more processing time (which invariably

translates to higher power consumption and slows system execution) are drawbacks

associated with the loadable module based approach. The Difference-Based approach

specifically overwrites the identified difference between the original and the modified

file. In addition, only the delta (the difference between the old and updated program)

generated at the base station is transmitted to the terminal nodes in the field. This

invariably reduces the amount of data needed to be transferred especially when only

small changes are involved.

Each paradigm has its advantages and disadvantages. The reconfiguration paradigms

and their related challenges as implemented in four selected OS (namely TinyOS,

Contiki, Sensor Operating System and MANTIS) are presented in Tables 2.2 and 2.3.

2.4.5.1 TinyOS

Reconfiguration and dissemination schemes implemented using the TinyOS component

architecture exists. Some of the paradigms implemented adopt either the Entire Image

replacement approach (Hill et. al., 2005; Jeong, Kim and Broad 2012; Levis, and

Culler, 2002) or the Difference-based approach (Krishna, Bagchi, and Khalil, 2009).

The various successive schemes implemented on the TinyOS platform over time stem

from attempts to improve upon the challenges associated with their predecessors. Some

of these challenges span over performance issues, memory and energy management

related issues. Some of the key improvements inferred while reviewing the trend of

development and implementation of the various schemes are relayed thus: Starting with

the XNP (Jeong, Kim and Broad, 2012), this scheme was primarily designed to function

46

as a single-hop reprogramming protocol. XNP performance suffers some defects

resulting from overheads when making request directly from the base station. However,

Trickle (Levis, Patel, Culler and Shenker, 2004) addressed this defect by implementing

the first multi-hop code dissemination protocol. Trickle has a limitation of only being

able to transmit the update-codes in small size patches. This shortcoming again was

addressed by the introduction of Deluge (Hui and Culler, 2004). Deluge, an extension of

the Trickle Protocol improved upon its predecessor by being able to effect bulk transfer

at a reduced transmission time using pipelined data transfer technique.

Deluge employs the complete image replacement approach and it transmits the actual

binary codes (firmware) during every code update. Thereby causing a large number of

energy hungry memory (EEPROM and or flash program) writing to transpire. Concerns

about energy demands by the Deluge protocol subsequently leads to the evolution of

newer OS-based reconfiguration paradigm. Few examples like the Contiki and SOS

were fashioned after the Loadable module approach while others like the Zephyr

(Krishna, Bagchi, and Midkiff, 2009) and FlexCup (Marron, Gauger, Lachenmann,

Minder, Saukh, and Rothermal, 2006) implemented the Difference-based approach.

More discussions on the loadable module approach were presented in section 2.4.5.3

while discussing the contiki and SOS OS platforms.

Under the Difference-based approach, most algorithms employed to detect and

construct deltas for dissemination and reconstruction within wireless sensor nodes differ

in their mode of operation. A typical algorithm in use is the Rsync and its variants.

Rsync and the corresponding RDIFF algorithm (Tridgell, 1999) use non-overlapping

fixed-sized blocks for matching indistinguishable data between the modified and

original files. Both files are segmented into blocks, and for each one, a rolling-

checksum and an MD5 (a message-digest algorithm based on a cryptographic hash

http://en.wikipedia.org/wiki/Cryptographic_hash_function

47

function that produces a 128-bit hash) checksum are computed. Using these checksums,

the delta is constructed of either reference to blocks that already exist in the old version,

or the entire content of new or changed blocks. While the rolling checksum is

implemented to be as fast as possible, an MD5 checksum is not appropriate for sensor

nodes. The apparent flaw of the algorithm is that if two blocks differ in even one byte,

the entire block content has to be present in the delta. The sensor nodes perform

expensive MD5 computation for each block of the binary image when the algorithm is

utilised for differential reprogramming. In addition, a study on the limitations of the

MD5 for which most variants of the Rsync are based on reveals the following:

i. Xiaoyun and Hongbo (2005) show that MD5 is not collision resistant.

ii. A group of researchers created a pair of files that share the same

MD5 checksum (Black, Cochran and Highland, 2008).

iii. CMU Software Engineering Institute reportedly declared that the MD5

should be considered cryptographically broken and unsuitable for further use

(‘‘CERT Vulnerability Note VU#836068’. Kb.cert.org. Retrieved 9 August

2010.)

iv. The Flame malware exploited the weaknesses in MD5 to fake a

Microsoft digital signature (‘NIST.gov-Computer Security Division-

Computer Security Resource Centre’. Csrc.nist.gov. Retrieved 9 August

2010).

Milosh, Cuijipers and Lukkien (2013) modified Rsync such that all the expensive

operations regarding delta script generation are performed on the host computer and not

on the sensor nodes. In addition, it ensures that the expensive MD5 computation is done

only when the inexpensive checksum matches between the two blocks (Milosh,

Cuijipers and Lukkien, 2013). If no matching block is found then the algorithm moves

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Collision_resistant
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/CMU_Software_Engineering_Institute
http://en.wikipedia.org/wiki/Flame_(malware)
http://en.wikipedia.org/wiki/Digital_signature
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html

48

to the next byte in the new image and the same process is repeated until a matching

block is found. While the probability of collision is not negligible for two blocks having

the same checksum, with MD5 the collision probability is negligible (Milosh, Cuijipers

and Lukkien, 2013). To ensure the correctness of the scheme in the rare case when two

different blocks have the same MD5 hash, Zephyr (Krishna, Bagchi, and Midkiff,

2009) performs a byte-by-byte comparison when MD5 hashes match (Milosh, Cuijipers

and Lukkien, 2013). A byte–by-byte comparison is deficient when dealing with

machine codes generated for execution on a microcontroller. Physical addresses of data

locations always differ whenever changes occur in the new image file. Having a

common reference point for the purpose of comparison becomes a problem

2.4.5.2 Sensor Operating System

Sensor Operating System (SOS) is composed of dynamically-loaded modules and a

common kernel that implements messaging, dynamic memory and module loading and

unloading. SOS improves on the XNP energy usage by using modular updates instead

of full binary system image and does not require rebooting the node after installing an

update (Han, Kumar, Shea, and Srivastava, 2005). It also installs updates directly into

program memory without costly external flash access.

2.4.5.3 Contiki

Contiki is designed to support dynamic loading and replacement of individual

application programs and services. It is developed around an event-driven kernel with

optional support for pre-emptive multithreading. Implementing basic routines as

services allow the system to effect reconfiguration at run time. Very important services

like the communication routines, which exist in stacks, can be loaded simultaneously.

49

Dynamic loading is an effective way to make sensor nodes take up new functionalities.

The approach disseminates loadable modules, which are relatively much smaller

compared to entire application image. The modular design approach can effectively

reduce the transferred code size, thereby reducing the amount of energy expended

during network reprogramming. The files are loaded in Execution Linking Format

(ELF). The ELF ranks among the most widely used object code format for dynamic

linking. It is composed of program code, data and supplementary details such as a

symbol table, the names of all external unresolved symbols, and relocation tables. The

relocation tables provide information on where the program code and data can be placed

in memory other than where they were originally meant to be during assembly. One

problem with the ELF format is the overhead in terms of bytes to be transmitted across

the network when compared to pre-linked modules. Modular design has other benefits

(other than reduce data size for efficient reprogramming) like making code reuse easier

to handle.

2.4.5.3 Mantis

The Mantis OS employs the traditional concept of preemptive multi-threaded model.

Reprogramming of the entire operating system and parts of the program memory is

feasible. It employs the locking mechanism, which mutually excludes shared variables

while allocating stack spaces to its program (Dong, Chen, Liu and Bu, 2010). The

dynamic reprogramming capability of the Mantis OS is implemented as a system of call

library that are built into the Mantis OS kernel (Bhatti et. al., 2005) Applications can

make changes to the new code image via the library. These changes are then

implemented on system reset using a bootloader and a called function Commit (Bhatti

et. al., 2005).

50

Table 2.2: Reconfiguration features, approaches, impact and comparative advantages for TinyOS and SOS

Operating System Scheme/ Protocol

Sensor

Nodes

where

deployed

Energy Management

Related Issues

Performance/Memor

y space related

Issues

Comments:

Comparative Advantage

Recommendation

TinyOS

Deluge

Disseminates large data objects (binaries) to

many nodes in WSN using multi-hop

dissemination protocol.

Combining the above mechanism with a

bootloader and command dissemination it

Build around an event-driven kernel

Mica2,

Mica2-dot

,MicaZ,Te

los, Tmote

Sky, Eyes,

Tinynode,

IRIS

Much energy required for

transmitting entire image

Hence, much processing

needed for flash writing.

Its transmission time

is much faster because

it uses pipelined data

transfer

Comparatively efficient when an entire

code or application needs changed

completely.

Not suitable for updating small

changes.

Zephyr

Implements incremental/Differential

reprogramming.

The goal is to transfer small details

(difference between the old and the new

software), thereby minimising

reprogramming time and energy.

Mica2

less energy required for

transmitting patches

therefore

Less processing needed for

flash writing.

Depending on the

algorithm employed,

the transmission of

large number of small

differences spread

over the entire code

can be

disadvantageous.

Transmission cost

resulting from

overheads is very high

less energy required for transmitting

patches

Less processing needed for flash

writing.

Sensor Operating System

[SOS]

Uses modular approach. Each module has a

defined entry and exit point.

The modules are designed in a loosely coupled

manner.

Interactions between modules are effected via

message passing, direct calling of registered

functions within modules or kernel system’s

calls.

Build around and event-driven kernel

Mica2,

MicaZ,

TelosB,

Tmote

Sky

Moderate in comparison to

TinyOS

Less safety features to

address missing and

updated modules.

Remotely insert binary modules into

running kernel without interrupting

system operation. Reboots not needed

as in differential patching.

51

Table 2.3: Reconfiguration features, approaches, impact and comparative advantages for Contiki and Mantis.

Operating

System
Scheme/ Protocol

Sensor Nodes

where

deployed

Energy Management

Related Issues

Performance/Memory space related

Issues

Comments:

Comparative Advantage

Recommendation

Contiki First to support

modular update and

consists of two main

components: system

core and loaded

program

Build around and

event-driven kernel

Implements a dynamic

linker that links,

relocate and load either

standard ELF files or

CELF (compact ELF)

files.

ESB,TelosB,

Tmote Sky

Less energy as only

specified module are

transmitted

Processing overhead

arising from a number of

book keeping tasks to

resolve cross referenced

symbols required to link

and load new module

The modules are designed in a loosely-

coupled manner and communicating only

via the kernel.

Dynamic linking and loading causes

performance degradation

.

Scheme should be able to estimate the percentage of

code that need to be modified. And if more than a

specified threshold (suggesting near entire image

size) then opt out of loadable modular approach

Extra storage needed for keeping track of the symbol

table.

Mantis Achieves dynamic

reprogramming on

several granularities

Re-flashes the entire

OS.

Able to reprogram a

single thread and make

changes to variables

within a thread.

Mica2, Eyes,

Telos, Mantis

nymph

Employs a power efficient

scheduler that puts the

microcontroller to sleep in

response to reconfiguration

handling-threads calls to

the sleep() function.

Thereby reducing current

consumption to the micro-

ampere range.

It maintains two logically distinct sections

of RAM: Global variables that are

allocated at compile time while the rest of

the RAM is managed as a heap.

It implements dynamic memory

management scheme. However, it also

results in a lot of overheads

Its multi-thread driven capability allows for priority-

based scheduling and preempting of task execution

52

2.5 Application of Artificial Intelligence to WSN related Issues

Artificial Intelligence (AI) is the study of adaptive mechanisms that enable or facilitate

intelligent behaviour in complex and changing environments (Venayagamoorth, 2009;

Engelbrecht, 2007). These mechanisms involve paradigms that exhibit the capacity to

learn or adjust to new situations, to generalize, abstract, discover and associate

(Kulkarni, Forster and Venayagamoorthy, 2011). AI encompasses paradigms such as

Artificial Neural Networks (ANN), Reinforcement Learning (RL), Swarm Intelligence

(SI), Genetic Algorithms (GA), Fuzzy Logic (FL) and Artificial Immune systems

(Kulkarni, Forster and Venayagamoorthy, 2011). Brief descriptions of popular AI

paradigms applied to WSN problems are concisely presented in the following

subsections. In some cases, hybrids of these paradigms do exist. Notable examples of

these combinations are neuro-fuzzy systems and fuzzy-immune systems.

2.5.1 Artificial Neural Networks

The Artificial Neural Networks (ANNs) is modelled after the human brain known to

have an astonishing capacity to learn, remember and simplify complex issues. It is a

network of more than ten billion neurons; each neuron is joined to approximately ten

thousand other neurons. The neuron receives signals through synapses. The synapses

regulate the effect of the signals on the neuron thereby playing an important role in the

performance of the brain (Haykin, 1994). Figure 2.6 and 2.7 shows an artificial neuron

and a popular ANN architecture respectively. It is made up of three constituents: one,

the links that provide weights Wji, to n inputs of jth neuron xi, i = 1,…, n; two, an

aggregation function that produces uj , a summation of 𝛩𝑗 + ∑ 𝑥𝑖𝑊𝑗𝑖
𝑛
𝑖=1 , where 𝛩𝑗 is the

bias; and thirdly, an activation function Ψ that maps the output Ψ(uj) to uj.

53

Figure 2.6: Structure of an Artificial Neuron. (Kulkarni et al., 2011)

Figure 2.7: Popular ANN architectures: The connections shown in solid lines and

 the context later make up a feedforward NN. Addition of the

 connections shown in dotted lines converts it into a recurrent neural

 network. (Kulkarni et al., 2011)

54

ANNs learn the facts characterised by patterns and deduce their inter-relationships.

Learning approaches are via supervised learning, unsupervised learning, or

reinforcement learning. Successful applications of ANNs are found in power system

stabilization, image processing, speech recognition, and prediction related problems.

2.5.2 Genetic Algorithm

Genetic algorithm (GA) implementation is based on a search algorithm that tends to

proffer solutions to AI problems using the natural selection approach. It starts with a

simple potential solution and evolves toward a set of more ideal solutions. In the course

of progressing toward the best solution, it excludes those solutions that are less result

oriented, while superior solutions are combined and their beneficial traits proliferated,

thereby allowing more solutions into the set, which subsequently facilitate better

potentials. In order to avoid stagnation occurring in the process, random mutation are

carried out to replace the several replicas of identical solutions. In order to use genetic

algorithms efficiently, the under listed conditions need to be met:

 The system should be able to appraise how ‘good’ a prospective solution is

relative to other would-be solutions with ease.

 The system should be able break a potential solution into separate portions

(‘genes’) that can vary independently.

 Lastly, genetic algorithms are well-matched for situations where a ‘good’

solution is viable and might not necessary be the absolute best solution.

The operation of the genetic algorithm entails the following:

 Reproduction: The process of duplicating a prospective solution;

55

 Crossover: The process of exchanging gene values between two prospective

solutions, mimicking the "mating" of the two solutions; and,

 Mutation: The process of arbitrarily varying the value of a gene in a

prospective solution.

2.5.3 Fuzzy Logic system

The Fuzzy Logic (FL) model is empirically-based. It relies on operator's know-how and

little attention is given to the working details of the system. Fuzzy Logic System is

compose of four components: These are namely the fuzzifier, adopted rules based on

expert knowledge, an inference engine, and defuzzifier.

Figure 2.8: A Fuzzy Logic System

Crips

Input

Crips

Output

56

FL is inherently robust because it does not need precise, noise-free inputs. It produces a

smooth output control even when the input variations are notably wide. Interestingly, it

allows the designer to implement a fail-safe option should in case a major critical

component of the system fails. FL controller processes user-defined rules that can be

modified and tuned easily to improve system performance. It allows for easy integration

of new sensors and subsequent modification of existing rules to accommodate the

update.

The rule-based operation allows any rational number of inputs to be processed, and

copious outputs generated. However, an increase in the number of input and output

could result in a complicated rulebase formation. Fuzzy Logic system has been found

very useful in controlling nonlinear systems that are mathematically demanding to

model.

To use fuzzy logic approach, the following steps is recommended:

 The control objectives and criteria need to be defined.

 Infer the number of input and output requirement and their relationship within

the context of the system’s goals.

 The control problem should be broken down to a chain of ’ IF X AND Y THEN

Z’ rules that define the anticipated system output response for given system

input settings.

 Produce Fuzzy Logic membership functions that state the values of Input or

Output terms employed in the rules.

 Generate the needed pre- and post-processing Fuzzy Logic functions for

Software or Hardware implementation.

57

 Lastly, setup a Testbed to examine the system, appraise the results, alter the

rules and membership functions, and retest the system again until suitable

2.6 Choice of AI Solution for WSN related Issues

AI provides adaptive mechanisms that exhibit intelligent behaviour in complex and

dynamic environments like WSNs. AI brings about flexibility, autonomous behaviour,

and robustness against topology variations, communication failures and scenario

changes (Kulkarni, Forster and Venayagamoorthy, 2011).

Artificial intelligence (AI) Paradigms have been employed as tools to handle several

WSN problem areas. Notable among these areas are efficient management of data

collection and fusion activities, optimal localization and energy ware routing. However,

not much has been reported in WSN reconfiguration related issues. Many AI methods

have outperformed or complimented conventional methods under uncertain

environments and severe limitations in power supply, communication bandwidth, and

computational capabilities.

Kulkarni, Forster and Venayagamoorthy (2011) surveyed some WSN application areas

where some of the AI techniques earlier mentioned in the preceding section were used.

The outcome of their findings is shown in Figure 2.7. The findings are intended to serve

as a guide for selecting the most appropriate AI approach to explore or adopt when

solving WSN related problems. Though WSN reconfiguration related issues were not

mentioned, some of the problem areas surveyed (for example Deployment, Routing,

Data Aggregation, Fusion and Quality of Service management (QoS)) share some

operational characteristic with it.

58

Figure 2.9 depicts a table that is composed of columns and rows representing the

surveyed WSNs application areas and the main AI techniques employed respectively.

The number of articles surveyed for a particular combination of WSN problem and the

adopted AI approach was symbolically represented by the size of black circles.

Moreover, the cells were equally hashed to indicate which AI is most suitable and

applicable for the problem in question. The evaluation is rather an estimate, since the

actual outcomes depend on the nature of the problem, the AI algorithm employed, and

the parameters used. Also, most researchers rarely evaluate their algorithms under real

WSN environments like test-bed or in the field.

The findings presented by Kulkarni et. al., (2011) indicates that Design and deployment

is usually a centralized problem, where an optimal architecture for the WSN to be

deployed is determined. AI models like ANNs, and GAs are very well suited for that

purpose. They can produce optimal results from large datasets where memory and

processing restrictions do not apply. For localization, it looks like ANNs and GAs are

the best suited techniques, although they need to be used in a centralized manner. The

problem is the high variance of the localization data, for example, using RSSI values to

compute distances between nodes. Fuzzy logic is well suited for security and QoS

problems. It is able to compute general non-optimal rules that can accommodate larger

variance of the data, as in case of security applications. Routing and clustering seems to

be the most popular WSN problem for applying AI methods (in fact, it is also a very

active research area in general). However, not all AI methods are equally suited. ANNs

and GAs have very high processing demands and are usually centralized solutions. In

the case of ANNs, learning can also be conducted online at each of the nodes, but is

slow and has high memory requirements. These two AI approaches are slightly better

suited for clustering when the clustering schemes can be pre-deployed. Fuzzy logic is

59

very well suited for implementing routing and clustering heuristics and optimizations,

like link or cluster head quality classification. However, it generates non-optimal

solutions, and fuzzy rules need to be re-learnt upon topology changes.

When dealing with data aggregation and fusion, the best suited AI methods are fuzzy

logic, evolutionary algorithms and neural networks. It is interesting to note that two AI

techniques, ANNs and AIS, have been rarely applied to WSNs. This is predominantly

awkward in the case of ANNs, because this paradigm is very well studied and there

exist many different ANN models with different properties.

Figure 2.9: An overview of WSN challenges and the AI paradigms applied to address them

(Kulkarni et al., 2011)

60

Based on previous studies on OS related reconfiguration approaches, reconfiguration

paradigm are very likely to thrive more when the algorithm in use can handle routing

efficiently and places less demand on complex computation and high demand for

memory space. Hence, the choice of AI technique to use must conform to these

requirements.

2.7 Summary

In this chapter, various research approaches adopted towards realising fully

reconfigurable WSNs under severely constrained resources were discussed.

Reconfiguration at the application layer is only possible at design time. In addition,

these changes cannot take effect except the source code is recompiled and redeployed.

The flexibility of reuse at this layer during run time is limited.

A review of the existing reconfiguration schemes under the OS approach shows that the

difference approach method is more promising when compared to others (Misra and

Eronu, 2012). A review of the Difference based approach reveals that in some cases,

instead of smaller deltas being generated, larger ones were rather produced (Misra and

Eronu, 2012). A problem largely attributed to the use of traditional differential utilities

like Rsync employed in (Bert and Weiss, 2009), Longest Common Sub-sequence (LCS)

employed in (Apostolio, 1986) and Clone Detection in (Burd and Bailey, 2002). These

utilities were inherently not designed to handle file structures well-matched for sensor

network data transmission and dissemination. In order to mitigate the aforementioned

shortcomings, this research work has devised a Precise Delta Extraction model for use

in reprogramming or reconfiguring wireless sensor nodes. The scheme is intended to

reduce energy consumption rate, as well as effect a reduction of memory space used

during reprogramming processes. In addition, it also serves as a metric utility software

61

for measuring the degree of changes made in modified application source codes and

relaying the exact changes. This information can also be fed as input to a fuzzy logic

controller, which can guide a WSN in deciding the best reconfiguration approach to

adopt under certain defined application or operational context

Among the three AI algorithm understudied, the Fuzzy logic is adjudge to be the most

suitable to adopt. A critical look at the other two approaches (ANN and GA), suggest a

high degree of complication could arise during real life application or implementation.

The reasons as reported in (Kulkarni et al., 2011) clearly discourages the adoption of the

ANN and GA in most WSN applications. In WSN reconfiguration scenarios, memory

space, high computational processing demands as well as the associated energy

consumption is not that readily available. Hence, Fuzzy Logic is the most appropriate

AI technique to use. It is inherently robust and it processes user-defined rules that can

be modified and tuned easily to improve system performance. It allows for easy

integration of new sensors and subsequent modification of existing rules to

accommodate the update.

62

 CHAPTER THREE

3.0 RESEARCH METHODOLOGY

This chapter discusses in detail the design, development and evaluation procedures

employed in realising the Context-based WSN reconfiguration software system. Two

software components were designed and developed using software modelling tool. The

two components are the Precise Delta Extractor (PDE) and the Fuzzy logic Controller.

