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INTRODUCTION

Data that is needed for vital mining evaluations are 

becoming more and more voluminous, and as a result, 

the data and computational tasks on them are 

outsourced and confided on untrusted third party service 

providers' servers in data centres and the cloud. As more 

business parties and individuals entrust their data and 

outsource computational tasks to facilities (servers) 

owned by third party, concerns for privacy of such 

information is being raised. These concerns are genuine 

since the data residing on the server of the third party can 

be perturbed and also computations on such data leaks 

the sensitive information as a result of data mining. While 

endless examples of areas for such privacy concerns 

exist, one area of utmost privacy concerns that deserve 

special attention is Medical Computing (Kocabas, 

Soyata & Aktas, 2016). In the medical sector, 

confidentiality of sensitive private records is mandatory as 

stated in the rules and regulations introduced by Health 

Insurance Portability and Accountability Act in the USA 

(HIPAA, 2014). According to HIPAA regulations, private 

medical information should be treated with utmost care 

and privacy. Traditionally, privacy of such information is 

only guaranteed if prior to being uploaded to a third party 

(cloud service) server, the data is encrypted by the owner 

(Bos, Lauter, & Naehrig, 2014). Through this process, only 

the rightful owner of the data should have connection to 

the data by the use of their secret key. Nevertheless 

encryption restricts the desire to delegate computations 

on the stored information because the data centre does 

not have the key to decrypt them since the secret key is 

needed to decrypt the data before any computation 
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the moment, practical way of achieving a FHE 

(implementation) is by using homomorphic encryption 

library. Practical open source FHE libraries in use are 

Homomorphic Encryption Library (Helib) (Halevi & Shoup, 

2015), and Simple Encrypted Arithmetic library (SEAL) 

(Chen, Laine, & Player, 2013). SEAL FHE library was 

developed with no any external library dependency and 

as a result provides researchers that are non-

cryptographers with a simple tool for FHE research.

In terms of performance, FHE remains slow for running 

arbitrarily functions. This is because of the cryptographic 

bottleneck, model is being computed and has its robust 

security specification.

This paper addresses the following problems:

·The challenging problem of building classification 

algorithms that can be evaluated homomorphically 

on encrypted medical dataset.

·How to reduce the cryptographic overheads (the 

time taken to perform operations for each gate of the 

circuits and maintenance issues) involved in FHE 

computation over encrypted medical data.

1. Background and Preliminaries

1.1 Privacy Preserving Classification

Supervised Learning (SL) is a machine learning or data 

mining task of determining a function from labeled 

training data. Some scholars and authors refer to SL as 

classification in the literatures reviewed. Classification 

classifies data into predefined categorical class labels. 

The users are most interested in the features “Class” when 

carrying out classification (Shouval et al., 2014; Bishop, 

2006).

The problem of training and testing (classification) of 

classifiers that do not leak any information about the 

sensitive data involved in the classification is referred to as 

privacy preserving classification (Kumar, 2015).

1.2 Polynomial Binary Decision Tree

A polynomial decision tree classifier model can be 

evaluated on an encrypted data. A decision tree model 

enables the server to span a tree by making use of the  

ward's input x while not having knowledge of input x , and 

can be carried out on the data (Bos et al., 2014). These 

standard encryption schemes methods restrict data utility 

(malleability), but recent state of the art and 

cryptography advancement is geared towards carrying 

out operations on ciphertext without having to first decrypt 

it.

The problem of computation over encrypted data, also 

called in the literature as secure computation, asks the 

question-how can a function be computed over hidden 

inputs? In other words, how can the information that is not seen 

be processed, while still obtaining an intelligible outcome? 

Craig Gentry's seminal PhD work pioneered feasible proposal 

to this longstanding open problem, which is the realization of 

an encryption scheme that is fully homomorphic (Gentry, 

2009). Fully Homomorphic Encryption (FHE) is an encryption 

type (public key), which allows for arbitrary operations on 

ciphertext. An evaluation algorithm can evaluate functions 

over ciphertexts that are homomorphicaly encrypted and 

the output resulting from the evaluation is contained in the 

ciphertext space. FHE implements solid security guarantee 

called semantic security. The semantic security prevents any 

intruder holding only the ciphertext and public key to grasp 

any information relating to the plaintext, apart from it length. 

