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Abstract—The Bayesian approach to target tracking has
proven to be successful in the tracking of multiple targets
in various application contexts. This paper applies sequential
Monte Carlo (SMC) filtering techniques such as the Markov
Chain Monte Carlo particle filter (MCMC PF) and the SMC
probability hypothesis density (PHD) filter as suboptimal
Bayesian solutions to multi-target tracking (MTT) in video.
The MCMC PF by virtue of its information-centric property,
can automatically explore the posterior distribution at each
sampling step making it possible to track multiple targets.
In doing so, it propagates the full multi-target posterior. The
SMC PHD filter however propagates only the first order
moment of the multi-target posterior density thereby making
it computationally less intensive. A comparison of both filters
was carried out in tracking multiple human targets in a video
scene demonstrating superior performance by the SMC PHD
filter in a realistic scenario. The SMC PHD filter was seen to
have higher performance than the MCMC PF in terms of the
number of particles, the processing speed, and the tracking
performance for multiple targets.

Keywords - MTT; SMC PHD filter; Multi-target track-
ing; MCMC PF.

I. INTRODUCTION

Object tracking is of key importance in computer vision

and machine intelligence and has various applications in

areas such as motion-based recognition, automated security

and surveillance, medical imaging, traffic control, and hu-

man computer interaction [1], [2]. The problem of MTT

entails correctly detecting, identifying and finding the loca-

tion of targets of interest with the aid of noisy measurements

obtained from various sensors. These sensors include laser-

based tracking systems, depth sensors and video cameras.

The latter provides diversity of information in recordings

which can be more helpful in identifying, and differentiating

different targets thereby making it a more preferred source

for obtaining measurements in most tracking applications

[3]. Video MTT in the context of people tracking is already

available in the literature and has several applications. Such

applications include anormaly detection, unusual events such

as accidents or sudden movements in monitored areas [3],

people counting for data analysis [4], gesture recognition,

and client activity analysis in retail environments [5], [6].

In the literature, there are a number of proposals that

have been used in applying individually, the MCMC PF and

SMC PHD filter to multiple target tracking in vision. In the

MCMC PF case, [7] and [8] implemented the MCMC PF to

track multiple targets in video with emphasis on occlusion.

Ref. [4], the focus was on target interaction without data

association while [9] presented the MCMC PF within the

context of intense clutter. However, in all of these application

considerations, the full multi-target posterior is propagated.

The SMC PHD filter has also been implemented in different

application considerations in various vision based contexts

such as in [10]–[15], and [16] with only the first order

moment of the multi-target posterior being propagated. In

all the above literatures, both filters were shown to achieve

tracking.

The objective of the current research is to investigate side

by side the performance of MCMC PF and SMC PHD filter

in the tracking of multiple human targets in an enclosed

environment to determine which filter gives superior perfor-

mance. It is assumed that observations are already associated

with their respective targets and thus data association is not

considered. The rest of the paper is organized as follows. In

Sec.II, firstly we highlight the main components of a video

tracker; secondly we discuss the concept of background

subtraction as used in our problem. In Sec.III, we present

the dynamical models used in making inference about targets

in tracking, introduce and explain the Bayesian approach to

MTT, and finally discuss the description and implementation

of both the MCMC PF and the SMC PHD filter. Next,

Sec. IV presents, compares, analyses and discuss results

obtained from the MATLAB implementation of the two filter

in tracking four targets in video sequence from the CAVIAR

datasets. Finally, conclusions are drawn in Sec.V.

II. TARGET TRACKING IN VIDEO

In this section, the main components of a target tracker in

video are highlighted and briefly explained.The background

subtraction technique is also presented and its implementa-

tion explained as the target detection mechanism.
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A. Components in Video Tracking

In order to achieve tracking in video, the following have

been used by researchers in the field [17]:

(i) target representation: In order to be able to successfully

track a target of interest, it is imperative that the target in

question be described so the tracker knows what to look for.

Targets are usually described through feature extraction i.e.

selecting those features that are unique to the target. Feature

extraction helps to distinguish targets of interest from others.

Once a target has been described, it can then be represented.