The first provides information on the degree of changes resulting from the modification

done to the application firmware as well as relaying the exact changes in bytes form. In

addition, it provides fuzzified member set inputs (application context) to the fuzzy logic

controller. The second component developed is based on expert knowledge of the

energy consumption constraints associated with reprogramming procedures of wireless

sensor node’s program memory. In addition, background information on program

memory reprogramming constraints and a devised algorithm to address these constraints

were presented.

A testbed made-up of an ad hoc network of three 32-bit processor based sensor nodes

(PIC32MX320F128H architecture and the MRF24J40B Zigbee based transceiver) was

used to provide some pilot data. The test applications were developed in the Contiki

operating system. The pilot data were then used to test the efficacy of the context based

reconfiguration software at a much larger scale using the OMNeT++ and Castalia WSN

simulation platform. Details of these procedures are presented in subsequent sections of

this chapter. The order and nature of results to be obtained and analysed were also

relayed in each subsection where appropriate.

63

3.1 Context-Based Reconfiguration System Design

This section presents the design of a model that utilise context information to improve

upon WSN reconfiguration processes.

3.1.1 Deriving a Context-Based Reconfigurable Model

A well-developed context information model, which entails gathering, evaluation and

maintenance of context information, can be expensive. Hence, provision for context

information re-use and sharing should be part of the application’s planning phase

(Bettini et al., 2010). Based on the survey work carried out on the various identified

WSN reconfigurable components, context related information relevant to WSN

reconfiguration can be classified into two main categories. These entail the following:

Application related context information and Operational-demands related context

information. The model allows the user to associate selected context information to

sensed application data. Thereby allowing every sensed datum have a history of related

surrounding activities (defined contexts) for further analysis. Reconfigurable WSN

implementation at the various layers earlier highlighted in the preceding sections can

easily be maintained and improved upon when relevant contextual information are

modelled into the target system’s design and development processes.

The essence of the model is to associate selected context information with sensed

application data. In addition, it allows every node in the network to build up a history of

related surrounding activities (defined contexts). This information is further analysed

and used to guide the entire system in taking decisions that are beneficial to its

operation.

3.1.1.1 Application related Context Information

WSN application related contextual information are primarily the key driving factors

behind reconfiguration needs. They determine what other contextual information will be

64

needed, acquired, analysed, evaluated or probably stored in the systems database. The

selection of sensor types is a function of the WSN application goals.

WSN applications’ source codes and the resulting firmware when compiled can be

viewed as a set of bytes/words. Hence, it can be argued that the composition of any

sensor node’s application firmware is a reflection of the type of sensor it employs and

the related functions assigned to it. Any change in sensor type or mode of usage will

also translate into a corresponding change in the number and orientation of bytes

contained in the firmware. In line with this proposition, it is feasible to measure changes

reflected in modified firmware (result of the reconfiguration process) and relayed them

as a source of the application-related context information. The metrics derived for

extracting application-related context information is presented in section 3.1.2.

Indulska and Sutton (2003) classified sensor types into three categories, namely:

physical sensors, virtual sensors and logical sensors. Table 3.1 shows the context types,

sections and reconfiguration layers classified under the aforementioned categories.

65

Table 3.1: Classification of Sensor types (Indulska and Sutton, 2003)

Categories Context Type Available sensors Layers where

Reconfiguration is

feasible

Physical Temperature Thermometers Application Layer

Light Photodiodes, colour sensors, IR and UV-

sensors

Visual multimedia cameras

Audio Microphones

Motion

acceleration

Accelerometers, motion detectors

Position/Location Outdoor: Global Positioning System (GPS),

 Global System for Mobile

 Communication(GSM)

Indoor: Radio Frequency

 Identification(RFID), Received

 Signal Strength Indicator(RSSI)

Virtual (Use of

software at

various

reconfigurable

layers to deduce

impact of)

Energy - Inbuilt mechanism to measure energy

consumption at various layers via

experimentation.

Processing Element

Application via

Communication

Layer

Memory - Space measured as memory space

taking over

Operating System

Performance - Code execution timing

Processing Element

Application via

Communication

Layer

Reliability - Transmission issues Processing Element

Application via

Communication

Layer

Logical Use of logical

operators (AND,

OR) state inputs

of either physical

or virtual sensed

data, decisions

resulting

- Software based Application Layer

3.1.1.2 Operational-Demands related Context Information

Context classification of this type is rarely mentioned in the literature. Operational-

demands refer to issues or factors arising from reconfiguration approaches that can

affect the performance or efficiency of a WSN application. In most cases, they also

constitute the metrics for evaluating the effectiveness of the reconfiguration approaches

employed. Examples of this context information types are:

66

i. Energy usage and management issues;

ii. Memory utilisation; and

iii. Performance related issues (speed, reliability, efficiency and

others)

When designing or implementing reconfiguration processes, it is expedient that energy

consumption and related issues are managed effectively in order to enhance the

operational life span of the individual sensor nodes, as well as the entire network.

There is a need to strike a balance between the operational constraints or demands and

application goals in a dynamic way. Hence, a constant feed of operational context

information is necessary. Likewise, a measure of its impact (whether positive or

negative) on application goals can be helpful in optimising WSN performance.

3.1.1.3 The Model Description and Implementation

The Context-based WSN reconfiguration model as depicted in Figure 3.1 is composed

of three key main layers or levels: the context sensing layer, lower context management

layer and higher context management layer. The model provides a platform for deriving

Data Frames (Structural and Descriptive Metadata) that associates all relevant context

information with the primary context data for the purpose of analysis, control, and

storage purposes. In addition, it empowers the WSN with autonomous capability to

respond to evolving application changes using any known artificial intelligent

technique. Table 3.2 summarily describes the parameters and the associated symbols

used in the model.

67

Context sensing layer: At this level, the following: context identification, definition,

sensing are implemented. In some cases, there might be need to derive context

information by processing non-quantifiable context data. These contexts could be any

of the two types earlier mentioned (Application related or Operational-demand related).

The layer acts as a presentation layer by making available usable context information to

the next higher layer “Low Context Management level."

Table 3.2: Description of proposed Models parameter and associated symbols

Symbol Description

𝒙𝒋 Application related context information - physical, virtual(goals, objectives,)

𝒚𝒊 Operational-demands related

contextual information

Energy

Memory

Performance

𝑫𝒏,𝒊
𝑳 , Determinant used at Lower Context Management Level to decide whether a context

information should be used in this layer or not. The “L” superscript denotes the determinant’s

level of application

𝑫𝒎
𝑯 Determinant used at Higher Context Management Level to decide whether a context should be

used at this level. The “H” superscripts denote the determinant’s level of application

𝒁𝒔 Logical context derivation used as switching element at context sensing level with the aid of

𝐷𝑛,𝑖
𝐿

𝒁𝒏 Logical context derivation used as switching element at lower context management level with

the aid of 𝐷𝑛,𝑖
𝐿

𝑻 Final collection of data and associated Contexts

𝑻(𝒕, 𝒑)

The final

collection of

data and

associated

Contexts

expressed as

function of

time and

location

Time(t)

- Synchronization

- Aid metrics assessments

 Qualities

 Quantity

Location/Posit

ion (p)

- Adaptation

- Performance per location assessment

Lower context management layer: This layer selectively (via the use of switching

elements 𝐷𝑛,𝑖
𝐿 as depicted in Figure 3.1 and Figure 3.2) accepts raw data (𝑥𝑗) or

processed context information (𝑦𝑖) from the sensing layer and logically combines them

in consonance with a defined operational-demand related context. The selection process

can be done either manually or autonomously via the use of artificial intelligence (Fuzzy

68

logic or neural networks). The collective impact of the combined related context

information (considered as secondary context information) is assessed, analysed and

then passed onto the next higher level. In addition, based on changes in context

value/parameter occasioned by evolving application scenario, the Lower Context

management level can make demands to a Higher Context Management level to tune

certain reconfigurable components in order to optimise the overall system performance.

To illustrate this, assuming retransmission occurs too often thereby consuming scarce

energy resource in the process, the energy context manager (see Figure 3.2) can then

inform the Coordinating Context manager (located in the Higher Context management

Level) about this development. Moreover, possibly advise it to suspend transmission

activities pending when contending issues are eventually resolved.

𝑍𝑠 = {𝐷(𝑠,0)
𝐿 ∗ 𝑦0 , 𝐷(𝑠,1)

𝐿 ∗ 𝑦1 , 𝐷(𝑠,2)
𝐿 ∗ 𝑦2 , 𝐷(𝑠,3)

𝐿 ∗ 𝑦3 , … 𝐷(𝑠,𝑘)
𝐿 ∗ 𝑦𝑘 } (3.1)

Each combination is relayed as a Set 𝑍𝑠 (Equation 3.1) and managed appropriately to

produce an output designated as 𝑍𝑛 in Equation 3.2.

𝑍𝑛 = ⋃ 𝑍𝑠

𝑛=𝑠

𝑛=0

 = ⋃ [𝐷(𝑛,𝑖)
𝐿 ∗ 𝑦𝑖]

𝑖=𝑘,𝑛=𝑠

𝑖=0,𝑛=0

 (3.2)

69

F
ig

u
re

 3
.1

:
P

ro
g
ra

m
 F

lo
w

 r
ep

re
se

n
ta

ti
o
n
 o

f
P

ro
p

o
se

d
 C

o
n
te

x
t

b
as

ed
 R

ec
o
n
fi

g
u
ra

ti
o
n

 M
o

d
el

70

F
ig

u
re

 3
.2

:
C

o
n
te

x
t

b
as

ed
 r

ec
o
n
fi

g
u
ra

b
le

 W
S

N
 m

o
d
el

𝑍
𝑠

=
 {

𝐷
(𝑠

,0
)

𝐿
∗

𝑦
0

,𝐷

(𝑠
,1

)
𝐿

∗
𝑦 1

,𝐷

(𝑠
,2

)
𝐿

∗
𝑦

2

,𝐷

(𝑠
,3

)
𝐿

∗
𝑦

3

,…

𝐷
(𝑠

,𝑘
)

𝐿
∗

𝑦
𝑘

 }

71

𝑍𝑛 = {
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , 𝐷(𝑛,𝑖)

𝐿 = 1, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘

𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , 𝐷(𝑛,𝑖)
𝐿 = 0, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘

 (3.3)

Taking decision on when and how to effect changes can be a complex task. However,

this can be simplified if all the identified or relevant applications and operational

context information are quantifiable. Suitable metrics can be derived and utilised in this

layer. For example, examining the rate of energy consumption within the node in

relation to each instruction code execution can aid in devising a more energy to source-

code software architecture. Hence, deriving a source-code-execution to energy

consumption metrics will be relevant in establishing a relationship between the rate of

energy consumption within the node to the system’s application goals. An

established relationship will invariably aid in the predicting the life span of nodes’

energy sources (batteries)

Higher Context management layer: Much like its predecessor, the higher context

management layer is designed to combine selected contextual information Znwith the

application key context information′𝑥𝑟′. The coordinating context manager at this layer

in response to the directive given by an end user selectively implements the combination

via the use of switching elements denoted as 𝐷𝑚
𝐻 (Refer to Equations 3.4 – 3.7).

𝑇 = {𝑥0 ∗ 𝑍0 ∗ 𝐷0 ,

𝐻 𝑥0 ∗ 𝑍1 ∗ 𝐷1 ,
𝐻 𝑥0 ∗ 𝑍2 ∗ 𝐷2 ,

𝐻 𝑥0 ∗ 𝑍3 ∗ 𝐷3 ,
𝐻 ⋯ 𝑥0 ∗ 𝑍𝑠 ∗ 𝐷𝑠

𝐻} ∪ {𝑥1 ∗ 𝑍0 ∗ 𝐷0 ,
𝐻 𝑥1 ∗ 𝑍1

∗ 𝐷1 ,
𝐻 𝑥1 ∗ 𝑍2 ∗ 𝐷2 ,

𝐻 𝑥1 ∗ 𝑍3 ∗ 𝐷3 ,
𝐻 ⋯ 𝑥1 ∗ 𝑍𝑠 ∗ 𝐷𝑠

𝐻} ⋯ ∪ {𝑥𝑟 ∗ 𝑍0 ∗ 𝐷0 ,
𝐻 𝑥𝑟 ∗ 𝑍1 ∗ 𝐷1 ,

𝐻 𝑥𝑟

∗ 𝑍2 ∗ 𝐷2 ,
𝐻 𝑥𝑟 ∗ 𝑍3 ∗ 𝐷3 ,

𝐻 ⋯ 𝑥𝑟 ∗ 𝑍𝑠

∗ 𝐷𝑠
𝐻} (3.4)

𝑍𝑛 = {
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , 𝐷(𝑚)

𝐻 = 1, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘

𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , 𝐷(𝑚)
𝐻 = 0, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘

 (3.5)

72

𝑇 = 𝑥0 ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻]

𝑠

𝑚=0

 ∪ 𝑥1 ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻]

𝑠

𝑚=0

 𝑥2 ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻] ⋯ ∪ 𝑥𝑟 ⋃[𝑍𝑚 ∗ 𝐷𝑚

𝐻]

𝑠

𝑚=0

 (3.6)

𝑠

𝑚=0

𝑇 = [𝑥0 ∪ 𝑥1 ∪ 𝑥2 ⋯ ∪ 𝑥𝑟] ⋃[𝑍𝑚 ∗ 𝐷𝑚
𝐻]

𝑠

𝑚=0

 (3.7)

The combined information is tagged with timing and location context information

′𝑇(𝑡, 𝑝)′ (Equation 3.8) so that at every instant, detail historical data are easily

constructed and a viable database is dynamically built and maintained.

𝑇(𝑡, 𝑝) = [𝑥0 ∪ 𝑥1 ∪ 𝑥2 ⋯ ∪ 𝑥𝑟] ⋃ [𝑍𝑚(𝑡, 𝑝) ∗ 𝐷𝑚

𝐻] (3.8)𝑠
𝑚=0

Time (t) can be specified or implemented in intervals,

Position (p) can be derived from any of the following: GPS, RSSI and RFID.

Appropriate reconfiguration processes can be initiated or implemented in any one of the

five reconfigurable components in response to any of the lower level context manager’s

recommendations. However, the user ultimately decides what actions are to be taken

and in setups where some form of artificial intelligence is involved, the decision and the

nature of reconfiguration processes are automated. WSN application users can also avail

themselves with the system’s activity and performance history.

In realising the proposed concept, a few challenges are to be expected. One key

challenge is how to identify and develop appropriate metrics for certain contexts (for

example, performance, and reliability related issues). This can be a complicated venture

requiring comprehensive experiments. Others might span over the development and

73

optimisation of execution-codes that maintain a balance between performance and

memory size requirement.

Some of the benefits of realising the model are highlighted below:

 Serves as a framework for developing an all-encompassing context-based

reconfigurable WSN, in addition, prompting the exploration of other system-

related contexts and the development of appropriate metrics.

 Encourage research work that explores the inclusion of artificial intelligence

techniques at higher context level management. This allows the application

to respond to evolving changes especially in unfriendly environments.

 If properly implemented, system performance and the rate of resource

depletion can easily be managed and optimised. For example, predictions or

estimation of the energy depletion rate is attainable at much higher precision.

3.1.2 Software Component for Application Context Extraction

3.1.2.1 Precise Delta Extractor (PDE) Design and Implementation

The PDE implementation serves the following two purposes:

a. A precise delta extraction tool that can be used with the different methods

b. To provide a measure of change/ modification or indirectly a measure of

changes in the application context information, this also serve as input for the

fuzzy logic controller.

Program modification can occur in any of the ways below listed:

 Adding new functionalities or data (for example, constants, variables, program

constructs)

74

 Removing no longer needed functionalities and related data.

 Updating existing functions or data content.

3.1.2.2 PDE Design Concept

𝐿𝑒𝑡 A = {𝑥|𝑎𝑙𝑙 𝑏𝑦𝑡𝑒𝑠 𝑚𝑎𝑘𝑖𝑛𝑔 𝑢𝑝 𝑡ℎ𝑒 𝑓𝑖𝑟𝑚𝑤𝑎𝑟𝑒 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑑𝑒} 𝑎𝑛𝑑

 B = {𝑥|𝑎𝑙𝑙 𝑏𝑦𝑡𝑒𝑠 𝑚𝑎𝑘𝑖𝑛𝑔 𝑢𝑝 𝑡ℎ𝑒 𝑓𝑖𝑟𝑚𝑤𝑎𝑟𝑒 𝑜𝑓 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑑𝑒}

 𝑁𝑜𝑤 ∆+= 𝐵\𝐴 ∶ ∆+ ⇒ 𝐴𝑑𝑑𝑒𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 |𝐵|

𝐴𝑙𝑠𝑜, ∆−= 𝐴\𝐵 ∶ ∆− ⇒ 𝑅𝑒𝑚𝑜𝑣𝑒𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 |𝐴|

However, modification could take place without a significant change in the number of

elements contained in either A or B. Such occurrences can be represented as ∆∓

Extracting ∆+ , ∆− 𝒂𝒏𝒅 ∆∓

Descriptions of the symbols used in the mathematical modelling of the PDE scheme are

given in Table 3.3 and Table 3.4 respectively. The symbols used were based on the

structure of the Execution Link File (ELF) format as highlighted in Appendix A.

Table 3.3: Description of ELF membership type symbols

Member Types Description

𝑷𝑯. 𝒑𝒕𝒚𝒑𝒆 Type of segment this array element describes

𝑺𝑯. 𝒔𝒉𝒂𝒅𝒅𝒓 Section’s physical address

𝑷𝑯. 𝒑𝒂𝒅𝒅𝒓 Segment’s physical address

𝑷𝑯. 𝒑𝒇𝒊𝒍𝒆𝒛 The number of bytes in the file image of the segment

𝑺𝑯. 𝒔𝒉𝒇𝒊𝒍𝒔𝒊𝒛𝒆 The number of bytes in the file image of the section

𝑺𝑯. 𝒔𝒉𝒇𝒍𝒂𝒈𝒔 Flags relevant to the segment

75

Table 3.4: Description of ELF memberships’ attributes type symbols

Attributes Description

𝑷𝑯𝑻_𝑳𝑶𝑨𝑫 The array element specifies a loadable segment

𝑺𝑯𝑭𝑨𝒍𝒍𝒐𝒄 The section occupies memory during process execution

𝑺𝑯𝑭𝑬𝑿𝑬𝑪𝑰𝑵𝑺𝑻𝑹 The section contains executable machine instructions

Let SEG = a collection of 𝑠𝑒𝑔𝑗with the PH.p_type attributes =𝑃𝐻𝑇_𝐿𝑂𝐴𝐷:

𝑆𝐸𝐺 = {⋃ 𝑠𝑒𝑔𝑗
𝑛−1
𝑗=0 |𝑃𝐻. 𝑝𝑡𝑦𝑝𝑒 = 𝑃𝐻𝑇_𝐿𝑂𝐴𝐷} (3.9)

Where PH Program Header and n = number of segments:

And let

𝐴 = 𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑎𝑑𝑑𝑟 ∈ [𝑠𝑒𝑔𝑗.𝑃𝐻. 𝑝𝑎𝑑𝑑𝑟 , 𝑠𝑒𝑔𝑗.𝑃𝐻. 𝑝𝑎𝑑𝑑𝑟 + 𝑠𝑒𝑔𝑗.𝑃𝐻. 𝑝𝑓𝑖𝑙𝑒𝑧] (3.10)

𝐵 = 𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑓𝑖𝑙𝑠𝑖𝑧𝑒 ≠ 0 (3.11)

 𝐶 = 𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑓𝑙𝑎𝑔𝑠 = 𝑆𝐻𝐹𝐴𝑙𝑙𝑜𝑐 (3.12)

𝐷 = 𝑠𝑒𝑐𝑖. 𝑆𝐻. 𝑠ℎ𝑓𝑙𝑎𝑔𝑠 = 𝑆𝐻𝐹𝐸𝑋𝐸𝐶𝐼𝑁𝑆𝑇𝑅 (3.13)

Where SH Section Header and m = number of sections then the elements of 𝑠𝑒𝑔𝑗

consists of a collection of sections 𝑠𝑒𝑐𝑖 expressed thus:

𝑠𝑒𝑔𝑗 = {⋃ 𝑠𝑒𝑐𝑖

𝑚−1

𝑖=0

│ 𝐴 & 𝐵 𝑉 𝐶 𝑉𝐷} (3.14)

76

From each section contained in 𝑠𝑒𝑔𝑗 , a unique address value (𝑈𝑎𝑑𝑑𝑟𝑘) is derived

for each instruction code/data by concatenating values of segment number (𝑗), section

number (𝑖) and the position (𝑝) of each instruction/data (𝐷𝑘).

𝑈𝑎𝑑𝑑𝑟𝑘 = 𝑗 + 𝑖 + 𝑝 𝑓𝑜𝑟 𝑘 = 0 → ∑ |𝑠𝑒𝑔𝑗| (3.15)𝑚−1
𝑗=0

The addressing scheme uniquely identifies an associated instruction code/data contained

in the entire loadable file. In order to identify changes (∆+ , ∆− 𝒂𝒏𝒅 ∆∓) resulting

from reprogramming or reconfiguration processes, 𝑠𝑒𝑔𝑗 are obtained for the original

file’s ELF (𝐹𝑜𝑟𝑖𝑔) and the modified version (𝐹𝑚𝑜𝑑) respectively. Subsequently, while

using 𝑈𝑎𝑑𝑑𝑟𝑘 as a reference, each 𝐷𝑘 within 𝑠𝑒𝑐𝑖 of respective 𝑠𝑒𝑔𝑗 are compared

and where there are differences, they are reported as either modified set of codes (∆∓),

added set of codes (∆+) or removed set of codes (∆−) appropriately. Algorithm 1

listing shows the algorithm employed for the PDE.

1. From SEG obtain a collection of seg

2. {

3. For each seg, obtain a collection of sec

4. {

5. For each sec collection

6. {

7. Compare associated contents (𝐷𝑘) of Forig and Fmod as addressed by

 unique address value (𝑈𝑎𝑑𝑑𝑟𝑘)

8. {

9. Case (contents = equal) : ignore

10. Case (contents = different) : report as modified, note address, count number of

 occurrence(s)

11. Case (𝑼𝒂𝒅𝒅𝒓𝒌 contained in Forign does not exist in Fmod) : a deletion of code(s) has taken

 place , note address, count number of occurrence(s)

12. Case (𝑼𝒂𝒅𝒅𝒓𝒌contained in Fmod does not exist in Forig) : an addition of code(s) has taken

 place, note address, count number of occurrence(s)

13. }

14. }

15. }

16. }

Algorithm 1: Precision Delta Extraction (PDE) Implementation

77

Measuring the degree of ∆+ , ∆− 𝒂𝒏𝒅 ∆∓ in relation to the original firmware

size (Distortion Metrics)

Let m, n and p represent the total number of segments, sections and bytes/words

respectively, Likewise:

𝑇𝑠𝑒𝑐𝑖 = Total Number of bytes /words contained in a section.