Not only was an FHE successfully constructed by Gentry's 

originated scheme, but also provides a general framework to 

obtain an FHE scheme. Consequently, researchers used the 

blueprint of Gentry's work in attempted designs of secure and 

practical FHE schemes (Acar, Aksu, Uluagac, & Conti, 2017).

FHE schemes following the Gentry's scheme were more 

practical and robust having improved parameters and 

security realizations. Fully Homomorphic Encryption is only 

possible with certain encryption methodology and 

hardness assumptions. Gentry's scheme was ideal 

lattices based and other schemes that follows the 

schemes were those based on integers, Learning with 
thErrors (LWE), Ring Learning with Errors (RLWE), and the N  

Degree Truncated Polynomial Ring Units (NTRU) (Acar et 

al., 2017). Ring-Learning with Errors (RLWE) adapted from 

Learning with Error (LWE) problem is well suited to the FHE 

scheme (Gentry, 2009; Bonnoron & Fontaine, 2016). Not 

only is RLWE suitable, but it is also resistant against a 

quantum adversary (Albrecht, Player, & Scott, 2015). At 
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implement a polynomial decision tree classifier 

homomorphically (Chen et al., 2013; Khedr et al., 2016).

1.3 Ring Learning with Errors (RLWE)

The RLWE concept and methodology is employed in 

ciphertext building. The Ring Learning with Errors (RLWE) 

computational problem serves as a foundation of 

cryptographic algorithm designed to protect against 

cryptanalysis by quantum computers and also to provide 

the basis for homomorphic encryption.

In Fully Homomorphic Encryption (FHE) schemes for data 

Privacy-Preserving, the plaintexts and ciphertext are either 

in ideal lattices, NTRU-like, integer or polynomial ring 

elements (Acar et al., 2017). The scheme over polynomial 

ring is very efficient than the integer-ring based (Brakerski, 

2012).

Ring learning with errors is an algebraic variant of Learning 

with Errors (Regev, 2005). Its operational application is 

based on the generation of elements of polynomials rings 

instead of vectors.

1.3.1 Ring-LWE Cryptosystem

The parameters of the R-LWE problem serves as a useful 

tool in the realization of secure public-key scheme that is 

based on the reduction to the decisional Ring-LWE. The 

protocol has been introduced by Lyubashevsky, Peikert, 

and Regev (2010). Its parameters were proposed by 

(Lindner & Peikert, 2011).

Like the majority of public-key crypto systems, Ring - LWE 

can be established using tuple (Key (l), Enc (m), Gen pk

Dec (c)), where l denotes the security parameter used in sk

generating key p  for the clear text, while the secret key is sk k 

for decryption of the ciphertext respectively.

The scheme (Key (l), Enc (m), Dec (c)) is defined as Gen pk sk

follows: 

l·(Key (1 ) : Select r , r  ¬ D . This means, samples r  Gen 1 2 s 1

and r   from the Gaussian distribution uniformly.2

·Fixed pubic key as p=r -a.r ÎR. r  is just the noise that 1 2 1

would not be needed later after this generation. 

n·Enc (a, p, mÎ{0,1} ) : Select the noise terms e , e , e  pk 1 2 3

¬D . Set m=encode(m)ÎR , and thus compute the s q

2ciphertext [c  = a.e +e , c =p.e +e +m]ÎR  1 1 2 2 1 3 q

the client not having knowledge of the tree and the edge 

at individual node (Bost, Popa, Tu, & Goldwasser, 2015; 

Khedr, Gulak, & Vaikuntanathan, 2016).

A polynomial function P can be used to represent a 

decision tree and the output from P being the result of the 

classification (the class x belong). The server and the 

client privately compute inputs to this polynomial based 

on x and the thresholds w and finally the polynomial P is i

privately evaluated by the server. A boolean variable 

identify each node of a tree which value is 1, on input x , 

the right branch of the tree is traversed, and 0 contrarily. 