Targets can be represented by their characteristics such as

shape and appearance. The target representation approach

we used was the point representation method.

(ii) target detection: Once the tracker knows what par-

ticular feature(s) to look for and how to represent them

when seen, the next stage is for the tracker to search for

and represent those feature(s) when seen. This is referred

to as target detection. We implemented the background

subtraction method as the target detection mechanism.

(iii) target tracking: The next stage after detecting the

target of interest is to track the target so as to obtain some

information about the target such as target location, position

and trajectory over time. The point tracking method was

used in our approach. More details on target representation,

detection and tracking methods can be found in [2], [17].

B. Background Subtraction

Target detection can be achieved by building a representa-

tion of the scene and then finding deviations from the model

for each incoming frame. This scene representation is called

the background model. Any significant change within an

image region from the background model denotes a moving

target. The pixels constituting the regions undergoing change

are marked for further processing. This process is known to

as the background subtraction [2].

In the context of our problem, it was assumed that the

camera available for video recording is stationary. With this

assumption, a relatively constant background is guaranteed.

This assumption made the background subtraction method

desirable for in problem.

Now we discuss how the background subtraction method

was implemented. Given that I is a video sequence contain-

ing K images as frames:

I =
{
IMAG1

RGB , IMAG2
RGB , ..., IMAGKRGB

}
(1)

where (·)RGB denotes an image with its RGB components,

the background model was taken to be the mean of the first

few frames in I and computed as:

BG =
1

n

n∑
k=1

IMAGig (2)

where (·)g denotes the gray scale component of an image

and n < K. The gray component was used so as to ignore

the effect colour distribution and intensity in the video

sequence and shift focus to image contrast instead. This

approach was employed so as to tackle the lighting level

problem.

Once the background model was obtained, it was com-

pared to each frame in the video sequence through frame

differencing (or background subtraction) to obtain the fore-

ground image FG. The foreground image is the frame

showing the target without the background. The foreground

images were obtained using the expression below:

FGk = BG− IMAGkg for all k = 1, 2, ...,K. (3)

In order to mitigate the effect of clutter and other false

Figure 1. Background subtracted scene.

detections, a Gaussian low-pass filter was used to filter out

high frequency components within the foreground image and

then compared with a threshold value at each background

subtraction step. This threshold value distinguishes detected

targets from other detections. Next, the centroids of targets

are obtained and stored. These stored detections were then

used with the two filters to track the targets. Figure 1 shows

results from a typical background subtraction technique.

Figure 1 (a) is the foreground and background image show-

ing two targets, Figure 1 (b) is the background model in

gray scale and Figure 1 (c) is the foreground image after

background subtraction and Gaussian low-pass filtering.

III. MULTI-TARGET TRACKING PROBLEM

FORMULATION

This section discusses the dynamical models used in

making inference about target, the Bayesian approach to

MTT, the MCMC PF description and implementation, and

the SMC PHD filter description and implementation.

A. Dynamical Systems

A system whose physical process can be mathematically

modelled as it changes or evolves over time is known as a

dynamical system. In making inference for such a system,
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two models will be considered, the system model and the

measurement model. The problem of tracking in video can

be related to dynamical systems.

Consider the non-linear system governed by the state

evolution model:

xk = fk(xk−1, vk−1) (4)

Xk =
{

x1k, x
2
k, ...x

M
k

} ⊂ ES (5)

where k = 1,2,... is the time instant of the discrete model,

fk: �nx × �nv −→ �nx is a function of xk−1, {vk, k ∈ N}
is an independent and identically distributed (i.i.d.) process

noise vector, nx, nv are dimensions of the state and process

noise vectors respectively, with N being a set of natural

numbers. Xk is the joint state vector as a concatenation of

the state vectors of all targets, M is the number of targets

present at time k and ES is the state-space [18].

The non-linear system’s measurement model is given as:

zk = hk(xk, nk) (6)

Zk =
{

z1k, z
2
k, ...z

N
k

} ⊂ EO (7)

where hk: �nx × �nv −→ �nz is a function, {nk, k ∈ N}
is an i.i.d. process noise vector, nx, nv are dimensions of the

state and process noise vectors respectively, with N being a

set of natural numbers. Xk is the joint measurement vector

is denoted as the concatenation of the measurement vectors

of all targets, N is the number of measurements received at

time k and Zk is a subset of the observation space EO [18].