𝑇𝑠𝑒𝑔𝑗= Total Number of bytes /words contained in a segment

𝑇𝑓 = Total Number of bytes /words contained in the file.

These terms can be obtained thus:

Tseci = |𝑠𝑒𝑐𝑖| (3.16)

Tsegj = ∑|𝑠𝑒𝑐𝑖|

𝑛−1

𝑖=0

 (3.17)

Tf = ∑ |𝑠𝑒𝑔𝑗|

𝑚−1

𝑗=0

 (3.18)

Where 𝛿 represents the degree of changes effected, the value 𝛿 can be obtained thus:

 𝛿 = (
𝑇𝑓 (𝐹𝑜𝑟𝑖𝑔) − 𝑇𝑓 (𝐹𝑚𝑜𝑑)

𝑇𝑓 (𝐹𝑜𝑟𝑖𝑔)
 ∗ 1) (3.19)

Based on the value of 𝛿 , the following can be inferred:

i. When(𝛿 < 0) , it implies that a set of codes has been added and possibly

some of the original codes could have been modified as well.

ii. When(𝛿 > 0) , it implies that a set of codes has been removed and possibly

some of the original codes could have been modified as well.

iii. When(𝛿 = 0) , it implies that no change has taken place, however, it is

possible that some of the original codes could have been modified as well.

3.1.2.3 PDE Evaluation

The roles of PDE as earlier discussed entails providing information on changes

occurring in the application context. The information being a function of the size of

bytes involved in comparison to the total size of the application.

78

The acquisition of Application Context information for the purpose of system evaluation

was achieved as follows: Sample application source codes’ ELF files were obtained

using the GNU C compiler customised for the Contiki operating system. Each of the

sample files’ source codes were altered or modified in response to changes emanating

from evolving application needs. Typically, these changes could involve or span over

variables, constants, function names, libraries and other source code constructs.

However, in this work the changes were confined to variation involving constants,

variables and Function names only.

Having implemented these changes, the modified files were then recompiled to obtain

new ELF files. Each pair of generated ELF files (original and modified) were further

processed using the PDE. The PDE, by design, outputs a dataset, which contains a

collection of delta (the data difference(s) between the original and modified files) and

their respective address or addresses where applicable. In addition, the PDE produces

three reports: the first and second reports are printouts of ELF constituents (available

sections, data contents and their respective addresses) of both the original and modified

files respectively. The third report relays the changes detected in the two files. Samples

of the relevant extract of these printouts can be found in appendix C. Figure 3.3 shows

the front end of the PDE application developed using C-sharp programming tools, while

Figure 3.4 shows an additional form that displays ELF profile information of application

firmware. As indicated in the Figure 3.3, the original and modified application’s ELF

constituents (generated unified address, physical address, data, list of loadable

segments and segments related addresses and size) as well as the generated delta are

displayed using the list view object components labelled as ‘Original’ , ‘Modified’ and

‘Delta’ respectively. The benefits of PDE are listed below:

79

F
ig

u
re

 3
.3

:
D

el
ta

 E
x
tr

ac
ti

o
n
 F

ro
n
t

en
d
.

80

F
ig

u
re

 3
.4

:
E

L
F

 P
ro

fi
le

 D
is

p
la

y
 F

ro
n
t

en
d
.

81

i. It is used to measure the extent of firmware modification resulting from the

addition of new functions, removal, or an update of existing functions.

ii. The normalised delta output is passed as an input to the context-based WSN

reconfiguration’ s fuzzy controller, which aids in deciding the most appropriate

reconfiguration scheme to use.

iii. It is useful in detecting firmware cloning.

3.1.3 Flash Memory Energy Consumption Modelling

One very principal factor worth considering when evaluating the impact of

reconfiguration processes on entire WSN performance and energy sustenance is the

knowledge of the characteristics of the memory technologies. In practice, no memory

technology reads and writes in negligible time, retains its stored value indefinitely,

occupies negligible space and consumes negligible power. Available memory

technologies have varied advantageous capabilities: some are stronger in one or more of

the aforementioned characteristics and weaker in others.

These technologies entail: Static RAM (SRAM), Electrically Erasable Programmable

Read-Only Memory (EEPROM) and Flash. The Flash is a product of advancement in

the floating gate technology using two known techniques, the hot electron injection

(HEI) and the Nordheim Fowler tunnelling (NFT) technologies. It consists of a single

transistor per memory cells. Unlike EEPROM, it can only erase in blocks. It has a wear-

out mechanism that limits the number of erase and write operations. Flash technology is

amazingly powerful, and it is mainly used currently in microcontroller program

memory.

82

Most microcontrollers in use by wireless sensor nodes employ at least two to three of

the aforementioned memory technologies. Some examples of these microcontrollers are

the MSP430 and the PIC32MX320F128H. The second microcontroller is used in the

evaluation testbed.

MSP430 flash memory is segregated into segments. Single bits, bytes, or words can be

written to flash memory, but the segment is the minimum size of flash memory that can

be erased (www.ti.com/product/msp430f123.pdf). The segments are further divided into

blocks. A block is 64 bytes, starting at 0xx00h, 0xx40h, 0xx80h, or 0xxC0h, and ending

at 0xx3Fh, 0xx7Fh, 0xxBFh, or 0xxFFh. Figure 3.5 shows the flash segmentation using

an example of 4-KB flash that has eight main segments and both information segments.

Figure 3.5: Flash Memory Segments, 4KB Example

(www.ti.com/product/msp430f123.pdf)

http://www.ti.com/product/msp430f123.pdf
http://www.ti.com/product/msp430f123.pdf

83

The program Flash array for the PIC32MX320F128H device is built up of a series of

rows. A row contains 128 32-bit instruction words or 512 bytes. A group of eight

rows/blocks compose a page; which, therefore, contains 8 × 512 = 4096 bytes or 1024

instruction words. A page/segment of Flash is the minimum unit of memory that can be

erased at a single time. The program Flash array can be programmed by Row/Block

programming (128 instruction words at a time), Word programming (one instruction

word at a time) or both.

3.1.3.1 Related Memory re-Flashing Constraints

Three possible reconfiguration scenarios are highlighted in Figure 3.6, Figure 3.7 and

Figure 3.8. In each Figure, two columns of a set of blocks designated as

‘SegO0…SegOn’ and ‘SegN1…SegNn‘ represent original and reconfigured contiguous

segments of flash memory respectively. Reconfigured data are represented by a strip of

filled rectangular blocks. As shown in Figure 3.6, the first scenario describes a situation

where the number of reconfigured data bytes is confined to a single segment ‘SegN1’. In

such a scenario, erasure and rewriting procedures should naturally be limited to a single

segment. However, in practice, this is not always the case; the entire flash memory is

always erased, and the new firmware rewritten all again. The repeated occurrence of the

erasure and rewriting procedures will eventually accelerate energy consumption at a

higher rate.

84

The second scenario as depicted in Figure 3.7 illustrates the space taken in memory by

the reconfigured data.

SegN0

SegN
1

SegN
2

SegN
n

SegO
0

SegO
1

SegO
2

SegO
n

Changes

confined to a

segment

Figure 3.6: Reconfigured data confined to a single segment

SegN0

SegN
1

SegN
2

SegN
n

SegO
0

SegO
1

SegO
2

SegO
n

Changes

spread over

two segments

Figure 3.7: Reconfigured data spread over adjoining segment

85

The space overlaps adjoining segments and being able to handle erasure and writing

operations within these two segments will invariably result in consumption of much

less energy.

The third scenario, shown in Figure 3.8, depicts changes in the new firmware that are

unevenly distributed all over the memory space. This is attributed to changes resulting

from the addition, removal or renaming of functions within application source codes.

These can be more complex when the functions are referenced in several places inside

the application source code. Similar problems exist for global data variables (Dong, Liu,

Chen, Bu, Huang and Zhao, 2011).

3.1.3.2 Firmware Reconstruction Algorithm

In cases where changes occur within a single segment and considering the ‘erase before

rewriting’ constraint associated with Flash memories, it is economical to ensure that the

reconstruction procedures are confined to that segment. Based on the data obtained from

SegN0

SegN
1

SegN
2

SegN
n

SegO
0

SegO
1

SegO
2

SegO
n

Changes

spread over

several

segments

Figure 3.8: Changes spread over several segments

86

earlier works (Han-Lin, Chia-Lin and Hung-Wei, 2008; Gaurav, Peter, Deepak and

Prashant, 2006), it can be inferred that the cost of erasing an entire memory is far less

than erasing individual segments. Likewise, writing to a segment is much cheaper than

writing to each word that makes of a segment.

The norm in practice has been to erase the entire Flash memory and then reprogram it

with the new update. Based on the analysis highlighted in the preceding section, three

delta-orientations were inferred. These are namely ‘Segment-confined’,

‘Adjoint-Segments’ and ‘Disjoint-Segment’. In practice, only the first and the last are

more pronounced.

The PDE presented in section 3.1.2 provides the address of every delta detected, which

invariably can be helpful in pinpointing the exact segment where they occur. This

information allows for erasure and rewriting operations to be carried out within only

selected segment(s) of relevance.

Algorithm 2 listing in highlights the re-flashing algorithm developed and employed in

the context-based WSN reconfiguration software system. 𝑎𝑘 and 𝑑𝑘 represent the

address and data of delta extracted by the PDE utility where k signify the index or

position of each member in the set with cardinal value of m. Let 𝑆𝑂𝑖 and 𝑆𝑁𝑗 denote

segments containing the original and modified firmware in flash memory where i and j

are their respective locations within a set of n segments contained in the flash memory.

𝑇(𝑟) connote an array for storing the index or indices of segment(s) affected by the

modifications or reconfigurations.

87

3.1.4 Adoption of Fuzzy Logic Controller

This subsection discusses the adoption of Fuzzy Logic controller earlier introduced at

the beginning of this chapter. In order to demonstrate the benefits of the context based

reconfiguration model, two contexts related input variables were used. The delta-

orientation obtained from the ELF profile of the modified code served as the application

related context and the Battery energy level state was taken as an operational-demand

related context. A robust inference engine was developed based on the inferred expert

knowledge on memory related energy consumption pattern during the reconfiguration

process. The pattern studied and presented in section 3.1.3 explains how delta size and

its orientation can influence energy consumption during reprogramming operations. The

resulting output from the fuzzy logic system controls when and which one of the

1. r = 0; j = 1; k = 1

2. While (j<=n) do

3. While (k<=m) do

4. If (ak => start address of SNj & ak <= start address of SNj)

5. T(r) = j

6. end if

7. k++ ; r++ ;j++

8. end while

9. end while

10. Select |T(r)|

11. Case 1:

12. Erase and reprogram within SOT(0)

13 Case 2:

14 Erase and reprogram SOT(0) and SOT(1)

15. Case >2:

16. Erase and reprogram entire memory space

17. end select

Algorithm 2: Flash Program Memory re-flashing

88

reconfiguration approaches should be implemented in order to prolong the battery life.

Figure 3.9 shows the fuzzy logic controller’s flow diagram.

 3.1.4.1 Fuzzy Logic Controller

A Fuzzy Logic Controller (FLC) is a software component that controls the output

variables of a system according to its inputs and a set of rules expressed with the

uncertainty of human terms (Rada-Vilela, 2013).

Fuzzy input values

Delta-Orientation Sensor Node’s Battery Energy state

Normalisation

n

Normalisation

Fuzzifucation

Knowledge based Inference Engine

Defuzzification

Output Fuzzy Reprogramming Energy Cost

Initial membership

function

Fuzzy rule base

Figure 3. 9: Computation of Fuzzy Reprogramming Energy Cost

89

The fuzzy system designed and employed in this research work is composed of four

main parts. These parts are namely a fuzzifier, a knowledge base, an inference engine,

and a defuzzifier.

The fuzzifier transforms the real crisp inputs’ into fuzzy functions, therefore

determining the ‘degree of membership’ of the inputs to a vague concept. The values of

the input variables are mapped to the range of values of the corresponding universe of

discourse. The range and resolution of input fuzzy sets and their effect on the

fuzzification process are considered as a factor affecting the overall performance of the

controller.

The knowledge base comprises the knowledge of the application domain and the related

control goals. It can be splitted in a database of definitions and used to express linguistic

control rules in the controller, and a rule base that describes the knowledge held by the

experts of the domain. Intuitively, the knowledge base is the core element of a fuzzy

controller as it will contain all the information necessary to accomplish its execution

tasks. Extensive research has been carried out in order to fine-tune a fuzzy controller’s

knowledge base, many using other Artificial Intelligence (AI) disciplines such Genetic

Algorithms or Neural Networks.

The Inference Engine provides the decision-making logic of the controller. It deduces

the fuzzy control actions by employing fuzzy implication and fuzzy rules of inference.

In addition, it is viewed as an emulation of human decision making. In Mamdani

systems, the antecedents and consequents of a fuzzy rule are fuzzy sets. Inferences are

based on Generalised Modus Ponens, which states that the degree of truth of the

consequent of a fuzzy rule is the degree of truth of the antecedent. In the case where

more than one antecedent clause is present, the individual degrees of membership are

90

joined using a min t-norm operator. If the fuzzy set contains several rules, their output is

combined using a max s-norm operator.

The defuzzification process converts fuzzy control values into crisp quantities; that is, it

links a single point to a fuzzy set, given that the point belongs to the support of the

fuzzy set. The defuzzification stage consists of converting the fuzzy outputs from each

variable into crisp values, which are computed with a defuzzifier. Many defuzzifiers

have been suggested in the literature (Leekwijck and Kerre, 1999), but the most

common ones are the centroid and maxima defuzzifiers for Mamdani controllers

(Mamdani and Assilian, 1975). Others are the weighted average and weighted sum for

Takagi-Sugeno or Tsukamoto controllers (Takagi and Sugeno, 1985). The centroid

computes the 𝑢 value of the centre of mass of the fuzzy set (Equation 3.20). A

maximum defuzzifier returns the smallest, mean or largest 𝑢 value for the maximum

membership function (Equation 3.21). The weighted average and weighted sum are

computed on the modified functions utilising their activation degrees as weights. In the

case of Tsukamoto, the defuzzifiers utilise the activation degrees as weights, and the

membership functions of the activation degrees as values.

�̅� = 𝑑𝑒𝑓𝑢𝑧𝑧(𝐷) =
∫ 𝑢𝐷(𝑢)𝑑𝑢

∫ 𝐷(𝑢)𝑑𝑢
 (3.20)

�̅� = 𝑑𝑒𝑓𝑢𝑧𝑧(𝐷)| 𝐷(𝑢)𝑖𝑠 𝑚𝑎𝑥𝑚𝑢𝑚 (3.21)

3.1.4.2 Design and implementation of the fuzzy logic controller

The design and implementation of the fuzzy logic controller (FLC) consist of modelling

the system inputs and outputs as linguistic variables, and creating the necessary

inference rules that will control the system.

91

Choice of Fuzzy Logic Control Library

The design and implementation of fuzzy logic controllers are centred on the use of

Fuzzy logic control libraries. The Matlab Fuzzy Logic Toolbox

(http://www.mathworks.com.au/products/fuzzy-logic/index.html, accessed on July,

2013) is perhaps the most widely known library for designing FLCs. It is built on top of

the Matlab computing environment and bundles Mamdani and Takagi-Sugeno

controllers, four types of hedges, four fuzzy logic operators, seven defuzzifiers, over

eleven linguistic terms, and FLCs can be imported and exported utilising the Fuzzy

Inference System (FIS) format. Matlab and its toolbox are sold separately under

restrictive and costly proprietary licenses. The toolbox has not been updated since 2005

(Rada-Vilela, 2013). Other FLC libraries are the Octave Fuzzy Logic Toolkit

(Markowsky and Segee, 2011) and the jFuzzyLogic (Cingolani and Alcala-Fdez, 2012).

These state-of-the-art libraries to model fuzzy logic controllers have strong limitations

in terms of licensing, cost, design and implementation, all of which have been recently

addressed in a free open-source fuzzy logic control library named fuzzylite (Rada-

Vilela, 2013).

The fuzzylite fuzzy logic controller (Rada-Vilela, 2014) was adopted in this research

work because it is much easier to configure and use. In addition, it possesses the under

listed features:

i. Controllers: Mamdani, Takagi-Sugeno and Tsukamoto

ii. Linguistic terms: rectangle, triangle, trapezoid, bell, pi-shape, sigmoid

difference and sigmoid.

iii. T-Norms: minimum, algebraic product, bounded difference, drastic product,

Einstein product and hamacher product.

92

iv. S-Norms: einstein sum, bounded sum, normalised sum, drastic sum,

algebraic sum, maximum, and hamacher sum.

v. Defuzzifiers: centroid, bisector, smallest of maximum, largest of maximum,

mean of maximum, weighted average and weighted sum.

vi. Import and export controllers utilising the FCL and FIS formats

Fuzzylite is a fuzzy logic control library that is programmed in C++ and it is free open-

source. It has a cross-platform capability. Its goal is to provide the design and operation

of FLCs with an object-oriented approach such that controllers can be incorporated into

any application in just a few steps without requiring any third-party libraries.

Additionally, it comes with an application named qtfuzzylite to visually design FLCs

and interact with their operation in real time.

3.1.4.3 Modelling the system Inputs and Output

Project Definition in Development Tool

The first step is to use the qtfuzzylite to define the structure of the controller via its

editor. The project editor (Figure 3.10) displays the controller structure and allows the

designer to access linguistic variables and rule definitions directly.

93

F
ig

u
re

 3
.1

0
:

T
h
e

q
tf

u
zz

y
li

te
 d

es
ig

n
er

 e
d
it

o
r

94

Linguistic Variables Definitions

The next step involves the use of qtfuzzilite graphic interface to create the most suitable

linguistic variables and membership functions for the application.

The triangular functions are used as a membership function because they have been

used extensively in real-time applications due to their simple formulas and

computational efficiency (Sadiq, Abu, and Ghafoor, 2010).

The Delta-orientation obtained via the PDE and the sensor node’s battery energy state

served as input into the fuzzy logic system. The delta-orientation and the battery energy

state were meant to represent the application and operational-demand context

respectively.

The input membership functions shown in Figure 3.11 are defined for the Delta

orientation input. It takes into account the three delta-orientation outlined in section

3.1.3.4. The delta-orientation is covered with three membership functions spread over a

range of 2.5 * number of bytes contained in the segment of program memory (for the

PIC32MX320F128H, each segment contains 4096 bytes). The three membership are

Segment-confined, Segment-Adjoint and Segment-Disjoint.

The second input value for the fuzzy-logic system is the battery energy state expressed

in terms of joules. As shown in Figure 3.12, the range of this input value is spread over

the values of 0 to 18720 Joules, where 18720 Joules is the typical energy of two AA

batteries (http://castalia.npc.nicta.com.au). The range maps the sensor node’s battery

energy level between when it is in a virtually depleted state to a fully charged state.

http://castalia.npc.nicta.com.au/

95

F
ig

u
re

 3
.1

1
:

 M
em

b
er

sh
ip

 f
u
n
ct

io
n
 f

o
r

D
el

ta
 O

ri
en

ta
ti

o
n
 i

n
p

u
t

v
al

u
e

96

F
ig

u
re

 3
.1

2
:

 M
em

b
er

sh
ip

 f
u
n
ct

io
n
s

fo
r

B
at

te
ry

 e
n
er

g
y
 s

ta
te

 i
n
p
u
t

v
al

u
e

97

The membership functions of the battery energy state input were distributed as follows:

i. Critical: Cannot support reconfiguration for any delta size or orientation;

energy should rather be conserved for application’s basic task

ii. Fair: Can support reconfiguration if delta size is within an acceptable size

range- most probable a segment.

iii. OK: Can support whole or any delta size of reconfiguration. However,

should be used with caution.

iv. Very OK: More than sufficient energy is available to handle any delta size or

orientation.

The fuzzy system calculates the fuzzy-cost for each Delta and battery energy state input

values. The ensuing output membership function intended to guide each sensor node in

adopting the most appropriate reconfiguration approach while considering the available

battery’s energy level is shown in Figure 3.13. The distribution is spread over four

options: Difference-Approach, Modular-Approach, Entire-Image-Approach, and

Suspend-Reconfiguration. This process applies to each wireless sensor node while in the

field. This ensures that the battery’s energy level in every node is optimally managed

during every reconfiguration process.

3.1.4.4 Fuzzy Inference Engine

The fuzzy inference engine is composed of rules developed using expert knowledge.

The design of the knowledge-based rules that connect the inputs, and the outputs is

based on the philosophy behind reprogramming of Flash memory. This philosophy has

been presented in section 3.1.3.

The fuzzy inference system is designed based on twelve rules listed below:

i. if Delta_Orientation is Segment_Confined and Battery_State is Very_Ok then

Reconfiguration_Approach is Difference_Approach;

98

ii. if Delta_Orientation is Segment_Confined and Battery_State is Critical then

Reconfiguration_Approach is Suspend_Reconfiguration;

iii. if Delta_Orientation is Segment_Confined and Battery_State is Fair then

Reconfiguration_Approach is Difference_Approach;

iv. if Delta_Orientation is Segment_Confined and Battery_State is Ok then

Reconfiguration_Approach is Difference_Approach;

v. if Delta_Orientation is Segment_Adjoint and Battery_State is Very_Ok then

Reconfiguration_Approach is Modular_Approach;

vi. if Delta_Orientation is Segment_Adjoint and Battery_State is Critical then

Reconfiguration_Approach is Suspend_Reconfiguration;

Vii if Delta_Orientation is Segment_Adjoint and Battery_State is Fair then

Reconfiguration_Approach is Modular_Approach;

Viii if Delta_Orientation is Segment_Adjoint and Battery_State is Ok then

Reconfiguration_Approach is Modular_Approach

ix. if Delta_Orientation is Segment_Disjoint and Battery_State is Very_Ok then

Reconfiguration_Approach is Entire_Image_Approach;

x. if Delta_Orientation is Segment_Disjoint and Battery_State is Critical then

Reconfiguration_Approach is Suspend_Reconfiguration;

xi. if Delta_Orientation is Segment_Disjoint and Battery_State is Fair then

Reconfiguration_Approach is Suspend_Reconfiguration; and

xii. if Delta_Orientation is Segment_Disjoint and Battery_State is Ok then

Reconfiguration_Approach is Entire_Image_Approach.