Assuming that b  represents the boolean value at the 1

binary tree root, then equations (1) holds:

x  £ w  then b  = 1, otherwise it is 0 (1)1 1 1

A polynomial function P can be built on the input of the 

boolean variable and the value at each class node to 

output the target class for x. Consider the tree in Figure 1.  

P is computed as:

P(b ,b ,b , b ,c ,...,c ) = b  (b .(b .c  + (1- b ).c ) 1 2 3 4 1 5 1 3 4 5 4 4

          + (1- b  ).c ) + (1- b )(b  .c + (1- b ).c ) (2)3 3 1 2 2 2 1

1.2.1 Procedure for Constructing the Polynomial Binary 

Tree

The recursive procedure F, for constructing a polynomial, 

P, given a binary tree T is:

·If T consists only of a leaf node with category index   

C, F (T ) = ci i

·If T is empty, return F (T ) = 0 

Otherwise, there exists an internal node, then F(T) = b. F (T ) 1

+ (1- b).F (T )0

SEAL and HElib libraries can be used to privately 
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1.4.2 Definition 2: (Fully Homomorphic Encryption) 

If E(m) is the Encrypt algorithm applied and m is a 

message; a scheme is fully Homomorphic iff:

E(m +m ) =  E(m )+E(m );1 2 1 2

E(m .m ) = E(m ).E(m )1 2 1 2

For any m  and m  block of the messages to be 1 2

encrypted, the same applies to any number of 

consecutive operations performed on a single block.

1.5 FHE Schemes 

Homomorphic Encryption Schemes provide a systematic 

plan or arrangement to compute over ciphertext. The 

Ring Learning with Errors (RLWE) scheme based on 

polynomial rings greatly improve the efficiency of the FHE 

construction (Brakerski, Gentry, & Vaikuntanathan, 2012; 

Dijk, Gentry, Halevi, & Vaikuntanathan, 2010; Fan & 

Vercauteren, 2012; Brakerski & Vaikuntanathan, 2011) 

and therefore attention have focused more on the RLWE 

schemes. A brief discussion on the Fan and Vercauteren 

(FV) scheme is hereby presented. 

1.5.1 The FV FHE Scheme 

Fan and Vercauteran (2012) ported Brakerski's scale- 

invariant FHE scheme in Brakerski and Vaikuntanathan, 

2012 to the RLWE setting. Using the message encoding as 

demonstrated in an RLWE encryption scheme presented 

in an extended version of Lyubashevsky et al. (2010) 

makes it possible to avoid the modulus switching 

technique for obtaining a levelled homomorphic 

scheme. 

1.5.2 Algorithm of the FV Scheme 

If l the parameter for the security. Let w be a base, and

                            denote the number of decomposition 

into base w of an integer in base q.

a¬s denote that a is sampled uniformly from the finite set S. 

The FV scheme contains the algorithms: Secret- KeyGen, 

Public-KeyGen, Evaluation-Key-Gen, and Encrypt, Decrypt. 

·Evaluation-KeyGen (sk, w): for i Î{0,...,l}, 

sample a¬R , e ¬c i q i

i 2 iOutput evk = ([-(as+e)+ws ] , a ).i i q

·Encrypt (pk, m): For mÎR , Let pk=(P0, P1). t

After the encryption pattern, it is necessary that the 

algorithm for the RLWE ciphertext generation be 

established. The algorithm is central to the Ring 

multiplication decryption and runs sequentially as follows: 

Input: Ciphertext (c , c ) and the private key s0 1

Step 1: m¬c1

Step 2: for i=0, 1, 2, 3, …, n-1 do

Step3: if S  = 0, theni

Step 4: for j=0, 1, 2, 3, …, n-i-1 do

Step 5: m[i+j]¬m[i+j]+u[j]

Step 6: end if

Step 7: for  j=n-i,...,n-1 do

Step 8: m[i+j]¬m[i+j]-u[j]