B. The Bayesian Tracker

The Bayesian approach to target tracking is the process

of recursively computing the posterior distribution using

prdiction and update stages. The prediction stage uses

the system model to predict the state probability density

function (pdf) forward from one measurement time to the

next. While the update operation uses the latest measurement

to modify the prediction pdf. It may be recalled from

Bayes’ theorem that given the likelihood and prior, the

posterior can be computed. The tracking problem from a

Bayesian perspective is to calculate recursively some degree

of belief in the state Xk at time k. The construction of a

pdf p(Xk|Z1:k) is thus required. This is also known as the

posterior of the pdf given measurements up to time k. The

initial state p(X0|Z0) ≡ p(X0) is assumed to be the prior.

Then, the posterior p(Xk|Z1:k) can be obtained recursively

using the prediction and update stages.

Assuming that the required pdf at time k − 1,

p(Xk−1|Z1:k−1) is available, using the system model in (4),

the prediction stage requires computing the prior pdf at

time k using the Chapman-Kolmogorov equation [19]

p(Xk|Z1:k−1) =

∫
p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1 (8)

The fact that p(Xk|Xk−1,Z1:k−1) = p(Xk|Xk−1) has been

made use of in (8) above since (4) describes a Markov

process of order one.

The update stage is where the posterior, p(Xk|Z1:k) is

computed. This requires updating the prior at time k when

a measurement Zk become available. Applying Bayes’ rule,

p(Xk|Z1:k) =
pZk|Xk)p(Xk|Zk−1)

p(Zk|Zk−1)
(9)

where

p(Zk|Zk−1) =

∫
p(Zk|Xk)p(Xk|Zk−1)dXk−1 (10)

is the normalizing constant, p(Zk|Xk) is the likelihood

function defined by (6).

The approximation to the reoccurring relation of (8) and

(9) gives rise to the suboptimal Bayesian solution.

C. Markov Chain Monte Carlo Particle Filter

MCMC methods have been applied by researchers to

the tracking problem due to the limitations of importance

sampling in high dimensional state spaces. MCMC methods

work by defining a Markov Chain over a space of set Xk,

such that the stationary distribution π(Xk) of the chain is

equal to the sought posterior p(Xk|Z1:k). Typically, MCMC

methods have been applied as a search technique to obtain

a maximum a posteriori estimate, or as a way to diversify

samples inside the framework of traditional particle filters.

Maximum a posteriori estimates can be obtained by taking

the most likely sample generated from the Markov Chain.

More generally, MCMC is a method intended to produce a

sample of a distribution, and no guarantees exist about it

yielding good point estimates [20].

1) MCMC PF Description: Alg. 1 shows the pseudo code

of the MCMC PF implemented in our problem. This algo-

rithm uses the Metropolis − Hastings sampling method

in the update stage of the filter. The algorithm was adapted

from [20], [21]. The algorithm is summarized as follows:

- At each time instant k, initialize the Markov chain.

Propagate the particles {Xk−1}Ns

i=1 and randomly

choose one propagated particle as the initial state to

start the chain.

- Repeat the following for i = 2, 3, ....,B+MNs times,

where B is the burn in period and M is the thinning

interval.

- Given the current state X̄k, randomly pick the target to

be perturbed, denoted as x̄jk, and generate a sample x̄jk′,
by sampling from the proposal density q(x̄k′; x̄k). The

proposal state vector has the component corresponding

to the target states of x̄jk updated while other compo-

nents unchanged.

- Calculate the acceptance rate α. If 1 ≤ α, set the next

state to be X̄k′; otherwise set it as X̄k.
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- Discard the first B samples of the iterations and use the

rest MNs particles {Xk}Ns

i=1 as the discrete approxima-

tion to the posterior.