The qtfuzzylite development tool’s rule text editor (Figure 3.14) offers an easy way to

examine and define the set of rules. Using these features, one can verify that all the

defined rules are necessary, that no important rules are missing, and that the variations

of the output variable are consistent with the designed system requirements. Optimising

the entire system (Figure 3.15) behaviour is done easily and quickly by changing the set

of rules, modifying the membership functions definitions, or selecting from the

available defuzzification options.

99

F
ig

u
re

 3
.1

3
:

M
em

b
er

sh
ip

 f
u
n
ct

io
n
 f

o
r

th
e

R
ec

o
n
fi

g
u
ra

ti
o
n
 A

p
p
ro

ac
h
 O

u
tp

u
t

100

F
ig

u
re

 3
.1

4
:

Q
tf

u
zz

y
li

te
 d

ev
el

o
p
m

en
t

to
o
l’

s
ru

le
 t

ex
t

ed
it

o
r

101

F
ig

u
re

 3
.1

5
:

C
o
m

p
le

te
 F

u
zz

y
 c

o
n
tr

o
l

P
la

tf
o
rm

102

3.2 Context-Based Reconfiguration System Evaluation

3.2.1 Testbed Hardware Composition

The Testbed features a powerful Microchip PIC32MX320F128H microcontroller and a

Microchip MRF24J40MB transceiver for implementing low-cost Wireless Sensor

Network. The Microchip PIC32MX320F128H adopted is an extremely powerful

microcontroller support implementing a Microprocessor without Interlocked Pipeline

Stages (MIPS) architecture can provide up-to 80 MIPS of computational power. The

microcontroller implements in hardware the following: Serial Peripheral Interface (SPI),

Inter-Integrated Circuit (I2C), Universal Asynchronous Receiver/Transmitter (UART),

Controller Area Network (CAN) and Universal Serial Bus (USB) communication

protocols easing the connection with external units. It implements a reduced instruction

set computer (RISC) instruction set. The Memory can be fully addressable by Direct

Memory Access (DMA) controllers and IEEE802.3 Media Access Control (MAC) layer

is implemented on chip (http://ww1.microchip.com/). The TestBed Board comes with

Full software support, including porting for Contiki OS. Plates 3.17, 3.18 and 3.19

illustrate the hardware composition of the complete base station and the wireless sensor

nodes respectively.

The Microchip MRF24J40MB transceiver (see Plates 3.20) is used for accessing the

IEEE802.15.4 channel. This transceiver was chosen for its extremely high coverage (up

to 100m in open space at max power) and for its high configurability. The MRF24J40 is

an IEEE 802.15.4™ Standard compliant 2.4 GHz RF transceiver

(http://ww1.microchip.com/). It integrates the PHY and MAC functionality in a single

chip solution. The MRF24J40 creates a low-cost, low-power, low data rate (250 or 625

kbps) Wireless Personal Area Network (WPAN) device (http://ww1.microchip.com/).

103

The MRF24J40 interfaces to Microchip PIC microcontrollers via a 4-wire serial SPI

interface, interrupt, wake and Reset pins.

ZigBee

Base Station

Nodes in the Field

Plate I: The Tesbed Hardware Composition

Plate II: Base station Hardware Composition

104

The MRF24J40 provides hardware support for:

•Energy Detection

•Carrier Sense

Plate III: Wireless Sensor Node Hardware

Plate IV: The Microchip MRF24J40MB transceiver (http://ww1.microchip.com/)

105

•Three Clear Channel Assesement (CCA) Modes

• Carrier Sense Multiple Access – Collision Avoidance (CSMA-CA) Algorithm

•Automatic Packet Retransmission

•Automatic Acknowledgment

•Independent Transmit, Beacon and Guaranteed Time Slot – First in First out (GTS-

FIFO) Buffers

•Security Engine supports Encryption and Decryption for Media Acess Control

(MAC) Sub layer and Upper Layer

These features reduce the processing load, allowing the use of low-cost 8-bit and 32-bit

microcontrollers.

3.2.2 Testbed Software Composition

The embedded software system implemented in each source code runs on the Contiki

operating system platform. Codes in Contiki run in either of two execution contexts:

cooperative or pre-emptive. All Contiki programs are processes, which run in the

cooperative context, whereas interrupts and real-time timers run in the pre-emptive

context. A process is a piece of code that is run repeatedly by the OS. They are

typically started when the system boots, or when a module that contains a process is

loaded into the system. Processes run when something happens, such as a timer firing or

an external event occurring.

Code running in the cooperative execution context is run sequentially with respect to

other code in the cooperative context. Cooperative code must run to completion before

other cooperatively scheduled code can run. Pre-emptive code may stop the cooperative

code at any time. When pre-emptive code stops the cooperative code, the cooperative

code will not be resumed until the pre-emptive code has completed. The pre-emptive

106

context is used by interrupt handlers in device drivers and by real-time tasks that have

been scheduled for a specific deadline.

The TestBed board support is fully integrated in Contiki build system. The Contiki

system is designed to make it easy to compile Contiki applications either to a hardware

platform or into a simulation platform by simply supplying different parameters to the

make command, without having to edit makefiles or to modify the application code.

3.3 Overall System Performance Evaluation

3.3.1 Choice of Simulator

The simulator adopted for the purpose of evaluation is the Castalia based on the

OMNeT++ platform. Castalia is a simulator for WSN and networks of low-power

embedded devices. It is used to test their distributed algorithms and/or protocols in

realistic wireless channel, with a realistic node behaviour especially relating to access of

the radio. The main features of Castalia are:

 Advanced channel model based on empirically measured data.

o Model defines a map of path loss, not simply connections between nodes

o Complex model for temporal variation of path loss

o Fully supports mobility of the nodes

o Interference is handled as received signal strength, not as a separate feature

 Advanced radio model based on real radios for low-power communication.

o Probability of the reception based on Signal to Inference plus Noise Ratio

(SINR), packet size, Phase-Shift Keying (PSK) modulation type.

o Frequency-Shift Keying (FSK) supported, custom modulation allowed by

defining Signal to Noise – Bit Error Rate (SNR-BER) curve.

o Multiple transmitter power levels with individual node variations allowed

o States with different power consumption and delays switching between them

107

o Realistic modelling of Received Signal Strength Indicator (RSSI) and carrier

sensing

 Extended sensing modelling provisions

o Highly flexible physical process model.

o Sensing device noise, bias, and power consumption.

 Node clock drift

 MAC and routing protocols are available.

 Designed for adaptation and expansion.

The Castalia architecture as depicted in Figure 3.16 indicates the interconnections

between the sensor nodes. The nodes are linked via the wireless channel module. The

arrows indicate message passing from one module to another. Each node sends its

packet to the wireless channel, which then selects the appropriate node(s) that should

receive the packet. The nodes are also linked through the physical processes that they

monitor.

There can be multiple physical processes, representing the multiple sensing devices

(multiple sensing modalities) that a node has (http://castalia.npc.nicta.com.au). The

node module is a composite one. Figure 3.17 shows the internal structure of the node

composite module. The solid arrows signify message passing and the dashed arrows

signify simple function calling. The application module is altered to simulate the

Context based WSN reconfiguration model.

http://castalia.npc.nicta.com.au/

108

Figure 3.16: The Modules and their connections in Castalia

(http://castalia.npc.nicta.com.au)

Figure 3.17: The node composite module (http://castalia.npc.nicta.com.au)

http://castalia.npc.nicta.com.au/
http://castalia.npc.nicta.com.au/

109

This structure depicted in Figures 3.16 and 3.17 were implemented in Castalia with the

use of the OMNeT++ NED language.

3.3.2 Using OMNeT++ and Castalia Debugging and Reporting tool

The OMNeT++ simulation kernel records the message exchanges during the simulation

into an event log file. This log file can be analysed later with the Sequence Chart tool.

The Sequence Chart tool, and shows how the message is routed between the different

nodes in the network. The sequence chart is valuable for debugging, exploring or

documenting the complex model behaviour.

3.3.3 Simulation Setup

Adopting the Castalia framework, a network of six wireless sensor nodes was setup on

the OMNeT++ platform. One of the nodes SNode[0] serves as the agent that links all

the other sensor nodes to the base station, three of the nodes SNode[2] , SNode[3] and

SNode[5] were programmed with context based reconfiguration capabilities and the

remaining other two nodes SNode[1] and SNode[4] take on default reconfiguration

paradigm.

The dataset obtained from the PDE and Fuzzy controller sub components were used to

run the simulation platform. Erasure and writing energy, as well as the total energy

consumption resulting from both erasure and writing operation were compared for the

two sets of nodes. These results and the ensuing discussion are presented in chapter

four.

110

3.4 Summary

The design, development, and evaluation procedures used to achieve the research work

aim and objectives were outlined and discussed in this chapter.

The design process outlined the use of contextual information in reducing the cost of

overheads during reconfiguration processes. Two categories of context related

information were presented and discussed. These are the Application related context and

the operational-demand related context. A design flow of how the two sets of

information can be used to improve upon existing reconfiguration approaches were

discussed in section 3.1.1.3. In order to use this information intelligently, the context

information must be measurable and presented in a form that is concise so that

appropriate decision on how and when best to effect a reconfiguration can be taken.

Some of these information are generally imprecise, hence the selected decision-making

system must have the capability to handle them. Two subcomponents devise to handle

these requirements are the Precision Delta Extraction tool and a fuzzy logic controller.

Details of these subcomponents’ specifications, requirement, design, development and

evaluation procedures were presented in this chapter.

111

CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

The results obtained while evaluating the context based WSN reconfiguration system

were presented. First, the system’s sub components comprising of the Precision Delta

Extraction module and the Fuzzy logic Controller related results were presented in

section 4.1 and 4.2 respectively. The overall system’s performance is relayed in section

4.3. Related discussions of the results were presented in subsequent subsections 4.4,

4.4.1 and 4.4.2.

4.1 Precise Delta Extraction Tool

To evaluate the performance of the PDE, an application sample ‘remotepowerswitch.c’

built on the Contiki OS was used. The content of this sample application and other

support files are listed in Appendix D. Changes effected at various source code’

program structure were applied to each application’s source code, each of the ensuing

modified files paired with the original was compiled and their subsequent ELF files fed

into the PDE. The Delta obtained, and other relevant information provided on the ELF

profile form, are presented under related subsections 4.1.1.1, 4.1.1.2 and 4.1.1.3.

4.1.1 ELF Profile of the ‘Remote Power Switch’ Sample

 Application

Using the ELF profile front end of the PDE, the constituents of the generated

‘remotepowerswitch.elf’ form in its original state (without any modifications) are

presented in Table 4.1. The Profile’s front end as shown in Figure 4.1 indicates where

these constituents were obtained from. In addition, The ELF profile front end provides

the following information:

112

i. A list of all loadable segments contained in the file. The information is

obtained using Equation (3.9) as presented in chapter three.

ii. The virtual and physical start address of each segment.

iii. The total byte size of each segment

iv. Whether ‘Execute’, ‘Read’ or ‘Write’ operations are allowed in the listed

segments.

v. It also indicates the unified Addressing scheme obtained to uniquely identify

each data content within the ELF file.

Table 4.1: List of ‘remotepowerswitch.elf’ ELF constituents

Segment

Number

Number of

Sections

Segment Byte size Segment Flags

0 465 79, 988 Execute , Read

1 65 2,152 Execute , Read

2 4 1,788 Write, Read

3 1 0 Read

4 15 8,344 Write, Read

5 2 912 Execute , Read

6 1 36 Execute , Read

7 1 4 Execute , Read

8 1 4 Execute , Read

9 1 4 Execute , Read

10 1 4 Execute , Read

Total bytes contained in File

93,236

113

F
ig

u
re

 4
.1

:
E

L
F

 p
ro

fi
le

 o
f

th
e

‘r
em

o
te

p
o

w
er

sw
it

ch
.e

lf
’

fi
le

114

4.1.1.1 Case Study 1: Effecting Changes to ‘Constant Data ‘

Program Code Listing 1 and 2 show the highlighted section of the ‘Led.c’ source code

where the change was made. In this case, the label definition ‘LEDS_RED’ used in the

original source code has a value of ‘#2’ as indicated in the header file ‘Led.h’ in

Program Code Listing 1. The label definition was altered to take on a new value of ‘#4’

represented by ‘LEDS_YELLOW’. The two source codes (the original and the altered)

were compiled and their generated ELF fed into the PDE. The delta obtained are

illustrated in Figures 4.4, 4.5 and 4.6.

#ifndef LEDS_GREEN
#define LEDS_GREEN 1
#endif /* LEDS_GREEN */
#ifndef LEDS_YELLOW
#define LEDS_YELLOW 2
#endif /* LEDS_YELLOW */
#ifndef LEDS_RED
#define LEDS_RED 4
#endif /* LEDS_RED */

Program Code Listing 1: Extract from ‘Led.h’ showing values assigned to

 constant definitions used

 in ‘Led.c’

Program Code Listing 2: Extract from ‘Led.C’ file showing original Constant

Assignment (Case study1)

void
toggle_handler(void* request, void* response, uint8_t *buffer, uint16_t
preferred_size, int32_t *offset)
{
 leds_toggle(LEDS_RED);

 PORTEbits.RE0 = !PORTEbits.RE0;
}

115

The delta listing in Figure 4.4 was obtained from the ‘modifiedRpt.txt’ and the initial

values as presented in the ‘originalRpt.txt’ file is shown in Program Code Listing 4.

Program Code Listing 4 depicts the alteration in the data content to be exactly one byte

in size. The change occurs at unified address location ‘0->276->3’ and has a physical

address value of ‘9D012014’. The extent of change does not affect the size of the

entire firmware, and it is confined to just a segment in the program hence its orientation

is of the segment confined type.

Program Code Listing 3: Extract from ‘Led.C’ file showing modified Constant

Assignment (Case study 1)

void
toggle_handler(void* request, void* response, uint8_t *buffer, uint16_t

preferred_size, int32_t *offset)
{
 leds_toggle(LEDS_YELLOW);
 PORTEbits.RE0 = !PORTEbits.RE0;
}

SECTION NO.: 276; SECTION NAME: .text.toggle_handler; NAME INDEX.:
2175 TYPE: ProgBits; LOAD ADDRESS: 9D012008; SIZE: 38

 | 0->276->0 | 9D012008 | 27BDFFE8
 | 0->276->1 | 9D01200C | AFBF0014
 | 0->276->2 | 9D012010 | F404C8F
 | 0->276->3 | 9D012014 | 24040004
 | 0->276->4 | 9D012018 | 3C02BF88
 | 0->276->5 | 9D01201C | 8C446110
 | 0->276->6 | 9D012020 | 30840001
 | 0->276->7 | 9D012024 | 2C840001
 | 0->276->8 | 9D012028 | 8C436110

Figure 4.2: Original Data value of the file before effecting changes (Case

study1)

Original Data

value

116

S
h

o
w

s
a

si
n

g
le

m
o

d
if

ic
at

io
n

 h
as

ta
k
en

 p
la

ce
-

th
e

ch
an

g
e

re
p

o
rt

ed
 i

s

a
si

n
g
le

 b
y
te

.

F
ig

u
re

 4
.3

:
P

D
E

 d
is

p
la

y
 d

el
ta

 r
es

u
lt

s
o
b
ta

in
ed

 f
ro

m
 C

as
e

st
u
d
y

 1

117

4.1.1.2 Case Study 2: Effecting Changes to ‘Flow of Control’

Similar procedures carried out in the previous sub-section were repeated for a scenario

where ‘flow of control’ construct is introduced in the main application’s source codes.

Program Code Listing 4 shows highlights of the introduced ‘flow of control’ construct.

The isolated delta obtained were presented in Figure 4.5 and Figure 4.6. A collection of

the delta is shown in Figure 4.5 while their distribution in the modified file is depicted

in Figure 4.6.

SECTION NO.: 276 ; SECTION NAME : .text.toggle_handler ; NAME INDEX.:
2175 TYPE : ProgBits ; LOAD ADDRESS : 9D012008 ; SIZE : 38

 | 0->276->0 | 9D012008 | 27BDFFE8
 | 0->276->1 | 9D01200C | AFBF0014
 | 0->276->2 | 9D012010 | F404C8F
 | 0->276->3 | 9D012014 | 24040002
 | 0->276->4 | 9D012018 | 3C02BF88
 | 0->276->5 | 9D01201C | 8C446110
 | 0->276->6 | 9D012020 | 30840001
 | 0->276->7 | 9D012024 | 2C840001

Figure 4.4: Modified value of Data the file after effecting changes

(Case study 1)

Modified Data value

SECTION : .text.toggle_handler COUNT : 1

*0->276->3*24040004

Shows a single

modification has taken

place- the change reported

is a single byte.

Address

location of

where change

has taken

place

118

toggle_handler(void* request, void* response, uint8_t *buffer,
uint16_t preferred_size, int32_t *offset)
{
 int decide = 0;

if (decide = 1)
 {
 leds_toggle(LEDS_RED);

 PORTEbits.RE0 = !PORTEbits.RE0;
 }
 else
 {
 leds_toggle(LEDS_YELLOW);

 PORTEbits.RE0 = !PORTEbits.RE0;

 }
}

Program Code Listing 4: Extract from ‘Led.C’ file showing the insertion of a

‘Flow of Control’ code construct (Case study 2)

 SECTION : .text.process_thread_remote_power_switch COUNT : 3

*0->150->6*24030059
*0->150->10*24020059
*0->150->24*24020059

Figure 4.5: Delta as reported in the modified File (Case study 2)

119

4.1.1.3 Case Study 3: Effecting Changes to ‘Function’s Name’

In this case, changes were made to the original code by introducing some functions into

the application’s source code. The deltas obtained were quite large and were unevenly

distributed in the program memory map. These changes as reported by the PDE are

depicted in Figure 4.7.

SECTION NO.: 150 ; SECTION NAME :
.text.process_thread_remote_power_switch ; NAME INDEX.: 142D TYPE :
ProgBits ; LOAD ADDRESS : 9D00F268 ; SIZE : 84

 | 0->150->0 | 9D00F268 | 27BDFFE8
 | 0->150->1 | 9D00F26C | AFBF0014
 | 0->150->2 | 9D00F270 | AFB00010
 | 0->150->3 | 9D00F274 | 94820000
 | 0->150->4 | 9D00F278 | 10400006
 | 0->150->5 | 9D00F27C | 808021
 | 0->150->6 | 9D00F280 | 24030059
 | 0->150->7 | 9D00F284 | 54430014
 | 0->150->8 | 9D00F288 | A4800000
 | 0->150->9 | 9D00F28C | B403CB3
 | 0->150->10 | 9D00F290 | 24020059
 | 0->150->11 | 9D00F294 | F4043E3
 | 0->150->12 | 9D00F298 | 0
 | 0->150->13 | 9D00F29C | 3C02BF88
 | 0->150->14 | 9D00F2A0 | 8C436100
 | 0->150->15 | 9D00F2A4 | 7C030004
 | 0->150->16 | 9D00F2A8 | AC436100
 | 0->150->17 | 9D00F2AC | 3C02BF88
 | 0->150->18 | 9D00F2B0 | 8C436110
 | 0->150->19 | 9D00F2B4 | 7C030004
 | 0->150->20 | 9D00F2B8 | AC436110
 | 0->150->21 | 9D00F2BC | 3C04A000
 | 0->150->22 | 9D00F2C0 | F4042CF
 | 0->150->23 | 9D00F2C4 | 2484257C
 | 0->150->24 | 9D00F2C8 | 24020059
 | 0->150->25 | 9D00F2CC | A6020000
 | 0->150->26 | 9D00F2D0 | B403CB7
 | 0->150->27 | 9D00F2D4 | 24020001
 | 0->150->28 | 9D00F2D8 | 24020003
 | 0->150->29 | 9D00F2DC | 8FBF0014
 | 0->150->30 | 9D00F2E0 | 8FB00010
 | 0->150->31 | 9D00F2E4 | 3E00008
 | 0->150->32 | 9D00F2E8 | 27BD0018

Figure 4.6: PDE display delta results obtained from Case study 2

120

F
ig

u
re

 4
.7

 :
 P

D
E

 d
is

p
la

y
 d

el
ta

 r
es

u
lt

s
o
b
ta

in
ed

 f
ro

m
 C

as
e

st
u
d
y

 3

121

4.1.2 Summary of the results

A summary of the results obtained in the three case studies earlier presented above is

shown in Table 4.2. The results were categorised under the following: the delta(s) size,

the physical address range of the delta(s), related ELF segments where the delta resides,

delta orientation and the number of segment(s) involved.

Table 4.2: A summary of results obtained for the three case studies

Case

study

Title Size of

changes

in byte

Physical Address

Range(s)

ELF segment

Name

Orientation of

Change in

Memory

(Delta

Orientation)

Number

of

Segment
Start End

1 Effecting

Changes to

‘Constant’

Data

2 9D012014 9D012014 .text Segment

confined

1

2 Effecting

Changes to

‘Flow of

Control

3 9D00F280 9D00F2C8 .text Segment

confined

1

3 Effecting

Changes to

‘Function’s

Name’

2725 9D000028

9FC01280

A00025FC

BFC00014

BFC02FF0

9D013884

9FC01984

A0002784

BFC00194

BFC02FF0

.text

.vector

.data

.reset

.config_BFC02FF0

Segments

Disjointed

5

4.2 Fuzzy Inference Engine

The fuzzy inference engine’s performance is critical to achieving the set goals of every

context based reconfiguration system for WSN. The details of its design have been

extensively discussed in chapter three. In order to demonstrate the designed fuzzy

inference system’s application and performance, two simulated scenarios were used.

122

The first scenario is based on case study one (1) earlier presented in section 4.1.1.2.

Here, the delta size of two (2) bytes is defined to belong to the segment-confined

membership function (delta-orientation). Varying the battery’s energy level over the

designated ranges as shown in Figure 4.8 always results in the ‘Difference-approach’

reconfiguration option being suggested (though of a degree of 0.001, even when the

battery’s energy level is at a critical level).

The second scenario is based on the case study three. The delta size obtained as

indicated in Table 4.2 is 2725, though the size is a single segment range; the delta’s

orientation is of the disjointed nature. Figures 4.9, Figures 4.10 and Figures 4.11 show

the various reconfiguration options selected based on varied battery’s energy levels.

Table 4.3 shows the results obtained when the battery’s energy level was varied across

its selected corresponding membership functions.