Step 9: end_ for

Step 10: end_ if

Step 11: end_ for

nDec(c=[c ,c ]r : Output decode (c .r +c )Î{0,1} )1 2 2 1 2 2

The decryption algorithm can be abbreviated in a 

nutshell as  m' = c *s+c0 1

1.4 Homomorphic Encryption

Homomorphic encryption allows the completion of 

computation of functions on an encrypted data 

(ciphertext) and gets the same result (in an encrypted 

form) that is obtained in - line with the same series of 

operations that is carried out on the original data. Rivest, 

Addleman, and Dertouzos first specified the problem of 

carrying out operations on ciphertext in 1978. They 

suggested the building of private homomorphisms as a 

feasible solution to the problem.

1.4.1 Definition 1: (Homomorphic Encryption Scheme)

A scheme E= (key_Gen, Encrypt, Deccrypt) is termed 

homomorphic if and only if for all k and all ( P , S ) output from k k

key _ Gen (K ) , the groups M, C can be defined such that:

·{M = Plaintext space, the set of all cipher texts, result 

of Encrypt  }Î Cpk

·m ,m ÎM, and c c ÎC with m Dec (c )m =and 1 2 1 2 1 sk 1 1

m Dec(c )), it holds that: Dec (c *c )=m *m Dec2 2 sk 1 2 1 2

Note: Operation * are performed on C and M
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evaluating decision trees and random forests. Their work 

focuses on two-party setting standards where the server 

holds a model (either a tree or a forest), and the client 

holds an input (a feature vector). In conclusion of the 

protocol, the client learnt only the model's output on its 

input and a few generic parameters concerning the 

model while the server learnt nothing. Dowlin et al., (2016) 

presented CryptoNets, a way of converting learned 

neural networks to a method which can be applied to 

ciphertext. They authenticated CryptoNets on the 

Modified National Institute of Standards and Technology 

(MNIST) optical character recognition tasks. CryptoNets 

achieve 99% accuracy and can make more than 51000 

predictions per hour on a single PC. 

(b) Related works that Compute Private model in an FHE 

implementation schemes to homomorphically classify or 

carry out prediction over the encrypted data are 

(G raepe l ,  Lau te r,  &  Naeh r ig ,  2013 ;  Ames,  

Venkitasubramaniam, Page, Kocabas, & Soyata, 2015; 

Bos et al., 2014; Kocabas, 2016; Carpov, Sirdey, 

Costantino, & Martinelli, 2017):

Graepel, Lauter, and Naehrig (2013) have used a levelled 

FHE designed novel machine learning algorithm, where 

the algorithm's classifications are viewed as functions of 

the data inputted, and expressed as polynomials of finite 

degree. 

Bos et al. (2014) examined the application for 

homomorphic encryption for ensuring privacy of 

sensitive medical data. They presented ways of carrying 

out  class i f icat ion  tasks  on  cipher tex t  us ing  

homomorphic encryption. To prove their concept, they 

presented a practical working prediction system in the 

cloud (hosted on Microsoft's Windows Azure), which 

takes input of private ciphertext, and returns the chance 

o f  h a v i n g  c a r d i o v a s c u l a r  d i s e a s e .  A m e s,  

Venkitasubramaniam, Page, Kocabas and Soyata 

(2015) proposed a new approach to applying FHE to the 

data that is stored in the cloud. Instead of using the 

existing circuit-based programming models, they 

proposed a solution based on Branching Programs (BP). 