Algorithm 1 MCMC PF filter

1: for k = 1 : K do
2: prediction
3: initialize p(Xk|Zk) = {Xk}Ns

i=1 with unweighted sam-

ples as:

4: for i = 1 : Ns do
5: sample particles Xik ∼ q(Xk|Xik−1,Zk) � i.e. draw

from the importance density

6: end for
7: randomly select a sample X̂k from {Xk}Ns

i=1

8: move all targets x̂jk in X̂k according to STT motion

model, fk|k−1(·|xik−1) to get X̄k
� where j = 1, 2, ...m, m is number of targets in X̂k.

X̄k will be the initial state of the Markov Chain

9: evaluate and cache likelihood wjk = g(Zk|X̄k) for each

x̄jk in X̄k
10: update
11: for i = 1 : B +MNs do
12: randomly pick a target x̄jk from X̄k and propose

a new state x̄jk′, to form X̄k′ by sampling from

q(x̄k′; x̄k)
13: compute acceptance ratio

α = proposed state likelihood
randomly picked target likelihood

14: if α ≥ 1 then
15: accept proposal, X̄k = X̄k′
16: update cached weight wjk = g(Zk|X̄k)
17: else
18: leave X̄k unchanged

19: wjk = α
20: end if
21: end for
22: discard all B iterations

23: {Xk}Ns

i=1 = {X̄k}Ns

i=1

24: end for

D. Probability Hypothesis Density

1) RFS and FISST: In MTT, varying number of targets

are present. The targets can appear and disappear randomly

in the state-space. Xk of (5) holds for all targets present in

the state space ES at time step k and Zk in (7) holds for

all measurements received in the observation space EO at

time k. However, some measurements zk,j ∈ Zk may not

necessarily originate from xk,i ∈ Xk and may be due to

clutter. Such spurious measurements can be modelled using

specific clutter models [18].
2) Random finite sets: A Random finite set (RFS) X is

a finite-set valued random variable, which can be described

by a discrete probability distribution and a family of joint

probability densities [22]. RFS are models used to represent

the uncertainty about the number of elements in multiple

target state Xk and measurement state Zk [23].
3) Finite-set statistics: Finite-set statistics (FISST)

represent a mathematical framework which transforms

multisensor-multitarget problems into single-sensor single-

target problems mathematically by bundling all sensors into

a single meta-sensor, all targets into a single meta-target and

all observations into a single meta-observation [24].

The PHD
For a given RFS Ξ, its first order moment is its probability

hypothesis density (PHD), DΞ and is given as [18]:

DΞ(x) = E {δΞ(x)} =
∫
δXxPΞ(dX) (11)

where E {·} is the expectation operator and δΞ(x) =∑
x∈Ξ δx is the random density representation of Ξ. PΞ is

the probability distribution of the RFS. The PHD has the

properties that [18],

- the integral of the PHD,
∫
S
DΞ(x)λ(dx) is the expected

number of targets in the measurable region S, and

- the peaks of the PHD function give the estimates of the

target states.

The PHD filter
The PHD filter is a recursion of the PHD Dk|k that is asso-

ciated with the multiple target posterior density p(Xk|Z1:k).
Given that the Ξ is Poisson, the recursion for propagating

Dk|k is given as [24]:

Dk|k =
[
Dk|k(xk|Z1:k) ◦Dk|k−1(xk|Z1:k−1)

]
(Dk−1|k−1)

(12)

where Dk|k−1(xk|Z1:k−1) and Dk|k(xk|Z1:k) are prediction

and update operators for the PHD respectively, ◦ denotes the

composition function.
The prediction term is given as [25]:

Dk|k−1(xk|Z1:k−1) = γk(xk)

+

∫
φk|k−1(xk, xk−1)Dk−1|k−1(xk−1|Z1:k−1)dxk−1.