Table 4.3: Results obtained for varied battery’s energy levels

SN Battery state /

Degree

Reconfiguration Option /

Degree

Best Reconfiguration

option/ Degree
1 Critical / 0.695 Suspend reconfiguration / 0.670 Suspend reconfiguration / 0.670

2 Ok / 0.639

Fair / 0.168

Suspend reconfiguration / 0.168

Entire-Image-Approach / 0.639

Entire-Image-Approach / 0.639

3 Very Ok / 0.758 Entire-Image-Approach / 0.670 Entire-Image-Approach / 0.670

123

F
ig

u
re

 4
.8

:
T

es
t

d
em

o
n
st

ra
ti

o
n
 b

as
ed

 o
n
 c

as
e

st
u
d

y
1

124

F
ig

u
re

 4
.9

:
T

es
t

d
em

o
n
st

ra
ti

o
n
 b

as
ed

 o
n
 c

as
e

st
u
d

y
3
 f

o
r

b
at

te
ry

 s
ta

te
 s

et
 a

s
cr

it
ic

al

125

F
ig

u
re

 4
.1

0
:

T
es

t
d
em

o
n
st

ra
ti

o
n
 b

as
ed

 o
n
 c

as
e

st
u

d
y
 3

 f
o
r

b
at

te
ry

 s
ta

te
 c

h
an

g
in

g
 f

ro
m

 O
k

 t

o
 f

ai
r

126

F
ig

u
re

 4
.1

1
:

T
es

t
d
em

o
n
st

ra
ti

o
n
 b

as
ed

 o
n
 c

as
e

st
u

d
y
 3

 f
o
r

b
at

te
ry

 s
ta

te
 s

et
 t

o
 V

er
y
 O

k

127

4.3 Context-Based Reconfiguration system evaluation

Adopting the Castalia framework, a network of six wireless sensor nodes is setup on the

Omnet++ platform (illustrated in Figure 4.12). One of the nodes SNode [0] is positioned

to serve as the reconfiguration agent. The agent routes both Data and control messages

from the base station to the other nodes (SNode [1], SNode [2], SNode [3], SNode [4]

and SNode [5]) in the network. Three of the nodes SNode [2], SNode [3] and SNode [5]

were programed with the context based reconfiguration capabilities and the remaining

other two nodes SNode [1] and SNode [4] take on default reconfiguration paradigm.

The set equipped with context based reconfiguration capabilities is tagged as group A

while those with default reconfiguration paradigm tagged as group B.

In order to evaluate the benefits of the context-based reconfiguration model, each node

in the simulation setup is configured to take on default values of energy consumed per

byte and per segment during program memory reprogramming operations (read, erase

and write procedures). The intent is to ascertain whether there is a significant difference

in the amount of energy consumed by the two set of nodes. The parameters used in

configuring each node are listed in Table 4.4. These parameters were used in computing

the read, erasure and write energy consumption values in the omnet++ simulation

platform. The values were adopted from the literature (Han-Lin, Chia-Lin, and Hung-

Wei, 2008; Mathur, Desnoyers, Ganesan, Shenoy, 2006; Mohan, Bunker, Grupp,

Gurumurthi, Stan, 2013,) and the datasheet of the testbed’s microcontroller

(PIC32MX320F128H).

The simulation procedure involves the transmission of a packet of data consisting of

delta and control messages from the base station to each of the nodes (SNode [1], SNode

[2], SNode [3], SNode [4] and SNode [5]) via SNode [0] as shown in Figure 4.12.

128

F
ig

u
re

 4
.1

2
:

A
 n

et
w

o
rk

 o
f

si
x
 w

ir
el

es
s

se
n
so

r
n
o
d

es
 s

et
u
p
 o

n
 t

h
e

O
m

n
et

+
+

p
la

tf
o
rm

129

The sequence chart shown in Figure 4.13 illustrates the pattern of transmission and

reception as implemented within the WSN. In addition, the sequence chart presents the

history of the simulation carried out. The control message was derived from the output

of the Fuzzy logic controller. The integration of the fuzzy logic inference engine into

the omnet++ simulation platform was implemented via the use of fuzzilite dataset

(extract is provided in Appendix C) generated using the qtfuzzilite tool.

Using a test delta size of 2725, delta orientation of the segment-confined type and

battery energy state of ‘very ok’, the read, erasure, write and the total energy (a

summation of read, erasure and write energy values) consumed were obtained and

subsequently used to plot the graph shown in Figure 4.14. Similarly, using a test delta

size of 2725, delta orientation of the segment-disjoint type and battery energy state of

‘very ok’, the read, erasure, write and the total energy (a summation of read, erasure

and write energy values) consumed were obtained and subsequently used to plot the

graph shown in Figure 4.15.

Table 4.4: Flash Memory Characteristic (Han-Lin, Chia-Lin, and Hung-Wei, 2008)

Procedure Scope Energy(µ J)

 Read Write Erase

Per Byte 0.004 0.009 0.047

Segment/Page 0.0679 7.66 192.2

130

F
ig

u
re

 4
.1

3
:

S
eq

u
en

ce
 c

h
ar

t
sh

o
w

in
g
 t

h
e

h
is

to
ry

 o
f

th
e

si
m

u
la

ti
o
n
 c

ar
ri

ed
 o

u
t

131

Figure 4.14: Graphical plot made for deltas’ size less than program memory’s

segment Size, having segment-confined orientation type

Figure 4.15: Graphical plot made for deltas’ size less than the program

memory’s segment size, having segment-disjoint orientation type

132

4.4 PDE Utilisation Results and Discussion

The PDE isolates delta codes and provides information on the location in memory

where appropriate changes are to be made in the new firmware. The information

illustrated in Table 4.2 is useful in determining the size of delta involved and nature or

characteristic of their distribution in the program memory.

In case study one, it is observed that the size of delta is a single byte, this very small

change can mean a lot in real WSN applications. One typical example involves altering

the rate at which a sensor samples data in the field or taking an average of the number of

samples acquired. These changes in most cases are limited to single byte size or integer

size. Using the conventional approach will involve the erasure and rewriting of the

entire program memory space or a substantial amount of the memory space if a loadable

reprogramming approach is employed.

In case study three, the delta distribution among segments in the flash memory is highly

fragmented. These changes spread over five ELF segments, namely: (.text, .vector,

.data, .reset, and .config_BFC02FF0). Even though the total number of bytes involved is

relatively small (2725) compared to the actual memory size (128KB) of the

PIC32MX320F128H microcontroller, the disjointed nature of the delta is best handled

by reprogramming the entire available memory space.

The observations inferred from the above case studies were instrumental in devising an

inference engine for the fuzzy logic subsystem employed in the context-based

reconfiguration system for WSN.

133

4.4.1 PDE Compared to Existing Difference Reconfiguration Algorithms

The limitations attributed to the difference-based approach as highlighted in section of

section 2.4.5.1 were resolved using the precision delta extraction scheme. The precision

delta extraction scheme generate a unified address scheme, which concatenates the

segment number, section number and the position of each data contained in the original

image and the modified image file separately. The segment and section number are part

of the Execution Link File format explained in Appendix A. The unified address scheme

gives each set of data contained in the two files unique reference numbers that are

similar. Hence, when any of the set of data is missing, its corresponding unified address

ceases to exist, though its physical address might still exist, it will definitely point to

another data. Similarly, when a set of new data is added, these new data acquire new

unified addresses and invariably become easier to isolate.

This approach rules out the need to generate the pair (Checksum, MD5 hash) for each

block of the old image and new image for comparison, which subsequently reduces the

cost of implementing expensive computations in the base station. Though Panta,

Bagchi and Midkiff (2011) tried to justify the use of the host computer in implementing

their modified algorithm, issues of degrading performance occasioned by delay in delta

dissemination can arise (especially in real time applications). Other variants of the

Rysnc algorithm have been proposed and implemented: RDIFF (Milosh, Cuijipers and

Lukkien, 2013), VCDIFF (Korn, MacDonald, Mogul and Vo, 2002), and BSDIFF

(Percival, 2003). However, since they are derivatives of the original Rysnc algorithm,

the lapses highlighted here are very much applicable.

134

4.4.2 Context-Based Reconfiguration system

The graph shown in Figure 4.14 was obtained for group A set of nodes where the delta

orientation is of the segment-confined type. In conventional reprogramming procedures,

the entire program memory is erased and rewritten all over again with a new image even

if the delta (change) is a minute fraction of the entire program memory space. Hence the

result obtained in Figure 4.15, also represents what is obtainable for the second group of

nodes (group B) for the delta-orientation set as segment-confined. However, when the

delta orientation is of the segment-disjoint type and irrespective of what the delta size is,

both groups A and B set of nodes adopt the conventional reconfiguration approach.

Therefore, the results obtained are similar to that indicated in Figure 4.15.

Comparing the two graphs indicates that 65% of energy expended during the erasure

procedure is saved when the context based reconfiguration model is adopted. Similarly,

45% and 69% reduction in energy consumption were obtained for the read and write

procedures respectively. The implication is that quite a considerable amount of energy is

wasted when very minute deltas with segment-confined orientation are involved.

Additional contextual information are applicable. For example, the signal strength of

each sensor node may vary over space and time. These can negatively affect the

reconfiguration process especially where retransmission occurs severally due to poor

signal reception occasioned by poor weather conditions. In such situation, the norm is to

stop reconfiguration completely. However, in a context based reconfiguration approach,

if the delta detected is relatively small that it can be handled with much less resources

expended, then the reconfiguration process is allowed to take place.

135

4.5 Summary

In this chapter, the results obtained while evaluating the context based WSN

reconfiguration system were presented and discussed

The roles of the PDE tool and that of the fuzzy logic controller in implementing the

context based reconfiguration model were demonstrated. The fuzzy logic system

ensures that reprogramming operations are only allowed when the conditions are right.

The condition in this case depends on two contexts: the nature and location of the delta

in program memory and the state of energy available in a wireless sensor node’s battery.

WSN reconfiguration related energy cost can be reduced considerably when both

application and operational-demand related contexts are taken into consideration.

136

CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this research a software model that dynamically reconfigures wireless sensor network

operational functionalities optimally based on evolving application context was

developed. In realising the aim and objectives of the research work, a detailed review of

existing reconfiguration approaches was conducted. The review findings highlighted the

lapses associated with various reconfiguration approaches.

The difference approach appears to be the most efficient reconfiguration paradigm to

adopt, especially when the delta values are relatively small compared with the original

firmware. However, the minimum size of the program memory that can be erased places

some restriction on when such approach should be adopted. Hence, the limitation

attributed to FLASH Memory invariably plays down on the advantages of the difference

approach. As such in some cases, it is much better to erase the entire flash memory. The

way round the problem is the adoption of some form of intelligence that controls or

directs the sensor nodes to adopt the most appropriate and less energy consuming

reconfiguration approach. This has been demonstrated via the use of Fuzzy logic system

to enhance the sensor nodes ability to decide what reconfiguration paradigm to adopt

under certain context. In addition, a novel software component that efficiently

reprograms flash program memory while taking into consideration the ‘segment

erasure’ constraint has been developed.

137

In realising the Context-based WSN reconfiguration software system, two main

software components were developed. These three components are the Precise Delta

Extractor (PDE), Efficient Program memory Re-flashing module and the Fuzzy logic

Controller. The first provides information on the degree of changes resulting from the

modification of an application as well as relaying the exact changes in bytes form. In

addition, it provides fuzzified member set inputs (application context) to the fuzzy logic

controller. The second component developed is based on expert knowledge of the

energy consumption constraints associated with reprogramming procedures of wireless

sensor nodes’ program memory. In addition, an algorithm intended to address

reprogramming constraints associated with flash program memory was developed.

The PDE Metric tool developed is an improvement over existing similar tools like the

Rysnc and its variants. The PDE does not need tuning in order to reduce the overheads

associated with Rysnc and its variants. The PDE provides concise physical address and

virtual address of deltas. This information is useful for targeting delta locations and

allowing reconfiguration procedures to be confined within a single segment of the Flash

memory thereby saving enormous amount of energy expended when an entire program

memory is reprogrammed.

In order to demonstrate the benefits of the context based reconfiguration model, its

performance was evaluated on an Omnet++ simulation platform using pilot data

obtained from a testbed. The testbed is composed of Microchips’ PIC32MX320F128H

microcontroller and MRF24J40MB transceiver. A two context related input variables

were used. The delta-orientation information obtained from the ELF profile of the

modified code served as the application related context and the Battery energy level

state was taken as an operational-demand related context. Inferred expert knowledge on

energy consumption pattern during reconfiguration processes was used to develop a

138

robust inference engine for the fuzzy logic controller. The resulting output from the

fuzzy logic system controls when and which one of the reconfiguration approaches

should be implemented in order to prolong the battery life. In a network of six nodes,

two were equipped with the developed model capability and the others were not. The

overall energy expended as read, erase and write were obtained from each node for the

purpose of comparison. The results obtained show that about 65% of energy expended

during the erasure procedure is saved in nodes that adopt the context based

reconfiguration model. Similarly, 45% and 69% reduction in energy consumption were

obtained for the read and write procedures respectively.

5.2 Contribution to Knowledge

i. Developed a much effective delta extraction algorithm and tool for the Contiki

operating system adapted to adopt the difference reconfiguration approach.

ii. Demonstrated the use of artificial intelligence (fuzzy logic) in wireless sensor

network application to enable it manage its limited available resources

efficiently during reprogramming procedures.

iii. The model developed serves as a framework for developing an all-encompassing

context base reconfigurable wireless sensor network.

5.3 Recommendations

i. Use of other Artificial Intelligence (AI) models like Artificial Neural Networks

(ANN) should be explored. The fuzzy logic system is based on human

reasoning, and it means modifications will need to be made to the inference

engine intermittently as new application and operational context changes evolve.

139

However, an AI with real-time learning and adaptive capabilities allows the

system to update itself.

ii. Adoption and Implementation of multiple contexts variables is encouraged. For

example, the influence of Interference, Signal strength on reconfiguration

process in real life field situation can be explored.

140

REFERENCES

Adomat, J., Furunäs, J., Lindh, L., & Stärner. J. (1996). Real-Time Kernel in Hardware

RTU: A step towards deterministic and high performance real-time systems. In

Proceedings of Eighth Euromicro Workshop on Real-Time Systems, 'Aquila,

Italy. 164-168.

Andrews, D., Niehaus, D., & Ashenden, P. (2004). Programming Models for Hybrid

FPGA/CPU computational Components , IEEE Computer, 2004(1), 118-120.

Alkhawaja, A.R., Ferreira, L.L. & Albano, M. (2012). Message Oriented Middleware

with QoS Support for Smart Grids. Technical Report HURRAY-TR-120709.
Retrieved from: http://www.cister.isep.ipp.pt/docs/message_oriented_middleware_with_

qos_support_for_smart_grids/717/view.pdf, Retrieved 27 July 2012

Balani, R., Han, C., Rengaswamy, R. K., Tsigkogiannis, L. & Srivastava, M. (2006).

Multi-Level Software Reconfiguration for Sensor Networks. Proceedings of the

6th ACM & IEEE International conference on Embedded software. 112-121,

Doi: 10.1145/1176887.1176904,

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A Survey on Context-aware systems.

International Journal of Ad Hoc and Ubiquitous Computing, 2(4), 263-277.

Bhatti, S., Carlson, J., Dai, H, Deng, J. Rose, J., Sheth,A., Shucker, B., Gruenwald, C.,

Torgerson, A., and Han, R. (2005). MANTIS OS: An Embedded Multithreaded

Operating System for Wireless Micro Sensor Platforms. ACM/Kluwer Mobile

Networks & Applications(MONET), Special Issue on Wireless Sensor Networks,

Aug. 2005, 10(4), 563-579.

Barr, M. (1999). Programming Embedded Systems in C and C++, First Edition.

USA:O’ Reilly.

Belanger, L. (2004). Development of a GSM Modem on a DSP/FPGA Architecture

Using Simulink and System Generator, Xcell Journal, Lyrtech inc. 4(51), 1-18.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,

&d Riboni, D.(2010). A Survey of Context Modeling and Reasoning

Techniques. Journal of Pervasive and Mobile Computing. 6(2), 161-180.

Black, J., Cochran, M. & Highland, T. (2008). A Study of the MD5 Attacks: Insights

and Improvements, 3 March 2006. Retrieved 27 July 2008.

Brown, S., Sreenan, C.J. (2006). Updating Software in Wireless Sensor Networks: A

Survey. Technical Report UCC‐CS‐2006‐13‐07, Ireland.

http://www.cister.isep.ipp.pt/docs/message_oriented_middleware_with_%20qos_support_for_smart_grids/717/view.pdf
http://www.cister.isep.ipp.pt/docs/message_oriented_middleware_with_%20qos_support_for_smart_grids/717/view.pdf
http://dx.doi.org/10.1145/1176887.1176904
http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf

141

Burleson (1993). The Spring Scheduling Co-Processor: A Scheduling Accelerator,

Proceedings of the International Conference on Computer Design (ICCD), 140-

144.

Cafaro, G., Gradishar, T. & Guimaraes, H. (2009). A 10Mhz-4Ghz Direct Conversion

CMOS Transceiver for SDR Applications. Proceedings of the SDR 2009

Technical Conference and Product Exposition.

Carpenter, T., & Barrett, J. (2008). CWNA Certified Wireless Network Administrator

Official Study Guide. Fourth Edition, USA:McGraw-Hill.

Chen, Y., Chein, T., & Chou, P. (2010). Enix: A Lightweight Dynamic Operating

System for Tightly Constrained Wireless Sensor platforms. In SenSys ’10 (

November 3-5, Zurich, Switzland), ACM.

Chong, C. & Kumar, S. P. (2003). Sensor Networks: Evolution, Opportunities and

Chellenges. Proceedings of the IEEE, 91(8), 1247-1256.

Cingolani, P. & Alcala-Fdez, J. (2012). jfuzzylogic: a robust and flexible fuzzy-logic

inference system language implementation. In Proceedings of the IEEE

International Conference on Fuzzy Systems, 1–8.

Ciampa, M. (2009). CompTIA Security+ 2008 in depth. Australia ; United States:

Course Technology/Cengage Learning. 290.

Compton, K., & Hauck, S. (2002). Reconfigurable Computing: A survey of Systems

and Software. ACM Computing Surveys, 34(2), 171-120.

Costa, N., Pereira, A. & Serodio, C. (2007).Virtual machines applied to WSN's: The

state-of-the-art and classification. In Proc. the 2nd International Conference on

Systems and Networks Communications (ICSNC 07), Cap Esterel, French,

Riviera, France.

Dong, W., Chen, C., Liu, X.,& Bu, J. (2010). Providing OS Support for Wireless Sensor

Networks: Challenges and Approaches, IEEE Communications Surveys and

Tutorials, 2010, 12(4), 519-530.

Dong, W., Chen, C., Bu, J. & Huang, C. (2013). Enabling efficient reprogramming

through reduction of executable modules in networked embedded systems,

Journal of Ad Hoc Networks. 11(1). 473-489, doi>10.1016/j.adhoc.2012.07.007.

Dong, W., Liu, Y., Chen, C., Bu, J., Huang, C. & Zhao, Z. (2011). R2: Incremental

Reprogramming using Relocatable Code in Networked Embedded Systems.

IEEE INFOCOM conference proceedings, 376 - 380

Duffy, C., Utz, R., John, H. & Sreenan, C. (2008). An Experimental Comparison of

Event Driven and Multi-Threaded Sensor Node Operating System. In

proceedings of the 5th Annual IEEE International Conference of Pervasive

Computing and Communications, (PERCOMW). 267-271.

http://books.google.co.il/books?id=PfkLAAAAQBAJ&lpg=PA290&dq=MD5%20%22Ron%20Rivest%22%201991%20MD4&pg=PA290#v=onepage&q=MD5%20%22Ron%20Rivest%22%201991%20MD4&f=false
http://dx.doi.org/10.1016/j.adhoc.2012.07.007

142

Dunkels, A., Gr¨onvall, B. & Voigt, T. (2004). Contiki - a lightweight and flexible

operating system for tiny networked sensors. Proceedings of the First IEEE

Workshop on Embedded Networked Sensors, Tampa, Florida, USA.

Dunkels, A., Finne, N., Eriksson, J. & Voigt, T. (2006). Run-time dynamic linking for

reprogramming wireless sensor networks, In Proceedings of ACM SenSys,

Engelbrecht, A. (2007) Computational Intelligence: An Introduction, 2nd ed. New York,

USA: John Wiley & Sons.

Eronu, E. M., Misra, S. & Aibinu, M. (2013). Reconfiguration Approaches in Wireless

Sensor Network: Issues and Challenges. In proceedings of the Second IEEE

International Conference on Emerging & Sustainable Technologies for Power

& ICT in a Developing Society (NIGERCON), 2013, Owerri, Imo state, Nigeria,

November 14 - 16, 143 – 152. Doi:10.1109/NIGERCON.2013.6715648.
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6715648&isnumber=6715629

Flowers, D. & Yang, Y. (2010). Microchip MiWiTH Wireless Networking Protocol

Stack, Microchip Technology Inc. DS0166B, 1-18, Retrieved on March 10,

2012 from: http://www.microchip.com/miwi.

Fuentes, L. & Gámez. N. (2011). FamiWare: A Family of Event-Based
Middleware for Ambient Intelligence. Pers. Ubiquitous Comput.
2011(15). 329–339.

Gámez, N., Cubo, J., Fuentes, L. & Pimentel, E. (2012). Configuring a Context-Aware

Middleware for Wireless Sensor Networks. Sensors (Open Access Journal),

2012(12). .8544-8570. Doi:10.3390/s120708544.

Gomaa, H. (1993). Software Design Methods for Concurrent and Real-time Systems,

First edition, USA:Addison-Wesley.

Graziosi, F., Pomante, L. & Pacifico, D. (2008). A Middleware-based approach for

heterogeneous wireless sensor networks. Proceedings of International

Conference on Communications(iccom'08), 52-57.

Gaurav, M., Peter, D., Deepak, G. & Prashant, S. (2006). Ultra-low power data storage

for sensor networks, Proceedings of the 5th international conference on

Information processing in sensor networks, April 19-21, Nashville, Tennessee,

USA. Doi:10.1145/1127777.1127833.

Han, C., Kumar, R., Shea, R. & Srivastava, M. (2005). Sensor Network Software

Update Management: A Survey. Department of Electrical Engineering

University of California, Los Angeles.

Han, C., Kumar, R., Shea, R. Kolher, E. & Srivastava, M. (2008). A Dynamic Operating

System for Sensor Nodes, Proceedings of the 3rd International Conference on

Mobile Systems Applications and Services, ACM. 163-176.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6715648&isnumber=6715629
http://www.microchip.com/miwi

143

Han-Lin, L., Chia-Lin, Y. & Hung-Wei, T. (2008). Energy-Aware Flash Memory

Management in Virtual Memory System, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 16(8), 952-964.

Hadim, S. & Mohamed, N. (2006). Middleware for wireless sensor networks: A survey.

In Proc. the 1st International Conference on Communication System Software

and Middleware (Comsware06), India.

Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall, 1994.