BP restricts the type of data elements that FHE can be 

applied to, but it achieves dramatic speed-up when 

       Sample u¬R  and e , e  ¬c.  2 1 2

       Compute ct=([Dm+P0u+e ] [P1u+e ] )1 q 2 q

·Secret -KeyGen(l):Sample s¬R  and output sk=s.2

·Public-KeyGen(sk): Set s=sk, sample a¬R , and e¬c. q

Output pk = ([-(as+e] , a)  q

·Decrypt (sk, ct): Set s= sk, c =ct[0], and c =ct[1]. 0 1

Output

2. Related Works 

The objective of privacy preserving classification as 

presented in this work, is to build accurate classifier from 

sensitive data without revealing private sensitive 

information in the data that is being mined and to use 

the classifier constructed (add-on in homomorphic 

library) to homomorphically classify given encrypted 

data (feature vectors) without decrypting it using 

machine learned parameters. The related works are 

hereby presented in two folds: (a) Related works that 

build privacy-preserving classifier models or protocols 

and (b) related works that compute private model in an 

FHE implementation scheme to homomorphically 

classify encrypted data. 

(a) Related works that build privacy-preserving classifier 

models or protocols are (Wu, Feng, Naehrig, & Lauter, 

2016; Bost et al., 2015; Dowlin et al., 2016; Barani et al., 

2009). 

Barani et al., (2011) have, presented secured protocols 

for evaluating Private Linear Branching Programs (LBP), an 

important generalization of Branching Program (BP). They 

apply the protocols to the privacy-preserving 

classification of Medical Electrocardiogram (ECG) 

signals. They worked with encrypted ECG data and fixed 

point ar i thmetic whi le maintaining the same 

performance of a floating point implementation in the 

plain domain. Bost et at., (2015) have constructed 

privacy-preserving protocols for the classif iers: 

hyperplane decision, Naïve Bayes, decision trees, and 

general classifier aggregating them with AdaBoost. They 

implemented various protocols for these common 

classifiers. 

Wu et al. (2016) developed two rules for privately 

RESEARCH PAPERS

40 l li-manager’s Journal on Digital Signal Processing, Vol. 6  No. 2  April - June 2018



If x and x  are the minimum and maximum value, ij(min) ij(max)

respectively of fÎD, the normalized form of D, using the i

Min-Max normalization or scaling, is as given by equation 

(3). 

(3)

1The boolean/ binarized representation of D is given as D , j

2 3 mD , D ....D , therefore j j j

(4)

where j = 1,....m

If xÌD, then xÎf from equation (3)ij ij i 

(5)

From equation (4) if xÌDij

 xÎ[0,1]  fÎD (6)ij  , i  

From equation (5) we have the matrix: 

(7)

where i=1,2,...,n; j=1,2,.....m

3.1.2 The Architectue Diagram 

The system architecture diagram is divided into two major 

used on ECG data as compared to traditional circuit-

based methods. Kocabaş (2016) presented a novel 

privacy-preserving medical cloud computing system 

with an emphasis on "secure computation." The 

proposed system helps in monitoring patients remotely 

outside the healthcare organizations (HCO) using ECG 

signals. They used the technique of FHE, in order to 

eliminate privacy concerns associated with the public 

cloud providers, for the computations on encrypted 

Personal Health Information (PHI) data. Carpov, Sirdey, 

Costantino, and Martinelli (2017), implemented a 

Practical Privacy-Preserving Medical diagnosis using 

Homomorphic Encryption. They developed a mobile 

application that offload users' data into the Cloud, and 

a Fully Homomorphic Encryption algorithm that 

processes data without leaking the information to the 

Cloud provider. They used Armadillo compilation chain 

(an easy to use compiler that builds a privacy-

preserving binary for an application written in a high-

level language using homomorphic encryption as 

back-end). Related works that classify medical data 

using private classifiers that are implemented using 

homomorphic encryption needs improvement in terms 

of efficiency of the functions being computed and the 

cryptographic overheads (Acar et al., 2017; AdaPopa, 

2014).

The contribution of this paper is in using machine learning 

algorithm to classify medical data by building Polynomial 

Decision Tree (PDT) classifiers that uses a simple binary 

tree polynomial algorithm. The PDT algorithm plus highly 

effective data pre-processing with RLWE FHE scheme was 

used in classifying encrypted medical datasets with 

reduced cryptographic overhead.

3. Methodology 

3.1 Data Modeling and Algorithms 

This subsection explains the data modelling and 

algorithms involved in each of the phases of the model 

architecture diagram as depicted in Figure 2. 