(13)

with the term

φk|k−1(xk, xk−1) = pS(xk−1)fk|k−1(xk, xk−1)

+ bk|k−1(xk, xk−1) (14)

where γk(·) is the PHD of the spontaneous birth, pS(·) is

the probability of the target survival, fk|k−1(xk, xk−1) is the

single target motion model, and bk|k−1(xk, xk−1) is the PHD

of spawned targets.
The update term is given as:

Dk|k(xk|Z1:k) =

[
ν(xk) +

∑
z∈Zk

ψk,z(xk)
κk(z) + 〈Dk|k−1, ψk,z〉

]

×Dk|k−1(xk|Z1:k−1) (15)
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with

ν(xk) = 1− pD(xk), (16)

ψk,z(xk) = pD(xk)g(z|xk), (17)

κk(z) = λkck(z) (18)

where pD is the probability of detection, ν(xk) is the

probability of target non-detection of state xk, g(z|xk) is the

measurement likelihood function for single target, κk(z) is

the clutter intensity, λk is average number of Poisson clutter

points per scan, and ck(z) is the probability density over the

state-space of clutter point; 〈·, ·〉 denotes inner product and

is computed as [25]

〈Dk|k−1, ψk,z〉 =
∫
Dk|k−1(xk|Z1:k−1)ψk,z(xk)dxk. (19)

SMC PHD filter implementation

The PHD filter is computationally less intensive as it prop-

agates only the first moment of the full multi target posterior

in time instead of the whole multi target posterior. Utilizing

the SMC approach to approximate the PHD reduces the

computational complexity further [19]. The implementation

presented here was adapted from [25]–[27]. It was assumed

that all measurement data were associated with a target with

zero clutter intensity. The pseudo code of the SMC PHD

filter is illustrated in Alg. 2. The SMC PHD filter algorithm

is summarized as follows:

- At time step k = 0, Lk particles xik with associated

weights wik are initialized from a given prior PHD D0|0
with T̂0 targets present.

- After the initialization process is complete, iteration

over the measurement set received begins. For each

time step 0 < k ≤ K, the PHD prediction, update

and resampling steps are performed.

- The prediction step predicts the PHD represented by the

particles states and weights. Particles that have survived

from the previous time-step are predicted using the

single-target motion model. Furthermore, Jk newborn

particles are injected into the system. Like in the

initialization step, if no assumption about the target

distribution is made the newborn particles are drawn

from a uniform density across the whole state-space.

- The update of the particle PHD takes the current

measurement set Zk into account. All predicted particle

states are evaluated against all measurements within

the RFS Zk and reweighted accordingly. Non-detected

targets are accounted for by adding the intensity of non-

detected targets ν(x) to the measurements. To filter

clutter, which might be present in the measurements,

particle weights are influenced by the clutter PHD

intensity κk(z). The result of this step is a set of updated

weights for all particles within the system. The updated

particle weights approximate the present multi-target

PHD. However, when no measurements are available,

the update step of is skipped.

- The resampling step is performed to avoid degeneracy.

Here, resampling is performed in every time-step. The

resampling method used was systematic resampling.

First, the cummulative distribution function (cdf) is

built based on the current particle distribution in state-

space. Next, a set of new particles is generated. There-

fore, L times the number of estimated targets particles

are randomly drawn based on their likelihood described

by the cdf.

Algorithm 2 SMC PHD filter

1: k = 0;
2: Initialization:
3: the posterior PHD D0|0 is represented by a set of

particles with their associated weights
{

xi0, wi0
}Lk

i=1
4: for k = 1 : K do
5: Prediction:
6: for i = 1 : Lk−1 do
7: sample x̃ik ∼ qk(·|xik−1, zk)
8: compute predicted weights:

w̃ik|k−1 =
φk|k−1(x̃ik,x

i
k−1)

qk(·|xik−1,zk)
w̃ik−1

9: end for
10: for i = 1 : Lk−1 + 1, ... Lk−1 + Jk do
11: sample x̃ik ∼ pk(·|zk)
12: compute newborn particles’ weight:

w̃ik|k−1 =
γk(x̃ik)
Jk

13: end for
14: Update:
15: For each z ∈ Zk, compute:

Ck(z) =
∑Lk+Jk
i=1 ψik,z(x̃

i
k)w̃

i
k|k−1

16: for i = 1 : Lk−1 + Jk do
17: update weights:

w̃ik =
[
ν(x̃ik) +

∑
z∈Zk

ψi
k,z(x̃ik)

κk(z)+Ck(z)

]
w̃ik|k−1

18: end for
19: Resample:
20: compute estimated no. of targets T̂k|k =

∑Lk+Jk
i=1 w̃ik

21: resample{
x̃ik, w̃ik, T̂k|k

}Lk−1+Jk

i=1
to obtain

{
xik, wik, T̂k|k

}Lk

i=1
22: end for

IV. RESULTS AND COMPARISONS

This section presents and discusses the results obtained

from the MATLAB implementation of the filters. The rela-

tive performance of all two filter types is also discussed.