Heron, J.P., Woods, R., Sezer, S. & Turner, R.H. (2001). Development of a Run-Time

Reconfiguration System with Low Reconfiguration Overhead, Journal of VLSI

Signal Processing, 28, 97-113.

Hill, J., Horton, M., Kling, R. & Krishnamurthy, L. (2004). The Platforms Enabling

Wireless Sensor Networks, Communications of the ACM, 47(6).

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System

architecture directions for networked sensors. In Proceedings of the 9th Int.

Conf. Architectural Support for Programming Languages and Operating

Systems (ASPLOS-IX), New York, NY, USA, ACM Press.

Hill, J., Szewczyk, R., Woo, A., Levis, P., Madden, S., Whitehouse, J.P., Polastre, J.,

Gay, D., Sharp, C., Welsh, M., Brewer, E. & Culler, D. (2005). TinyOS: An

Operating System for Sensor Networks. Ambient Intelligence, Heidelberg,

Netherland: Springer-Velag, 115-148.

Hinkelmann, H., Reinhardt, A., & Glesner, M. (2008). A Methodology for Wireless

Sensor Network Prototyping with Sophisticated Debugging Support.

International Symposium on Rapid System Prototyping.

Hu, P., Ndulska, J. & Robinson, R. (2006). Reconfigurable middleware for sensor

based applications. Proceedings of the 3rd international Middleware doctoral

symposium. New York, NY, USA. Doi:10.1145/1169100.1169105.

Hui, J. W. & Culler, D. (2004). The Dynamic behavior of data dissemination protocol

for network programming at scale. Proceedings of the 2nd International

Conference on Embedded networked Sensor systems (SenSys). 81-94.

Ibrahim, D. (2008). Advanced PIC Microcontroller projects in C, New York, USA

:Newness.

Indulska, J. & Sutton, P. (2003). Location management in pervasive systems.

CRPITS’03: Proceedings of the Australasian Information Security Workshop,

143–151.

Jeong, J., Kim, S. & Broad, A. (2008). Network reprogramming, TinyOS

documentation, available from : http://www.tinyos.net/tinyos-1-x/doc/xnp.pdf,

(10.01.2012)

144

Jun-Zhao, S. (2010). OS-based Reprogramming Techniques in Wireless Sensor

Networks: A Survey. In proceedings of Ubi-media Computing (U-Media), 3rd

IEEE International Conference. 17-23

Karloff, C., Sastry, N. & Wagner, D. (2004). TinySec: A link Layer Security

Architecture for Wireless Sensor Networks, Proceedings of the 2nd ACM

Conference on Embedded Networked Sensor Systems.

Khan, J., & Vemuri, R. (2005). Energy management in battery powered sensor

networks with reconfigurable computing nodes. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL

’05). 543-546.

Krishna, R. P., Bagchi, S., & Khalil, M. I. (2009). Efficient wireless reprogramming

through reduced bandwidth usage and opportunistic sleeping, Ad Hoc Networks.

7(1), 42-62.

Krishna, R. P., Bagchi, S. & Midkiff, P. S. (2009). Zephyr: Efficient Increamental

Reprogramming of Sensor Nodes using Function call Indirections and

Difference Computation, In Proceedings of the Annual Technical Conference

(USENIX). 411-424.

Krishnamurthy, L., Adler, R., Buonadonna, P., Chhabra, J., Flanigan, M.,

Kushalmager, N., Nachman, L., & Yarvis, M. (2005). Design and deployment

of industrial sensor networks: experiences from a semiconductor plant and the

North Sea, in: Proceedings of the Third International Conference on Embedded

Networked Sensor Systems (Sensys), San Diego, CA.

Kompis, C. & Sureka, P. (2010). Power Management Technologies to Enable Remote

and Wireless Sensing Cyber Security White Paper, Retrieved on May,02 2010

from: www.libelium.com/libelium.../libelium-ktn-ower_management.pdf.

Korn, D., MacDonald, J., Mogul, J. & Vo, K. (2002). The VCDIFF Generic

Differencing and Compression Data Format." RFC 3284 (Proposed Standard).

Kulkarni, K., .Sanyal, S., Al-Qaheri, H. & Sanyal, S. (2009). Dynamic

Reconfiguration of Wireless Sensor Networks. International Journal of

Computer Science and Applications, 6(4), 16-42.

Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational

intelligence in wireless sensor networks: A survey. Communications Surveys &

Tutorials, IEEE, 13(1), 68-96.

Kim, S., Lee, J., Hur, K., Hwang, K., & Eom, D.(2009). Tiny Module–Linking for

Energy–Efficient Reprogramming in wireless sensor networks. IEEE

Transactions on Consumer Electronics. 55(4), 1914-1920.

145

Kjær, K.E. (2007). A Survey of Context-aware Middleware. Proceedings of the 25th

conference on IASTED International Multi Conference: Software engineering,

148-155.

Labroasse, J., (2002). MicroC/OS-II The Real Time Kernel, Newnes.

Lalit, S. & Yadav, P. S. (2010). A Comparative Analysis of Wireless Sensor Network

Operating Systems. International Journal and Technical science, 1(1), 41-47.

Lee, J., Mooney, V., Instrom, K., Daleby, T., Klevin, T. & Lindh, L. (2003). A

comparison of the RTU Hardware RTOS with a Hardware/Software RTOS,

Proceedings of Asia and South Pacific Design Automation Conference, Asia.

Leekwijck, W. V. & Kerre, E. E. (1999). Defuzzification: criteria and classification.

Fuzzy Sets and Systems. 108(2), 159–178.

Leligou, H. C., Redondo, L., Zahariads, T., Retamosa, D. R., Karkazis, P.

Papaefstathiou, I. & Voliotis, S. (2008). Reconfiguration in Wireless Sensor

Networks. ARTEMIS-2008-100032, SMART 2008.

Levis, P., and Culler, D. (2002). Maté: a tiny virtual machine for sensor networks, In

ASPLOX-X: Proceedings of the 10th International Conference on

Architectural support for programming languages and operating systems. 85-

95.

Levis, P., Patel, N., Culler, D. & Shenker, S. (2004). Trickle: A self-regulating

algorithm for code propagation and maintenance in wireless sensor networks. In

proceedings of First USENIX/ACM Symposium on Networked Systems Design

and Implementation (NSDI).

Linn, Y. (2009). Generation of Bandpass Guassian Noise with Application to Complete

Built in Self-Test in Wireless Communications Receiver. In proceedings of

IEEE LATINCOM.

Luk, M., Mezzour, G., Perri, A. & Gligor, V. (2007). MiniSec: A Secure Sensor

Network Communication Architecture. IPSN’07, April 2007, Cambridge,

Massachusetts, U.S.A.

Marron, P. J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O. & Rothermal, K.

(2006). FlexCup: A Flexible and Efficient Code Update Mechanism for Sensor

Networks, Springer-Verlag Berlin Hedelberg, 2006(3868), 212-227.

Markowsky, L. & Segee, B. (2011). The octave fuzzy logic toolkit. In Proceedings of

the International Workshop on Open-Source Software for Scientific

Computation, 118–125.

146

Mallikarjuna, A., Reddy V., Kumar, P., Janakiram, D. & Kumar, A. (2009). Operating

Systems for Wireless Sensor Networks: A Survey Technical Report.

International Journal of Sensor Networks (IJSNet). 5(4),.236-255.ACM.

Macdonald, J. (2011). Xdelta - open-source binary diff.

Mamdani, E. H. & Assilian, S. (1975). An experiment in linguistic synthesis with a

fuzzy logic controller. International Journal of Man-Machine Studies, 7(1),1–

13.

Mathur, G., Desnoyers, P., Ganesan, D. & Shenoy, P. (2006). Ultra-low power data

storage for sensor networks, Proceedings of the 5th international conference on

Information processing in sensor networks, April 19-21, Nashville, Tennessee,

USA , doi:10.1145/1127777.1127833

Misra, S. & Eronu, E. (2012). Implementing Reconfigurable Wireless Sensor

Networks: The Embedded Operating System Approach, Embedded Systems -

High Performance Systems, Applications and Projects, ISBN: 978-953-51-

0350-9, InTech, Retrieved on October 12, 2012:

http://www.intechopen.com/books/embedded-systems-high-performance-

systems-applications-and-projects/implementing-dynamic-reconfigurable-

wireless-sensor-networks-

Milosh, S., Cuijipers, P. J. & Lukkien, J. J. (2013). Efficient reprogramming of wireless

sensor networks using incremental updates and data compression. In

international conference of Pervasive Computing and Communications

Workshops(PERCOMWorkshops),584-589

doi:10.1109/PerComW.2013.6529563

Moerschel, G., Dreger, R. & Carpenter, T. (2007). CWSP Certified Wireless Security

Professional Official Study Guide, Second Edition. New York, USA : McGraw-

Hill.

Mohan, V., Bunker, T., Grupp, L., Gurumurthi, S. & Stan, M. R. (2013), Modeling

Power Consumption of NAND Flash Memories Using FlashPower, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

32(7), 1031 – 1043.

Mooney, V. & Blough, D. M. (2002). A Hardware-Software Real-Time Operating

System Framework for SOC’s, IEEE design and Test of Computers, 2002(11).

44-51.

Muralidhar, P. & Rao, C. B. R. (2008). Reconfigurable Wireless sensor network node

based on NIOS core. In processings of the 4th International Conference on

Wireless Communication and Sensor Networks(WCSN’08). 67-72.

Myerson, J. M. (2002). The Complete Book of Middleware. AUERBACH; 1 edition

Omer, M. & Kunz, T. (2011). Operating Systems for Wireless Sensor Networks: A

survey. Sensors (an open access Journal). 11 (2011), 5900-5930.

http://www.intechopen.com/books/embedded-systems-high-performance-systems-applications-and-projects/implementing-dynamic-reconfigurable-wireless-sensor-networks-
http://www.intechopen.com/books/embedded-systems-high-performance-systems-applications-and-projects/implementing-dynamic-reconfigurable-wireless-sensor-networks-
http://www.intechopen.com/books/embedded-systems-high-performance-systems-applications-and-projects/implementing-dynamic-reconfigurable-wireless-sensor-networks-
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6523359
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6523359
http://dx.doi.org/10.1109/PerComW.2013.6529563

147

Panta, R. K., Bagchi, S. & Midkiff, S. P. (2011), Efficient Incremental Code Update for

Sensor Networks, ACM Transactions on Sensor Networks, 7(4), 30.1-30.32.

Perrig, A., Szewczyk, R., Wen, D., Cullerand, J. & Tygar, D. (2001). SPINS: Security

Protocols for Sensor Networks. Proceedings of 7th Annual International

Conference on Mobile Computing and Networks, Rome, Italy.

Percival, C. (2003). Naive differences of executable code.

Portilla, J., Otero, A., De la Torre, E., Riesgo, T., Stecklina, O.,Peter, S. &

Langendorfer, P. (2010). Adaptable Security in Wireless Sensor Networks by

using Reconfigurable ECC Hardware Coprocessors. International Journal of

Distributed Sensor Networks, 2010(740823), 1-12, doi:10.1155/2010/740823

Puder, A., Romer, K. & Pilhofer, F. (2006). Distributed Systems Architecture: A

Middleware Approach. San francisco, California: Morgan Kaufmann.

Rada-Vilela, J. (2013). Fuzzylite: a fuzzy logic control library in C++". In Proceedings

of the Open Source Developers Conference. Auckland, New Zealand.

Rada-Vilela, J. (2014). Fuzzylite: a fuzzy logic control library, URL

http://www.fuzzylite.com.

Ramamurthy, H., Prabhu, B.S. & Gadh, R. (2004). Reconfigurable Wireless Interface

for Networking Sensors (ReWINS). In proceedings of IFIP TC6 , 9th

International Conference on Personal Wireless Communication (PWC 2004).

Ramamurthy, H., Lal, D., Prabhu, B. S., & Gadh, R.(2005). ReWINS: A Distributed

Multi-RF Sensor Control Network for Industrial Automation. IEEE wireless

Telecommunication Symposium WTS 2005, Pomona,California.

Sadiq, A. S., Abu, B. K. & Ghafoor, K. Z. (2010). A Fuzzy Logic Approach for

Reducing Handover Latency in Wireless Networks. Network Protocols and

Algorithms, (2)4, 1 -27, doi: 10.5296/npa.v2i4.527.

Silva, A. R. & Vuran, M. C. (2010). (CPS)^2: Integration of Center Pivot Systems with

wireless Underground Sensor Networks for Autonomous Precision Agriculture.

Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical

Systems, 69-88.

Stankovic, J.A. & Ramamritham, K. (1989). The Spring Kernel: A New Paradigm for

Hard Realtime Operating Systems, ACM Operating Systems Review, 23(3). 54-

71.

Steine, M., Ngo, C.V., Oliver, R. S. Geilen, M., Basten, T., Fohler, G. & Decotgnie J.

(2011). Proactive Reconfiguration of Wireless Sensor Networks, Proceedings of

the 14th ACM International Conference on Modelling, Anaylsis and Simulation

of Wireless and Mobile systems (MSWIM’11), 31-39.

148

Sugihara, R., & Gupta, R. K. (2008). Programming Models for Sensors Networks: A

Survey, ACM Transactions on Sensor Networks. 4(2).

Tanaka, S., Fujita, N., Yanagisawa, Y., Terada, T. & Tsukamoto, M. (2008).

Reconfigurable hardware architecture for saving power consumption on a

sensor node. International Conference on Intelligent Sensors, Sensor Networks

and Information Processing, 405-410, doi: 10.1109/ISSNIP.2008.4762022.

Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to

modeling and control, IEEE Transactions on Systems, Man and Cybernetics,

15(1), 116–132.

Tridgell, A. (1999). Efficient algorithms for sorting and synchronization. PhD thesis,

Australian National University.

Tuttlebee, W. (2002). Software Defined Radio: Origins, Drivers and International

Perspectives. West Sussex, England: John Wiley & Sons Ltd.

Venayagamoorthy, G. K. (2009). A successful interdisciplinary course on

computational intelligence. IEEE Computational Intelligence Magazine, 4(1),

14-23.

Walls, C. (1996). RTOS for Microcontroller Applications, Electronic Engineering,

68(831), 57-61.

Wilder, J., Uzelac, V., Milenkovic, A. & Jovanov, E. (2007). Wireless Sensor Networks

for updating Reconfiguable Logic Design in Real-time”. The University of

Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, Retrieved

from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.2168&rep=rep1

&type=pdf

Yang, Y. (2009). Microchip Wireless(Miwi) Application Programming Interface

(MiApp). Microchip Technology Inc. DS01284A, 1-14.

Yick, J., Mukherjee, B. & Ghosal, D. (2008). Wireless sensor network survey. Journal

of Computer Networks. 52(2008), 2292-2330.

Xiaoyun, W. & Hongbo, Y. (2005). How to Break MD5 and Other Hash

Functions, Advances in Cryptology – Lecture Notes in Computer Science,

(3494)19–35. Retrieved: 21 December 2009.

Zuberi, K. M. & Shin, K. G. (1996). EMERALDS: A Microkernel for Embedded Real-

Time Systems, Proceedings of RTAS, 241-249.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.2168&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.2168&rep=rep1&type=pdf
http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf
http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf

149

APPENDIX A

EXECUTION LINK FILE [ELF] STRUCTURE

The ELF standard is intended to streamline software development by providing

developers with a set of binary interface definitions that extend across multiple

operating environments. This should reduce the number of different interface

implementations, thereby reducing the need for recoding and recompiling code.

File Format

Object files participate in program linking (building a program) and program execution

(running a program). For convenience and efficiency, the object file format provides

parallel views of a file’s contents, reflecting the differing needs of these activities.

Figure A.1 shows an object file’s organisation.

Figure A.1: An object file’s organisation.

150

An ELF header resides at the beginning and holds a ‘‘road map’’ describing the file’s

organization. Sections hold the bulk of object file information for the linking view

instructions, data, symbol table, relocation information, and the program execution view

of the file. Figure A.3 and figure A.4 shows the Program header and the Section header

organisation respectively.

Program header

offset

Section header

offset

Program Segment

type

Figure A.2 : The ELF header organisation

151

Program Header

Figure A.3 : The Program header organisation

Figure A.4 : The Section header organisation

152

APPENDIX B

PRECISION DELTA EXTRACTION SOURCE CODE

PDE CODES

using System;
using System.IO;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace PDE
{
 public partial class pde_platform : Form
 {
 public pde_platform()
 {
 InitializeComponent();
 }
 //
 Dictionary<string, string> gen_elf_old_Dict = new Dictionary<string,
string>();
 Dictionary<string, string> gen_elf_new_Dict = new Dictionary<string,
string>();
 //
 List<extract> pde_para_list_old = new List<extract>();
 List<extract> pde_para_list_new = new List<extract>();
 //
 List<extract> Rpt_Modified = new List<extract>();
 List<extract> Rpt_Addition= new List<extract>();
 List<extract> Rpt_Removed = new List<extract>();

 //

 public double Total_lines_original ;
 public double Total_lines_modified;
 public double Total_lines_deleted;
 public double Total_lines_added;
 //

 //

 private void pde_platform_Load(object sender, EventArgs e)
 {
 int number_original_lines = 0;
 int number_modified_lines = 0;

 var listBox_parameter_list_1 = listBox_parameter_listing_1.Items;
 var listBox_parameter_list_2 = listBox_parameter_listing_2.Items;

153

 var pde_para_old = new pde_parameters();
 var pde_para_new = new pde_parameters();
 //
 var Hex_old = new Hex_File_Content();
 var Hex_new= new Hex_File_Content();
 //

 //
 pde_para_old.obtain_pde_para("temp-sensor-5");
 pde_para_new.obtain_pde_para("temp-sensor-10");

 //

 //
 foreach (var pdex_1 in pde_para_old.Gen_elf_old)
 {
 listBox_parameter_list_1.Add("*" + pdex_1.unified_ptr + "*" +
pdex_1.address + "*" + pdex_1.data);
 pde_para_list_old.Add(new extract() { unified_ptr =
pdex_1.unified_ptr, address = pdex_1.address, data = pdex_1.data ,section_name =
pdex_1.section_name, segment_no = pdex_1.segment_no });
 gen_elf_old_Dict.Add(pdex_1.unified_ptr, pdex_1.data);
 number_original_lines++;

 }
 //
 Total_lines_original = number_original_lines;
 label_original.Text = label_original.Text + " : " +
number_original_lines.ToString();
 //
 foreach (var pdex_2 in pde_para_new.Gen_elf_old)
 {
 listBox_parameter_list_2.Add("*" + pdex_2.unified_ptr + "*" +
pdex_2.address + "*" + pdex_2.data);
 pde_para_list_new.Add(new extract() { unified_ptr =
pdex_2.unified_ptr, address = pdex_2.address, data = pdex_2.data, section_name =
pdex_2.section_name, segment_no = pdex_2.segment_no });
 gen_elf_new_Dict.Add(pdex_2.unified_ptr, pdex_2.data);
 number_modified_lines++;
 }
 //
 // Total_lines_modified = number_modified_lines;
 label_modified.Text = label_modified.Text + " : " +
number_modified_lines.ToString();
 //
 }

 private void button1_Click(object sender, EventArgs e)
 {

 textBox_data.Text = gen_elf_old_Dict[textBox_key.Text];

 }

 private void simple_2_Click(object sender, EventArgs e)
 {
 textBox_data.Text = gen_elf_new_Dict[textBox_key.Text];

 }

154

 private void diff_Click(object sender, EventArgs e)

 { //
 FileStream file_modified_report =
File.Create(@"c:\CmdLine\Simple_Modified.txt");
 FileStream file_Addition_report =
File.Create(@"c:\CmdLine\Simple_Addition.txt");
 FileStream file_Removed_report =
File.Create(@"c:\CmdLine\Simple_Removed.txt");
 //
 StreamWriter write_modified = new StreamWriter(file_modified_report);
 StreamWriter write_Addition = new StreamWriter(file_Addition_report);
 StreamWriter write_Removed = new StreamWriter(file_Removed_report);

 //
 int number_modified_content = 0;
 int number_deleted_lines_code = 0;
 //
 int number_modified_content_inv = 0;
 int number_deleted_lines_code_inv = 0;
 //
 var list_parameter_listing_diff =
listBox_parameter_listing_diff.Items;
 var list_Not_Capture = listBox_Not_Capture.Items;
 //
 var list_parameter_listing_diff_inv =
listBox_parameter_listing_diff_inv.Items;
 var list_Not_Capture_inv = listBox_Not_Capture_inv.Items;

 //
 foreach (var cont in pde_para_list_old)
 {
 if (gen_elf_new_Dict.ContainsKey(cont.unified_ptr))
 {
 if (gen_elf_old_Dict[cont.unified_ptr] !=
gen_elf_new_Dict[cont.unified_ptr])
 {

 list_parameter_listing_diff.Add("*" + cont.unified_ptr +
"*" + cont.data); // modification detected
 Rpt_Modified.Add(new extract() { unified_ptr =
cont.unified_ptr, address = cont.address, data = cont.data, section_name =
cont.section_name,segment_no = cont.segment_no });
 number_modified_content++;
 }
 }
 else
 {
 list_Not_Capture.Add("*" + cont.unified_ptr + "*" +
cont.data); // Present in orignal but not in modified
 Rpt_Removed.Add(new extract() { unified_ptr =
cont.unified_ptr, address = cont.address, data = cont.data, section_name =
cont.section_name, segment_no = cont.segment_no });
 //
 // write_Removed.WriteLine(" | " + cont.unified_ptr + " | " +
cont.data);
 //
 number_deleted_lines_code++;
 }
 }

155

 //
 Total_lines_deleted = number_deleted_lines_code;
 Total_lines_modified = number_modified_content;
 //

 //
 label_modified_cont.Text = label_modified_cont.Text + " : " +
number_modified_content.ToString();
 label_deleted.Text = label_deleted.Text + " : " +
number_deleted_lines_code.ToString();
 //