3.1.1 Data Acquisition Model 

Suppose there exist n features (f , f , ..... f ) in a given 1 2 n

dataset D. Let xÌD, then xÎfij ij i
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3.1.2.2 Server (Classification) 

The server phase is labelled (2) and (3). Tasks that take place 

on the server are: (i) Ciphertext Store (2) (ii) Classification (3). 

3.1.2.3 User phase (Feature Vector Prediction (4) 

In the user phase, marked 4 in Figure 3, the user wishes to 

carry out a prediction of his/her medical condition, and 

sends an encrypted feature vector to the server for 

classification results. The query's input is encrypted using 

the public key generated from FHE RLWE algorithm on the 

application interface module and sent to the server. The 

classification result is returned to the user in an encoded 

format and he uses his/her private key earlier generated 

with RLWE, to decrypt the result. The RLWE (or any FHE 

scheme algorithm) encryption for ciphertext generation 

can be programmed as a module to reside on a portable 

Android device, the ciphertext routed to the server for 

classification/prediction, and the result in encrypted form 

is sent back to the Android device. In the medical field, 

this arrangement enables carrying out of private medical 

diagnosis service by hospital for patients who wishes to 

use a third party function on the server for a test on a 

particular medical condition.

3.1.3 Algorithm for Homomorphic Evaluation using FV 

Scheme

Let l be the security parameter. Let w be a base, and 

l+1=[log q]+1 denote the number of terms in the w 

decomposition into base w of an integer in base q .

a¬S denote that a is sampled uniformly from the finite set S.

The FV scheme contains the algorithms: SecretKeyGen, 

PublicKeyGen, EvaluationKeyGen, and Encrypt, Decrypt, 

Add, and Multiply.

1. SecretKeyGen(l): Sample s¬R  and  output sk=s 2

2. PublicKeyGen(sk) : Set s=sK, sample a¬R and e¬c. q 

Output pk = ([-as+e] , a)q

3. EvaluationKeyGen (sk, w): for iÎ{0,..,l} sample a¬R ,  i q  

i 2 ie¬c. Output evk = ([-(as+e)+ws ] , a ) i i q

4.  Encrypt(pk, m) For mÎR , Let pk=(P0,P1) t

     Sample u¬R  and e , e ¬c 2 1 2

     Compute ct = ([Dm+P0u+e1]  [P1u+e2] )q q

5.  Decrypt (sk,ct) : Set s=sk, c =ct[0], and c =ct[1]0 1

compartments (A & B) with three phases: Data owner, 

Server, and the Users. 

The data owner phase, labelled (1) in Figure 3 is where the 

data acquisition/pre-processing and the keys generation 

take place. The server phase, labelled (2&3) is where the 

ciphertext storage (2) and classification/prediction (3) 

takes place. The user phase labelled (4) is where a user 

can send a new feature vector to the classifier on the 

server requesting for the classification result. 

The activities (acquisition/data pre-processing and keys 

generation) at (1) are carried out by the data owner prior to 

sending the dataset to the server for classification /prediction 

of the class of new feature vectors on the server (3). 

The B division of Figure 3 (4) provides the description of a 

model framework for predicting the class of a new 

encrypted feature vector. The part (B) models the 

scenario, where a user can use the classifier running on 

the server to homomorphically carry out the task of 

classifying a new data (encrypted feature vector). In the 

medical field, this scenario finds a useful application 

termed privacy-preserving medical prediction/diagnosis. 

The sub-section that follows gives the highlight of data 

processing activities and procedures involved in each of 

the phases as depicted in Figure 3.

3.1.2.1 Dataset Acquisitions/ Pre-processing/ Encryption 

(User Phase 1) 

The phase marked 1 in the Figure 3 consists of the 

datasets acquisition, pre-processing and its encryption. 

The dataset used for this research experiment was gotten 

from the University of California Irvine data repository. 
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(a) Port the PDT to the server as add-on to SEAL FHE 

libraries.