 //
 foreach (var contx in pde_para_list_new)
 {
 if (gen_elf_old_Dict.ContainsKey(contx.unified_ptr))
 {
 if (gen_elf_old_Dict[contx.unified_ptr] !=
gen_elf_new_Dict[contx.unified_ptr])
 {
 list_parameter_listing_diff_inv.Add("*" +
contx.unified_ptr + "*" + contx.data); // modification detected
 //
 // write_modified.WriteLine(" | " + contx.unified_ptr + "
| " + contx.data);
 // SECTION DISPLAYED

 number_modified_content_inv++;
 }
 }
 else
 {
 list_Not_Capture_inv.Add("*" + contx.unified_ptr + "*" +
contx.data); // Present in modified but not in original
 // write_Addition.WriteLine(" | " + contx.unified_ptr + " | "
+ contx.data);
 Rpt_Addition.Add(new extract() { unified_ptr =
contx.unified_ptr, address = contx.address, data = contx.data, section_name =
contx.section_name, segment_no = contx.segment_no });
 number_deleted_lines_code_inv++;
 }
 }
 // REPORT ON CHANGES TO FILE
 var pde_para_old = new pde_parameters();
 var pde_para_new = new pde_parameters();

 pde_para_old.obtain_pde_para("temp-sensor-5");
 pde_para_new.obtain_pde_para("temp-sensor-10");

 write_modified.WriteLine(" MODIFIED WRT ORIGINAL ");
 write_modified.WriteLine(" ");
 //
 write_Removed.WriteLine(" REMOVED WRT ORIGINAL ");
 write_Removed.WriteLine(" ");
 //
 write_Addition.WriteLine(" ADDITION WRT MODIFIED ");
 write_Addition.WriteLine(" ");
 //
 for (int secn = 0; secn < pde_para_old.Sections_captured.Count()-1;
secn++)
 {

156

 write_Addition.WriteLine(" SECTION : " +
pde_para_old.Sections_captured.ElementAt(secn) + " COUNT : " +
Rpt_Addition.Where(x => x.section_name ==
pde_para_old.Sections_captured.ElementAt(secn)).Count());
 write_Addition.WriteLine(" ");
 //
 write_Removed.WriteLine(" SECTION : " +
pde_para_old.Sections_captured.ElementAt(secn) + " COUNT : " +
Rpt_Removed.Where(x => x.section_name ==
pde_para_old.Sections_captured.ElementAt(secn)).Count());
 write_Removed.WriteLine(" ");
 //
 write_modified.WriteLine(" SECTION : " +
pde_para_old.Sections_captured.ElementAt(secn) + " COUNT : " +
Rpt_Modified.Where(x => x.section_name ==
pde_para_old.Sections_captured.ElementAt(secn)).Count());
 write_modified.WriteLine(" ");

 foreach (var capturedx in Rpt_Modified.Where(x => x.section_name
== pde_para_old.Sections_captured.ElementAt(secn)))
 {
 //
 write_modified.WriteLine("*" + capturedx.unified_ptr + "*" +
capturedx.data);
 //
 }

 foreach (var capturedy in Rpt_Addition.Where(x => x.section_name
== pde_para_old.Sections_captured.ElementAt(secn)))
 {
 //
 write_Addition.WriteLine("*" + capturedy.unified_ptr + "*" +
capturedy.data);
 //
 }

 foreach (var capturedz in Rpt_Removed.Where(x => x.section_name
== pde_para_old.Sections_captured.ElementAt(secn)))
 {
 //
 write_Removed.WriteLine("*" + capturedz.unified_ptr + "*" +
capturedz.data);
 //
 }

 }

 //
 Total_lines_added = number_deleted_lines_code_inv;
 label_modified_cont_inv.Text = label_modified_cont_inv.Text + " : " +
number_modified_content_inv.ToString();
 label_deleted_inv.Text = label_deleted_inv.Text + " : " +
number_deleted_lines_code_inv.ToString();
 //

 //

157

 label_mofified_percent.Text = label_mofified_percent.Text +
(Total_lines_modified / Total_lines_original * 100).ToString();
 label_delete_percent.Text= label_delete_percent.Text +
(Total_lines_deleted / Total_lines_original * 100).ToString();
 label_added_percent.Text = label_added_percent.Text +
(Total_lines_added / Total_lines_original * 100).ToString();

 //

 write_modified.Close();
 file_modified_report.Close();
 //
 write_Addition.Close();
 file_Addition_report.Close();
 //
 write_Removed.Close();
 file_Removed_report.Close();
 //
 }

 private void button1_Click_1(object sender, EventArgs e)
 {
 var showform = new PDE.Form_Hex_viewer();
 showform.Show();

 }

 private void button2_Click(object sender, EventArgs e)
 {
 var showform = new PDE.Form1();
 showform.Show();
 }

 }
}

158

APPENDIX C

Fuzzilite C++ codes

FuzzyLite Dataset

Fuzzilite C++ codes

fl::Engine* engine = new fl::Engine;

engine->setName("Reconfig");

fl::InputVariable* inputVariable1 = new fl::InputVariable;

inputVariable1->setEnabled(true);

inputVariable1->setName("Delta_Orientation");

inputVariable1->setRange(0.000, 10240.000);

inputVariable1->addTerm(new fl::Triangle("Segment_Confined", 0.000, 2048.000,

4096.000));

inputVariable1->addTerm(new fl::Triangle("Segment_Adjoint", 2048.000, 4710.400,

8230.000));

inputVariable1->addTerm(new fl::Ramp("Segment_Disjoint", 6451.200, 10240.000));

engine->addInputVariable(inputVariable1);

fl::InputVariable* inputVariable2 = new fl::InputVariable;

inputVariable2->setEnabled(true);

inputVariable2->setName("Battery_State");

inputVariable2->setRange(0.000, 1850.000);

inputVariable2->addTerm(new fl::Ramp("Very_Ok", 1185.000, 1850.000));

inputVariable2->addTerm(new fl::Ramp("Critical", 370.000, 0.000));

inputVariable2->addTerm(new fl::Triangle("Fair", 148.000, 592.000, 943.500));

inputVariable2->addTerm(new fl::Triangle("Ok", 648.000, 1018.000, 1351.000));

engine->addInputVariable(inputVariable2);

fl::OutputVariable* outputVariable = new fl::OutputVariable;

outputVariable->setEnabled(true);

outputVariable->setName("Reconfiguration_Approach");

outputVariable->setRange(0.000, 10.000);

outputVariable->fuzzyOutput()->setAccumulation(new fl::AlgebraicSum);

outputVariable->setDefuzzifier(new fl::Centroid(200));

outputVariable->setDefaultValue(fl::nan);

outputVariable->setLockValidOutput(false);

outputVariable->setLockOutputRange(false);

outputVariable->addTerm(new fl::Triangle("Difference_Approach", 2.100, 2.500,

5.000));

outputVariable->addTerm(new fl::Triangle("Modular_Approach", 3.900, 5.500,

7.700));

outputVariable->addTerm(new fl::Triangle("Entire_Image_Approach", 6.300, 8.100,

10.000));

159

outputVariable->addTerm(new fl::Triangle("Suspend_Reconfiguration", 0.000, 0.000,

2.600));

engine->addOutputVariable(outputVariable);

fl::RuleBlock* ruleBlock = new fl::RuleBlock;

ruleBlock->setEnabled(true);

ruleBlock->setName("");

ruleBlock->setConjunction(new fl::Minimum);

ruleBlock->setDisjunction(new fl::AlgebraicSum);

ruleBlock->setActivation(new fl::Minimum);

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and

Battery_State is Very_Ok then Reconfiguration_Approach is Difference_Approach",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and

Battery_State is Critical then Reconfiguration_Approach is Suspend_Reconfiguration",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and

Battery_State is Fair then Reconfiguration_Approach is Difference_Approach",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Confined and

Battery_State is Ok then Reconfiguration_Approach is Difference_Approach", engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and

Battery_State is Very_Ok then Reconfiguration_Approach is Modular_Approach",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and

Battery_State is Critical then Reconfiguration_Approach is Suspend_Reconfiguration",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and

Battery_State is Fair then Reconfiguration_Approach is Modular_Approach", engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Adjoint and

Battery_State is Ok then Reconfiguration_Approach is Modular_Approach", engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and

Battery_State is Very_Ok then Reconfiguration_Approach is Entire_Image_Approach",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and

Battery_State is Critical then Reconfiguration_Approach is Suspend_Reconfiguration",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and

Battery_State is Fair then Reconfiguration_Approach is Suspend_Reconfiguration",

engine));

ruleBlock->addRule(fl::Rule::parse("if Delta_Orientation is Segment_Disjoint and

Battery_State is Ok then Reconfiguration_Approach is Entire_Image_Approach",

engine));

engine->addRuleBlock(ruleBlock);

FuzzyLite Dataset

160

Delta_Orientation Battery_State Reconfiguration_Approach

0.000 1776.000 nan

0.000 1794.500 nan

0.000 1813.000 nan

0.000 1831.500 nan

0.000 1850.000 nan

102.400 0.000 1.269

102.400 18.500 1.269

102.400 37.000 1.269

102.400 55.500 1.269

102.400 74.000 1.269

102.400 92.500 1.269

102.400 111.000 1.269

102.400 129.500 1.269

102.400 148.000 1.269

102.400 166.500 2.359

102.400 185.000 2.459

102.400 203.500 2.459

102.400 222.000 2.459

102.400 240.500 2.459

102.400 259.000 2.459

102.400 277.500 2.459

102.400 296.000 2.459

102.400 314.500 2.459

102.400 333.000 2.459

102.400 351.500 2.459

102.400 370.000 3.520

102.400 388.500 3.520

102.400 407.000 3.520

102.400 425.500 3.520

102.400 444.000 3.520

102.400 462.500 3.520

102.400 481.000 3.520

102.400 499.500 3.520

102.400 518.000 3.520

102.400 536.500 3.520

102.400 555.000 3.520

102.400 573.500 3.520

102.400 592.000 3.520

102.400 610.500 3.520

102.400 629.000 3.520

102.400 647.500 3.520

102.400 666.000 3.521

102.400 684.500 3.521

102.400 703.000 3.521

102.400 721.500 3.521

102.400 740.000 3.521

102.400 758.500 3.521

102.400 777.000 3.521

161

102.400 795.500 3.521

102.400 814.000 3.521

102.400 832.500 3.521

102.400 851.000 3.521

102.400 869.500 3.521

102.400 888.000 3.521

102.400 906.500 3.521

102.400 925.000 3.521

102.400 943.500 3.520

102.400 962.000 3.520

102.400 980.500 3.520

102.400 999.000 3.520

102.400 1017.500 3.520

102.400 1036.000 3.520

102.400 1054.500 3.520

102.400 1073.000 3.520

102.400 1091.500 3.520

102.400 1110.000 3.520

102.400 1128.500 3.520

102.400 1147.000 3.520

102.400 1165.500 3.520

102.400 1184.000 3.520

102.400 1202.500 3.525

102.400 1221.000 3.521

102.400 1239.500 3.521

102.400 1258.000 3.521

102.400 1276.500 3.521

102.400 1295.000 3.521

102.400 1313.500 3.521

102.400 1332.000 3.521

102.400 1350.500 3.521

102.400 1369.000 3.520

102.400 1387.500 3.520

102.400 1406.000 3.520

102.400 1424.500 3.520

102.400 1443.000 3.520

102.400 1461.500 3.520

102.400 1480.000 3.520

102.400 1498.500 3.520

102.400 1517.000 3.520

102.400 1535.500 3.520

102.400 1554.000 3.520

102.400 1572.500 3.520

102.400 1591.000 3.520

102.400 1609.500 3.520

102.400 1628.000 3.520

102.400 1646.500 3.520

102.400 1665.000 3.520

102.400 1683.500 3.520

102.400 1702.000 3.520

162

102.400 1720.500 3.520

102.400 1739.000 3.520

102.400 1757.500 3.520

102.400 1776.000 3.520

102.400 1794.500 3.520

102.400 1813.000 3.520

102.400 1831.500 3.520

102.400 1850.000 3.520

204.800 0.000 1.236

204.800 18.500 1.236

204.800 37.000 1.236

204.800 55.500 1.236

204.800 74.000 1.236

204.800 92.500 1.236

204.800 111.000 1.236

204.800 129.500 1.236

204.800 148.000 1.236

204.800 166.500 1.977

204.800 185.000 2.335

204.800 203.500 2.430

204.800 222.000 2.430

204.800 240.500 2.430

204.800 259.000 2.430

204.800 277.500 2.430

204.800 296.000 2.430

204.800 314.500 2.430

204.800 333.000 2.430

204.800 351.500 2.798

204.800 370.000 3.498

204.800 388.500 3.498

204.800 407.000 3.498

204.800 425.500 3.498

204.800 444.000 3.498

204.800 462.500 3.498

204.800 481.000 3.498

204.800 499.500 3.498

204.800 518.000 3.498

204.800 536.500 3.498

204.800 555.000 3.498

204.800 573.500 3.498

204.800 592.000 3.498

204.800 610.500 3.498

204.800 629.000 3.498

204.800 647.500 3.498

204.800 666.000 3.506

204.800 684.500 3.499

204.800 703.000 3.499

204.800 721.500 3.499

204.800 740.000 3.499

204.800 758.500 3.499

163

204.800 777.000 3.499

204.800 795.500 3.499

204.800 814.000 3.499

204.800 832.500 3.499

204.800 851.000 3.499

204.800 869.500 3.499

204.800 888.000 3.499

204.800 906.500 3.499

204.800 925.000 3.505

204.800 943.500 3.498

204.800 962.000 3.498

204.800 980.500 3.498

204.800 999.000 3.498

204.800 1017.500 3.498

204.800 1036.000 3.498

204.800 1054.500 3.498

204.800 1073.000 3.498

204.800 1091.500 3.498

204.800 1110.000 3.498

204.800 1128.500 3.498

204.800 1147.000 3.498

204.800 1165.500 3.498

204.800 1184.000 3.498

204.800 1202.500 3.506

204.800 1221.000 3.505

204.800 1239.500 3.502

204.800 1258.000 3.499

204.800 1276.500 3.499

204.800 1295.000 3.499

204.800 1313.500 3.499

204.800 1332.000 3.505

204.800 1350.500 3.499

204.800 1369.000 3.498

204.800 1387.500 3.498

204.800 1406.000 3.498

204.800 1424.500 3.498

204.800 1443.000 3.498

204.800 1461.500 3.498

204.800 1480.000 3.498

204.800 1498.500 3.498

204.800 1517.000 3.498

204.800 1535.500 3.498

204.800 1554.000 3.498

204.800 1572.500 3.498

204.800 1591.000 3.498

204.800 1609.500 3.498

204.800 1628.000 3.498

204.800 1646.500 3.498

204.800 1665.000 3.498

204.800 1683.500 3.498

164

204.800 1702.000 3.498

204.800 1720.500 3.498

204.800 1739.000 3.498

204.800 1757.500 3.498

204.800 1776.000 3.498

204.800 1794.500 3.498

204.800 1813.000 3.498

204.800 1831.500 3.498

204.800 1850.000 3.498

307.200 0.000 1.205

307.200 18.500 1.205

307.200 37.000 1.205

307.200 55.500 1.205

307.200 74.000 1.205

307.200 92.500 1.205

307.200 111.000 1.205

307.200 129.500 1.205

307.200 148.000 1.205

307.200 166.500 1.777

307.200 185.000 2.104

307.200 203.500 2.312

307.200 222.000 2.402

307.200 240.500 2.402

307.200 259.000 2.402

307.200 277.500 2.402

307.200 296.000 2.402

307.200 314.500 2.402

307.200 333.000 2.625

307.200 351.500 2.949

307.200 370.000 3.473

307.200 388.500 3.473

307.200 407.000 3.473

307.200 425.500 3.473

307.200 444.000 3.473

307.200 462.500 3.473

307.200 481.000 3.473

307.200 499.500 3.473

307.200 518.000 3.473

307.200 536.500 3.473

307.200 555.000 3.473

307.200 573.500 3.473

307.200 592.000 3.473

307.200 610.500 3.473

307.200 629.000 3.473

307.200 647.500 3.473

307.200 666.000 3.486

307.200 684.500 3.485

307.200 703.000 3.476

307.200 721.500 3.475

307.200 740.000 3.475

165

307.200 758.500 3.475

307.200 777.000 3.475

307.200 795.500 3.475

307.200 814.000 3.475

307.200 832.500 3.475

307.200 851.000 3.475

307.200 869.500 3.475

307.200 888.000 3.475

307.200 906.500 3.484

307.200 925.000 3.486

307.200 943.500 3.473

307.200 962.000 3.473

307.200 980.500 3.473

307.200 999.000 3.473

307.200 1017.500 3.473

307.200 1036.000 3.473

307.200 1054.500 3.473

307.200 1073.000 3.473

307.200 1091.500 3.473

307.200 1110.000 3.473

307.200 1128.500 3.473

307.200 1147.000 3.473

307.200 1165.500 3.473

307.200 1184.000 3.473

307.200 1202.500 3.483

307.200 1221.000 3.486

307.200 1239.500 3.486

307.200 1258.000 3.484

307.200 1276.500 3.478

307.200 1295.000 3.475

307.200 1313.500 3.483

307.200 1332.000 3.486

307.200 1350.500 3.474

307.200 1369.000 3.473

307.200 1387.500 3.473

307.200 1406.000 3.473

307.200 1424.500 3.473

307.200 1443.000 3.473

307.200 1461.500 3.473

307.200 1480.000 3.473

307.200 1498.500 3.473

307.200 1517.000 3.473

307.200 1535.500 3.473

307.200 1554.000 3.473

307.200 1572.500 3.473

307.200 1591.000 3.473

307.200 1609.500 3.473

307.200 1628.000 3.473

307.200 1646.500 3.473

307.200 1665.000 3.473

166

307.200 1683.500 3.473

307.200 1702.000 3.473

307.200 1720.500 3.473

307.200 1739.000 3.473

307.200 1757.500 3.473

307.200 1776.000 3.473

307.200 1794.500 3.473

307.200 1813.000 3.473

307.200 1831.500 3.473

307.200 1850.000 3.473

409.600 0.000 1.175

409.600 18.500 1.175

409.600 37.000 1.175

409.600 55.500 1.175

409.600 74.000 1.175

409.600 92.500 1.175

409.600 111.000 1.175

409.600 129.500 1.175

409.600 148.000 1.175

409.600 166.500 1.648

409.600 185.000 1.945

409.600 203.500 2.146

409.600 222.000 2.289

409.600 240.500 2.374

409.600 259.000 2.374

409.600 277.500 2.374

409.600 296.000 2.374

409.600 314.500 2.534

409.600 333.000 2.742

409.600 351.500 3.026

409.600 370.000 3.448

409.600 388.500 3.448

409.600 407.000 3.448

409.600 425.500 3.448

409.600 444.000 3.448

409.600 462.500 3.448

409.600 481.000 3.448

409.600 499.500 3.448

409.600 518.000 3.448

409.600 536.500 3.448

409.600 555.000 3.448

409.600 573.500 3.448

409.600 592.000 3.448

409.600 610.500 3.448

409.600 629.000 3.448

409.600 647.500 3.448

409.600 666.000 3.464

409.600 684.500 3.467

409.600 703.000 3.462

409.600 721.500 3.452

167

409.600 740.000 3.452

409.600 758.500 3.452

409.600 777.000 3.452

409.600 795.500 3.452

409.600 814.000 3.452

409.600 832.500 3.452

409.600 851.000 3.452

409.600 869.500 3.452

409.600 888.000 3.460

409.600 906.500 3.467

409.600 925.000 3.464

409.600 943.500 3.448

409.600 962.000 3.448

409.600 980.500 3.448

409.600 999.000 3.448

409.600 1017.500 3.448

409.600 1036.000 3.448

409.600 1054.500 3.448

409.600 1073.000 3.448

409.600 1091.500 3.448

409.600 1110.000 3.448

409.600 1128.500 3.448

409.600 1147.000 3.448

409.600 1165.500 3.448

409.600 1184.000 3.448

409.600 1202.500 3.459

409.600 1221.000 3.464

409.600 1239.500 3.467

409.600 1258.000 3.467

409.600 1276.500 3.463

409.600 1295.000 3.467

409.600 1313.500 3.468

409.600 1332.000 3.464

409.600 1350.500 3.449

409.600 1369.000 3.448

409.600 1387.500 3.448

409.600 1406.000 3.448

409.600 1424.500 3.448

409.600 1443.000 3.448

409.600 1461.500 3.448

409.600 1480.000 3.448

409.600 1498.500 3.448

409.600 1517.000 3.448

409.600 1535.500 3.448

409.600 1554.000 3.448

409.600 1572.500 3.448

409.600 1591.000 3.448

409.600 1609.500 3.448

409.600 1628.000 3.448

409.600 1646.500 3.448

168

409.600 1665.000 3.448

409.600 1683.500 3.448

409.600 1702.000 3.448

409.600 1720.500 3.448

409.600 1739.000 3.448

409.600 1757.500 3.448

409.600 1776.000 3.448

409.600 1794.500 3.448

409.600 1813.000 3.448

409.600 1831.500 3.448

409.600 1850.000 3.448

512.000 0.000 1.145

512.000 18.500 1.145

512.000 37.000 1.145

512.000 55.500 1.145

512.000 74.000 1.145

512.000 92.500 1.145

512.000 111.000 1.145

512.000 129.500 1.145

512.000 148.000 1.145

512.000 166.500 1.554

512.000 185.000 1.827

512.000 203.500 2.019

512.000 222.000 2.160

512.000 240.500 2.267

512.000 259.000 2.348

512.000 277.500 2.348

512.000 296.000 2.471

512.000 314.500 2.624

512.000 333.000 2.816

512.000 351.500 3.071

512.000 370.000 3.425

512.000 388.500 3.425

512.000 407.000 3.425

512.000 425.500 3.425

512.000 444.000 3.425

512.000 462.500 3.425

512.000 481.000 3.425

512.000 499.500 3.425

512.000 518.000 3.425

512.000 536.500 3.425

512.000 555.000 3.425

512.000 573.500 3.425

512.000 592.000 3.425

512.000 610.500 3.425

512.000 629.000 3.425

512.000 647.500 3.425

512.000 666.000 3.443

512.000 684.500 3.449

512.000 703.000 3.448

169

512.000 721.500 3.440

512.000 740.000 3.431

512.000 758.500 3.431

512.000 777.000 3.431

512.000 795.500 3.431

512.000 814.000 3.431

512.000 832.500 3.431

512.000 851.000 3.431

512.000 869.500 3.439

512.000 888.000 3.446

512.000 906.500 3.450

512.000 925.000 3.444

512.000 943.500 3.425

512.000 962.000 3.425

512.000 980.500 3.425

512.000 999.000 3.425

512.000 1017.500 3.425

512.000 1036.000 3.425

512.000 1054.500 3.425

512.000 1073.000 3.425

512.000 1091.500 3.425

512.000 1110.000 3.425

512.000 1128.500 3.425

512.000 1147.000 3.425

512.000 1165.500 3.425

512.000 1184.000 3.425

512.000 1202.500 3.437

512.000 1221.000 3.444

512.000 1239.500 3.448

512.000 1258.000 3.450

512.000 1276.500 3.457

512.000 1295.000 3.467

512.000 1313.500 3.468

512.000 1332.000 3.456

512.000 1350.500 3.427

512.000 1369.000 3.425

512.000 1387.500 3.425

512.000 1406.000 3.425

512.000 1424.500 3.425

512.000 1443.000 3.425

512.000 1461.500 3.425

512.000 1480.000 3.425

512.000 1498.500 3.425

512.000 1517.000 3.425

512.000 1535.500 3.425

512.000 1554.000 3.425

512.000 1572.500 3.425

512.000 1591.000 3.425

512.000 1609.500 3.425

512.000 1628.000 3.425

170

512.000 1646.500 3.425

512.000 1665.000 3.425

512.000 1683.500 3.425

512.000 1702.000 3.425

512.000 1720.500 3.425

512.000 1739.000 3.425

512.000 1757.500 3.425

512.000 1776.000 3.425

512.000 1794.500 3.425

512.000 1813.000 3.425

512.000 1831.500 3.425

512.000 1850.000 3.425

614.400 0.000 1.117

614.400 18.500 1.117

614.400 37.000 1.117

614.400 55.500 1.117

614.400 74.000 1.117

614.400 92.500 1.117

614.400 111.000 1.117

614.400 129.500 1.117

614.400 148.000 1.117

614.400 166.500 1.480

614.400 185.000 1.733

614.400 203.500 1.918

614.400 222.000 2.056

614.400 240.500 2.162

614.400 259.000 2.245

614.400 277.500 2.411

614.400 296.000 2.541

614.400 314.500 2.685

614.400 333.000 2.864

614.400 351.500 3.094

614.400 370.000 3.401

614.400 388.500 3.401

614.400 407.000 3.401

614.400 425.500 3.401

614.400 444.000 3.401

614.400 462.500 3.401

614.400 481.000 3.401

614.400 499.500 3.401

614.400 518.000 3.401

614.400 536.500 3.401

614.400 555.000 3.401

614.400 573.500 3.401

614.400 592.000 3.401

614.400 610.500 3.401

614.400 629.000 3.401

614.400 647.500 3.401

614.400 666.000 3.421

614.400 684.500 3.430

171

614.400 703.000 3.431

614.400 721.500 3.426

614.400 740.000 3.420

614.400 758.500 3.410

614.400 777.000 3.410

614.400 795.500 3.410

614.400 814.000 3.410

614.400 832.500 3.410

614.400 851.000 3.417

614.400 869.500 3.425

614.400 888.000 3.430

614.400 906.500 3.430

614.400 925.000 3.422

614.400 943.500 3.401

614.400 962.000 3.401

614.400 980.500 3.401

614.400 999.000 3.401

614.400 1017.500 3.401

614.400 1036.000 3.401

614.400 1054.500 3.401

614.400 1073.000 3.401

614.400 1091.500 3.401

614.400 1110.000 3.401

614.400 1128.500 3.401

614.400 1147.000 3.401

614.400 1165.500 3.401

614.400 1184.000 3.401

614.400 1202.500 3.414

614.400 1221.000 3.422

614.400 1239.500 3.428

614.400 1258.000 3.439

614.400 1276.500 3.457

614.400 1295.000 3.467

614.400 1313.500 3.468

614.400 1332.000 3.456

614.400 1350.500 3.427

614.400 1369.000 3.412

614.400 1387.500 3.401

614.400 1406.000 3.401

614.400 1424.500 3.401

614.400 1443.000 3.401

614.400 1461.500 3.401

614.400 1480.000 3.401

614.400 1498.500 3.401

614.400 1517.000 3.401

614.400 1535.500 3.401

614.400 1554.000 3.401

614.400 1572.500 3.401

614.400 1591.000 3.401

614.400 1609.500 3.401

172

614.400 1628.000 3.401

614.400 1646.500 3.401

614.400 1665.000 3.401

614.400 1683.500 3.401

614.400 1702.000 3.401

614.400 1720.500 3.401

614.400 1739.000 3.401

614.400 1757.500 3.401

614.400 1776.000 3.401

614.400 1794.500 3.401

614.400 1813.000 3.401

614.400 1831.500 3.401

614.400 1850.000 3.401

716.800 0.000 1.089

716.800 18.500 1.089

716.800 37.000 1.089

716.800 55.500 1.089

716.800 74.000 1.089

716.800 92.500 1.089

716.800 111.000 1.089

716.800 129.500 1.089

716.800 148.000 1.089

716.800 166.500 1.419

716.800 185.000 1.657

716.800 203.500 1.834

716.800 222.000 1.969

716.800 240.500 2.074

716.800 259.000 2.245

716.800 277.500 2.411

716.800 296.000 2.576

716.800 314.500 2.729

716.800 333.000 2.897

716.800 351.500 3.107

716.800 370.000 3.379

716.800 388.500 3.379

716.800 407.000 3.379

716.800 425.500 3.379

716.800 444.000 3.379

716.800 462.500 3.379

716.800 481.000 3.379

716.800 499.500 3.379

716.800 518.000 3.379

716.800 536.500 3.379

716.800 555.000 3.379

716.800 573.500 3.379

716.800 592.000 3.379

716.800 610.500 3.379

716.800 629.000 3.379

716.800 647.500 3.379

716.800 666.000 3.400

173

716.800 684.500 3.411

716.800 703.000 3.415

716.800 721.500 3.412

716.800 740.000 3.408

716.800 758.500 3.400

716.800 777.000 3.392

716.800 795.500 3.392

716.800 814.000 3.392

716.800 832.500 3.397

716.800 851.000 3.406

716.800 869.500 3.412

716.800 888.000 3.414

716.800 906.500 3.412

716.800 925.000 3.401

716.800 943.500 3.379

716.800 962.000 3.379

716.800 980.500 3.379

716.800 999.000 3.379

716.800 1017.500 3.379

716.800 1036.000 3.379

716.800 1054.500 3.379

716.800 1073.000 3.379

716.800 1091.500 3.379

716.800 1110.000 3.379

716.800 1128.500 3.379

716.800 1147.000 3.379

716.800 1165.500 3.379

716.800 1184.000 3.379

716.800 1202.500 3.392

716.800 1221.000 3.402

716.800 1239.500 3.414

716.800 1258.000 3.439

716.800 1276.500 3.457

716.800 1295.000 3.467

716.800 1313.500 3.468

716.800 1332.000 3.456

716.800 1350.500 3.427

716.800 1369.000 3.412

716.800 1387.500 3.399

716.800 1406.000 3.387

716.800 1424.500 3.379

716.800 1443.000 3.379

716.800 1461.500 3.379

716.800 1480.000 3.379

716.800 1498.500 3.379

716.800 1517.000 3.379

716.800 1535.500 3.379

716.800 1554.000 3.379

716.800 1572.500 3.379

716.800 1591.000 3.379

174

716.800 1609.500 3.379

716.800 1628.000 3.379

716.800 1646.500 3.379

716.800 1665.000 3.379

716.800 1683.500 3.379

716.800 1702.000 3.379

716.800 1720.500 3.379

716.800 1739.000 3.379

716.800 1757.500 3.379

716.800 1776.000 3.379

716.800 1794.500 3.379

716.800 1813.000 3.379

716.800 1831.500 3.379

716.800 1850.000 3.379

819.200 0.000 1.062

819.200 18.500 1.062

819.200 37.000 1.062

819.200 55.500 1.062

819.200 74.000 1.062

819.200 92.500 1.062

819.200 111.000 1.062

819.200 129.500 1.062

819.200 148.000 1.062

819.200 166.500 1.367

819.200 185.000 1.592

819.200 203.500 1.762

819.200 222.000 1.895

819.200 240.500 2.074

819.200 259.000 2.245

819.200 277.500 2.411

819.200 296.000 2.576

819.200 314.500 2.746

819.200 333.000 2.917

819.200 351.500 3.111

819.200 370.000 3.357

819.200 388.500 3.357

819.200 407.000 3.357

819.200 425.500 3.357

819.200 444.000 3.357

819.200 462.500 3.357

819.200 481.000 3.357

819.200 499.500 3.357

819.200 518.000 3.357

819.200 536.500 3.357

819.200 555.000 3.357

819.200 573.500 3.357

819.200 592.000 3.357

819.200 610.500 3.357

819.200 629.000 3.357

819.200 647.500 3.357

175

819.200 666.000 3.380

819.200 684.500 3.392

819.200 703.000 3.398

819.200 721.500 3.398

819.200 740.000 3.395

819.200 758.500 3.389

819.200 777.000 3.382

819.200 795.500 3.374

819.200 814.000 3.379

819.200 832.500 3.387

819.200 851.000 3.394

819.200 869.500 3.397

819.200 888.000 3.398

819.200 906.500 3.394

819.200 925.000 3.381

819.200 943.500 3.357

819.200 962.000 3.357

819.200 980.500 3.357

819.200 999.000 3.357

819.200 1017.500 3.357

819.200 1036.000 3.357

819.200 1054.500 3.357

819.200 1073.000 3.357

819.200 1091.500 3.357

819.200 1110.000 3.357

819.200 1128.500 3.357

819.200 1147.000 3.357

819.200 1165.500 3.357

819.200 1184.000 3.357

819.200 1202.500 3.371

819.200 1221.000 3.385

819.200 1239.500 3.414

819.200 1258.000 3.439

819.200 1276.500 3.457

819.200 1295.000 3.467

819.200 1313.500 3.468

819.200 1332.000 3.456

819.200 1350.500 3.427

819.200 1369.000 3.412

819.200 1387.500 3.399

819.200 1406.000 3.387

819.200 1424.500 3.375

819.200 1443.000 3.363

819.200 1461.500 3.357

819.200 1480.000 3.357

819.200 1498.500 3.357

819.200 1517.000 3.357

819.200 1535.500 3.357

819.200 1554.000 3.357

819.200 1572.500 3.357

176

819.200 1591.000 3.357

819.200 1609.500 3.357

819.200 1628.000 3.357

819.200 1646.500 3.357

819.200 1665.000 3.357

819.200 1683.500 3.357

819.200 1702.000 3.357

819.200 1720.500 3.357

819.200 1739.000 3.357

819.200 1757.500 3.357

819.200 1776.000 3.357

819.200 1794.500 3.357

819.200 1813.000 3.357

819.200 1831.500 3.357

819.200 1850.000 3.357

921.600 0.000 1.036

921.600 18.500 1.036

921.600 37.000 1.036

921.600 55.500 1.036

921.600 74.000 1.036

921.600 92.500 1.036

921.600 111.000 1.036

921.600 129.500 1.036

921.600 148.000 1.036

921.600 166.500 1.322

921.600 185.000 1.536

921.600 203.500 1.701

921.600 222.000 1.895

921.600 240.500 2.074

921.600 259.000 2.245

921.600 277.500 2.411

921.600 296.000 2.576

921.600 314.500 2.746

921.600 333.000 2.922

921.600 351.500 3.111

921.600 370.000 3.336

921.600 388.500 3.336

921.600 407.000 3.336

921.600 425.500 3.336

921.600 444.000 3.336

921.600 462.500 3.336

921.600 481.000 3.336

921.600 499.500 3.336

921.600 518.000 3.336

921.600 536.500 3.336

921.600 555.000 3.336

921.600 573.500 3.336

921.600 592.000 3.336

921.600 610.500 3.336

921.600 629.000 3.336

177

921.600 647.500 3.336

921.600 666.000 3.359

921.600 684.500 3.374

921.600 703.000 3.381

921.600 721.500 3.383

921.600 740.000 3.382

921.600 758.500 3.378

921.600 777.000 3.372

921.600 795.500 3.371

921.600 814.000 3.370

921.600 832.500 3.376

921.600 851.000 3.381

921.600 869.500 3.383

921.600 888.000 3.382

921.600 906.500 3.375

921.600 925.000 3.361

921.600 943.500 3.336

921.600 962.000 3.336

921.600 980.500 3.336

921.600 999.000 3.336

921.600 1017.500 3.336

921.600 1036.000 3.336

921.600 1054.500 3.336

921.600 1073.000 3.336

921.600 1091.500 3.336

921.600 1110.000 3.336

921.600 1128.500 3.336

921.600 1147.000 3.336

921.600 1165.500 3.336

921.600 1184.000 3.336

921.600 1202.500 3.352

921.600 1221.000 3.385

921.600 1239.500 3.414

921.600 1258.000 3.439

921.600 1276.500 3.457

921.600 1295.000 3.467

921.600 1313.500 3.468

921.600 1332.000 3.456

921.600 1350.500 3.427

921.600 1369.000 3.412

921.600 1387.500 3.399

921.600 1406.000 3.387

921.600 1424.500 3.375

921.600 1443.000 3.363

921.600 1461.500 3.350

921.600 1480.000 3.339

921.600 1498.500 3.336

921.600 1517.000 3.336

921.600 1535.500 3.336

921.600 1554.000 3.336

178

921.600 1572.500 3.336

921.600 1591.000 3.336

921.600 1609.500 3.336

921.600 1628.000 3.336

921.600 1646.500 3.336

921.600 1665.000 3.336

921.600 1683.500 3.336

921.600 1702.000 3.336

921.600 1720.500 3.336

921.600 1739.000 3.336

921.600 1757.500 3.336

921.600 1776.000 3.336

921.600 1794.500 3.336

921.600 1813.000 3.336

921.600 1831.500 3.336

921.600 1850.000 3.336

1024.000 0.000 1.011

1024.000 18.500 1.011

1024.000 37.000 1.011

1024.000 55.500 1.011

1024.000 74.000 1.011

1024.000 92.500 1.011

1024.000 111.000 1.011

1024.000 129.500 1.011

1024.000 148.000 1.011

1024.000 166.500 1.282

1024.000 185.000 1.488

1024.000 203.500 1.701

1024.000 222.000 1.895

1024.000 240.500 2.074

1024.000 259.000 2.245

1024.000 277.500 2.411

1024.000 296.000 2.576

1024.000 314.500 2.746

1024.000 333.000 2.922

1024.000 351.500 3.111

1024.000 370.000 3.317

1024.000 388.500 3.317

1024.000 407.000 3.317

1024.000 425.500 3.317

1024.000 444.000 3.317

1024.000 462.500 3.317

1024.000 481.000 3.317

1024.000 499.500 3.317

1024.000 518.000 3.317

1024.000 536.500 3.317

1024.000 555.000 3.317

1024.000 573.500 3.317

1024.000 592.000 3.317

1024.000 610.500 3.317

179

1024.000 629.000 3.317

1024.000 647.500 3.317

1024.000 666.000 3.341

1024.000 684.500 3.357

1024.000 703.000 3.365

1024.000 721.500 3.369

1024.000 740.000 3.369

1024.000 758.500 3.366

1024.000 777.000 3.368

1024.000 795.500 3.371

1024.000 814.000 3.370

1024.000 832.500 3.365

1024.000 851.000 3.369

1024.000 869.500 3.369

1024.000 888.000 3.366

1024.000 906.500 3.358

1024.000 925.000 3.342

1024.000 943.500 3.317

1024.000 962.000 3.317

1024.000 980.500 3.317

1024.000 999.000 3.317

1024.000 1017.500 3.317

1024.000 1036.000 3.317

1024.000 1054.500 3.317

1024.000 1073.000 3.317

1024.000 1091.500 3.317

1024.000 1110.000 3.317

1024.000 1128.500 3.317

1024.000 1147.000 3.317

1024.000 1165.500 3.317

1024.000 1184.000 3.317

1024.000 1202.500 3.352

1024.000 1221.000 3.385

1024.000 1239.500 3.414

1024.000 1258.000 3.439

1024.000 1276.500 3.457

1024.000 1295.000 3.467

1024.000 1313.500 3.468

1024.000 1332.000 3.456

1024.000 1350.500 3.427

1024.000 1369.000 3.412

1024.000 1387.500 3.399

1024.000 1406.000 3.387

1024.000 1424.500 3.375

1024.000 1443.000 3.363

1024.000 1461.500 3.350

1024.000 1480.000 3.339

1024.000 1498.500 3.328

1024.000 1517.000 3.317

1024.000 1535.500 3.317

180

1024.000 1554.000 3.317

1024.000 1572.500 3.317

1024.000 1591.000 3.317

1024.000 1609.500 3.317

1024.000 1628.000 3.317

1024.000 1646.500 3.317

1024.000 1665.000 3.317

1024.000 1683.500 3.317

1024.000 1702.000 3.317

1024.000 1720.500 3.317

1024.000 1739.000 3.317

1024.000 1757.500 3.317

1024.000 1776.000 3.317

1024.000 1794.500 3.317

1024.000 1813.000 3.317

1024.000 1831.500 3.317

1024.000 1850.000 3.317

181

APPENDIX D

SAMPLE APPLICATION SOURCE CODE

remotepowerswitch.c

project-conf.h

leds.h

leds.c

Source code: ‘remotepowerswitch.c’

/*
 * Remote Power Switch Example for the Seed-Eye Board
 * Copyright (c) 2013, Giovanni Pellerano
 *
/

/**
 * \file remotepowerswitch.c
 * \brief Remote Power Switch Example for the Seed-Eye Board
 * \author Giovanni Pellerano <giovanni.pellerano@evilaliv3.org>
 * \date 2013-01-24
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "contiki.h"
#include "contiki-net.h"

#include "erbium.h"

#include "dev/leds.h"

#include <p32xxxx.h>

RESOURCE(toggle, METHOD_GET | METHOD_PUT | METHOD_POST, "actuators/powerswitch",
"title=\"Red LED\";rt=\"Control\"");
void
toggle_handler(void* request, void* response, uint8_t *buffer, uint16_t
preferred_size, int32_t *offset)
{
 leds_toggle(LEDS_YELLOW);

 PORTEbits.RE0 = !PORTEbits.RE0;
}

182

PROCESS(remote_power_switch, "Remote Power Switch");

AUTOSTART_PROCESSES(&remote_power_switch);

PROCESS_THREAD(remote_power_switch, ev, data)
{
 PROCESS_BEGIN();

 rest_init_engine();

 TRISEbits.TRISE0 = 0;
 PORTEbits.RE0 = 0;

 rest_activate_resource(&resource_toggle);

 while(1) {
 PROCESS_WAIT_EVENT();
 }

 PROCESS_END();
}

/** @} */

Source code: project-conf.h

/*
 * Copyright (c) 2010, Swedish Institute of Computer Science.
 * All rights reserved.
 *
*
 *
 */

#ifndef __PROJECT_RPL_WEB_CONF_H__
#define __PROJECT_RPL_WEB_CONF_H__

#define SICSLOWPAN_CONF_FRAG 1

/* Increase rpl-border-router IP-buffer when using 128. */
#ifndef REST_MAX_CHUNK_SIZE
#define REST_MAX_CHUNK_SIZE 64
#endif

/* Multiplies with chunk size, be aware of memory constraints. */
#ifndef COAP_MAX_OPEN_TRANSACTIONS
#define COAP_MAX_OPEN_TRANSACTIONS 2
#endif

/* Must be <= open transaction number. */
#ifndef COAP_MAX_OBSERVERS
#define COAP_MAX_OBSERVERS COAP_MAX_OPEN_TRANSACTIONS-1
#endif

#endif /* __PROJECT_RPL_WEB_CONF_H__ */
/*
 * Copyright (c) 2005, Swedish Institute of Computer Science
 * All rights reserved.
 *

183

*
 */

Source code: ‘dev/leds.c’

#include "dev/leds.h"
#include "sys/clock.h"
#include "sys/energest.h"

static unsigned char leds, invert;
/*---*/
static void
show_leds(unsigned char changed)
{
 if(changed & LEDS_GREEN) {
 /* Green did change */
 if((invert ^ leds) & LEDS_GREEN) {
 ENERGEST_ON(ENERGEST_TYPE_LED_GREEN);
 } else {
 ENERGEST_OFF(ENERGEST_TYPE_LED_GREEN);
 }
 }
 if(changed & LEDS_YELLOW) {
 if((invert ^ leds) & LEDS_YELLOW) {
 ENERGEST_ON(ENERGEST_TYPE_LED_YELLOW);
 } else {
 ENERGEST_OFF(ENERGEST_TYPE_LED_YELLOW);
 }
 }
 if(changed & LEDS_RED) {
 if((invert ^ leds) & LEDS_RED) {
 ENERGEST_ON(ENERGEST_TYPE_LED_RED);
 } else {
 ENERGEST_OFF(ENERGEST_TYPE_LED_RED);
 }
 }
 leds_arch_set(leds ^ invert);
}
/*---*/
void
leds_init(void)
{
 leds_arch_init();
 leds = invert = 0;
}
/*---*/
void
leds_blink(void)
{
 /* Blink all leds. */
 unsigned char inv;
 inv = ~(leds ^ invert);
 leds_invert(inv);

 clock_delay(400);

 leds_invert(inv);
}
/*---*/

184

unsigned char
leds_get(void) {
 return leds_arch_get();
}
/*---*/
void
leds_on(unsigned char ledv)
{
 unsigned char changed;
 changed = (~leds) & ledv;
 leds |= ledv;
 show_leds(changed);
}
/*---*/
void
leds_off(unsigned char ledv)
{
 unsigned char changed;
 changed = leds & ledv;
 leds &= ~ledv;
 show_leds(changed);
}
/*---*/
void
leds_toggle(unsigned char ledv)
{
 leds_invert(ledv);
}
/*---*/
/* invert the invert register using the leds parameter */
void
leds_invert(unsigned char ledv) {
 invert = invert ^ ledv;
 show_leds(ledv);
}

/*---*/

Source code: ‘dev/leds.h’

#ifndef __LEDS_H__
#define __LEDS_H__

/* Allow platform to override LED numbering */
#include "contiki-conf.h"

void leds_init(void);

/**
 * Blink all LEDs.
 */
void leds_blink(void);

#ifndef LEDS_GREEN
#define LEDS_GREEN 1
#endif /* LEDS_GREEN */
#ifndef LEDS_YELLOW

185

#define LEDS_YELLOW 2

#endif /* LEDS_YELLOW */
#ifndef LEDS_RED
#define LEDS_RED 4
#endif /* LEDS_RED */
#ifndef LEDS_BLUE
#define LEDS_BLUE LEDS_YELLOW
#endif /* LEDS_BLUE */

#ifdef LEDS_CONF_ALL
#define LEDS_ALL LEDS_CONF_ALL
#else /* LEDS_CONF_ALL */
#define LEDS_ALL 7
#endif /* LEDS_CONF_ALL */

/**
 * Returns the current status of all leds (respects invert)
 */
unsigned char leds_get(void);
void leds_on(unsigned char leds);
void leds_off(unsigned char leds);
void leds_toggle(unsigned char leds);
void leds_invert(unsigned char leds);

/**
 * Leds implementation
 */
void leds_arch_init(void);
unsigned char leds_arch_get(void);
void leds_arch_set(unsigned char leds);

#endif /* __LEDS_H__ */
 ---*/