(b) Build ciphertext, and

(c) Carry out classification on the server.

Task Four: Performance Evaluation to evaluate the 

performance of the classifier on the ciphertext

4.2 Experimental Setup

The implementation was carried out on a HP machine with 

Intel core i3 processor and 4GB RAM. The software was run 

on Windows 10, 64 bits operating system.

4.3  Building the Plaintext Hepatitis Data PDT Classifier

Performing task one (activities a through c) as given in 

section 4 above resulted to obtaining a decision tree 

model that can classify plaintext hepatitis data. The 

models and algorithms used in the activities are as 

presented in equation (3), (4), and (7). The pruned 

decision tree plaintext hepatitis classifier generated is 

depicted in Figure 4.

4.4 Building the Polynomial DT Classifier

Using equation (2) as specified in section I, the decision 

tree model of Figure 4 can be converted to a polynomial. 

The attribute names (non-leaves nodes) and the leat 

nodes (class) are replaced with subscripted letters {l , l , l , 1 2 3

l , l , l , l , l , l } and {a , a , a , a , a , a , a , a }. The 4 5 6 7 8 9 11 10 15 1 14 6 8 9

subscript of the letters {a , a , a , a , a , a , a , a } 11 10 15 1 14 6 8 9

correspond to the position of the attributes or features in 

    

6.  Add(ct ,ct ) : Output (ct [0]+ct [0], ct [1]+ct [1])0 1 0 1 0 1

Multiply(ct ,ct ) : Compute 0 1

Express c  in base w as 2

Set 

4. Implementation 

The implementation code of the Polynomial decision tree 

classifier was carried out on SEAL FHE library. SEAL 

implemented the FV scheme. Evaluation of the classifier 

was carried out using Hepatitis dataset. The code is written 

in C++ and in modules; the ciphertext generation 

module {parameters selection, data encoding, key 

generation, and encrypt} is done outside the server. It is 

after this procedure that the ciphertext data is routed to 

the server for the homomorphic evaluation. Figure 5 

shows the PDT classifier implementation application 

design interface. The tasks and activities involved in the 

implementation are summarized.  

4.1 Tasks /Activities

In implementing the model, the following tasks and 

activities were performed.

Task One: Supervised learning task of training, building, 

and testing a classifier model on plaintext data

The activities involved in this task are:

(a) Obtain a dataset from UCI data repository and carry 

out data pre-processing.

(b) Train dataset with a Decision Tree (C4.5) algorithm to 

obtain a DT classifier.

(c) Test the classifier model with known results to validate 

the accuracy and efficiency of the model.

Task Two: Build a Polynomial form of the DT classifier (PDT)

(a) Use the algorithm as presented in section I to build a 

PDT out of the DT model.

(b) Optimize the PDT function in order to port to SEAL FHE 

library.

Task Three: Homomorphic Encryption 

RESEARCH PAPERS
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4.5 Private Evaluation of the PDT Model on the Server 

The server evaluates the polynomial P on the ([a ],...,[a ]) 1 n

using the properties of FHE. In order to improve the 

efficiency of the evaluation; firstly a levelled FHE scheme 

was used. The FV scheme is a levelled scheme. In a 

leveled scheme, apriori fixed multiplicative depth is used. 

Secondly, the level of the PDT is kept small as the pruned 

plaintext DT classifier earlier transform to the polynomial 

has a good small sizeable depth. Finally, the SEAL library 

provides the optimum parameters and environment for 

faster evaluation. 

5. Experimental Results and Performance 

5.1 Result from the Generated Classifier on Plaintext Data 

Evaluation of the performance of a classification model is 

based on the counts of test records correctly and 

incorrectly classified by the model. These counts are 

tabulated in a table known as confusion matrix. Table 1 

shows the confusion matrix for the plaintext classification 

of the hepatitis test dataset from the experiment output. 

The number of records of class 1 misclassified as class 0 is 

1, the number of records of class 0 misclassified as class 1 

is 3. The total number of correctly classified instances is 26 

while incorrectly classified instances are 4. The accuracy 

of the classifier from Table 1, shows the efficiency 86% 

and accuracy of the method and results, respectively. 

The accuracy and error rate of the classifier is defined as:

 

(10)

5.2 The Performance of the Classifier on Hepatitis 

Ciphertext Classification

The test datasets file used for the evaluation is the 

ciphertext equivalent of the plaintext file. The output 

results, put in the form of a confusion matrix, shows that the 

number of records of class 1 misclassified as class 0 is 1, 

the number of records of class 0 misclassified as class 1 is 

3. The total no of correctly classified instances is 26 while 

the normalized/binarized dataset D. The values {0,1} for 

the leaf nodes represent {Die, Live} respectively. The 

polynomial function P, is computed as:

P(a ,a ,…a ,l ,l ,…l ) = a ((a .l +(1-a )). a (a (a (a (a .l +1 2 15 1 2 9 11 10 2 10 15 1 14 6 8 7

                                (1-a )).(a .l +(1-a ).l )+(1-a ).l ) +(1-a ).l )8 9 9 9 8 6 6 14 5

                                 +(1-a ).l )+(1-a ).l )+(1-a ).l ) (8)1 4 15 3 11 1

where the values {a ,...,a }=x Îf  in the set {0,1}1 n 1j i

{l ,...,l } = x Îf  in the set {0,1}1 n 1j i(class)

Substituting into equation (8) as given above and 

simplifying with the equivalent values of the class into the 

equation: 

a  = a (l )+(1-a )(a (l )+(1-a )(l ))8 8 7 8 9 9 9 8

a  = a (a .l +(1-a )(a .l +(1-a ).l ))6 6 8 7 8 9 9 9 8

a  = a [a (a .l +(1-a )(a .l +(1-a )l ))]14 14 6 8 7 8 9 9 9 8

a  = a [1 (a (a .l +(1-a )(a .l +(1-a ).l )))]+1-a ).l1 1 4 6 8 7 8 9 9 9 8 1 4

a  = a [a (a (a (a .l +(1-a )(a .l +(1-a ).l )))+(1-a ).l ]15 15 1 14 6 8 7 8 9 9 9 8 1 4

a = a .l +(1-a )[a (a (a (a (a . l +(1-a )(a . l +10 1 0 2 1 0 1 5 1 1 4 6 8 7 8 9 9

(1-a ).l ))))+(1-a ).l )]9 8 1 4

a = [a .l +(1-a )(a (a (a (a (a .l +(1-a )(a .l +11 1 0 2 1 0 1 5 1 1 4 6 8 7 8 9 9

(1-a ).l ))))+(1-a ).l )+(1-a ).l ]+(1-a ).l9 8 1 4 15 3 11 1

l =0, l =1, l =0, l =1, l =1, l =1, l =0, l =0, l =11 2 3 4 5 6 7 8 9

Class = a [a +(1-a )(a (a (a (a ((1-a )(a ))))+(1-a )))]11 10 10 15 1 14 6 8 9 1

(9)

Equation (9) is the simplified form of equation (8), the 

polynomial function for the decision tree classifier  can be 

evaluated on a hepatitis ciphertext. Equation (9) is ported 

to SEAL and evaluated privately using the hepatitis 

ciphertext file. 
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Class =1(Live)

25

3

Class = 0 (Die)

1

1

Actual

Class

Class = 1 (live)

Class = 0 (Die)

Predicted Class

Table 1. Confusion Matrix of the Plaintext Classification Result

Figure 5. The PPC Application Interface
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the constructions of (Barni et al., 2011). on similar datasets 

and the result is as tabulated in Table 5. N and D stands for 

Node and depth of the tree, respectively. 

Conclusion 

This paper presented the model design and 

implemented privacy preserving decision tree classifier 

using the FHE technique. The efficiency of the PDT 

classifiers was evaluated on datasets obtained from the 

UCI Machine Learning repository. The implementation 

was carried out using the SEAL FHE library and evaluation 

on an encrypted hepatitis dataset. 
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