A. Simulation Setup

The experiment was conducted on a video sequence

obtained from [28] in the context of a shopping mall as

the enclosed environment. The video sequence with title
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EnterExitCrossingPaths2cor.mpg was used. The video

sequence used had a total of 475 frames. In this sequence, a

total of four targets was present but with a maximum of three

at a time. The targets are seen walking along the corridor of

a shopping mall.

The simulation of the target tracker in video was processed

in the MATLAB environment on an Intel Core i5 laptop with

4GB Memory @ 1600MHz.

The targets present in a frame at time index k were

represented as Xk, were Xk is the joint state vector as a

concatenation of the state vectors of all targets. This gives:

Xk =
{

x1k, x
2
k, ...x

M
k

} ⊂ ES

The system evolution model of each target xik in Xk follows

the system evolution model:

xk = Axk−1 + v (20)

A =

⎡
⎢⎢⎣
1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

v = N (0, σ2
xI)

where δt is velocity in either x or y direction, σ2
x is the

process noise variance, and I is a 4x4 identity. A constant

velocity model was adopted consequently making δt = 1.

The process noise σ2
x used here was 2. The target state

representation xk is given as:

xk = [x, y, 1, 1]T (21)

The process noise σ2
x used here was 2.

The measurement model used was:

Zk =
{

z1k, z
2
k, ...z

N
k

} ⊂ EO

where Zk is a joint measurement vector that is a con-

catenation of the measurement vectors of all targets. The

measurement vector zik earlier described in (??) became

zk = z̄k = [x, y, 1, 1]T (22)

This was as a result of not considering the effective target

velocity.

For the purpose of MATLAB implementation, the follow-

ing assumptions were made:

• Each measurement is associated with their respective

targets,

• The number of measurements available at each time is

equivalent to number of targets present, and

• No clutter is present in measurements because the back-

ground subtraction detections were low pass filtered

with Gaussian filter.

The following are the filter specific parameters set:

MCMC PF

A B+MN MCMC sampling step was performed on each

particle selected together with computing its acceptance

ratio. B which is the number of burn-in samples was selected

to be 50, and the thinning interval M = 0.5. The MCMC

PF was used in tracking the target for varying number of

particles N and measurement noise σ2
z . An MCMC sampling

was perform on each member xjk of selected set Xik for

varying number of particles under different measurement

noise conditions. The results obtained are presented in Tables

I, II, and III. A plot showing the MCMC PF track of the

true trajectory of all four targets is shown in Figures 3 (a)

and (b). The plots were split into two for clarity.

SMC PHD filter

In the SMC PHD filter, the importance density was chosen

to be the prior of individual targets. Jk which is the number

of samples to be used for new born target was selected to be

10. The probability of target detection pD and the probability

of target survival pS were both set as 1. The average number

of Poisson clutter points per scan λk and clutter probability

density ck were both set as 0. The values for pD, pS , ck, and

λk were all time invariant. Simulation was run on the video

sequence using the SMC PHD filter with varying number of

particles Lk under varying measurement conditions and the

results obtained are shown in Tables I, II, and III. A plot

showing the SMC PHD filter track of the true trajectory of

all four targets is shown in Figures 4 (a) and (b). The plots

were split into two for clarity.

B. Performance Analysis

Figure 2 shows screen shots of the targets being tracked

the in video sequence. In the Figure, the targets are seen

walking along the corridor of a shop. An is ellipse drawn

around each target for visualization, blue colour representing

the ground truth and red, the tracking. Figures 3 and 4 show

Figure 2. MTT: Screen grab showing targets being tracked.

the MCMC PF and SMC PHD filter trajectory trackings

respectively of the four targets relative to the targets’ ground
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Figure 3. MTT: MCMC PF tracking trajectory of all 4 targets.

Figure 4. MTT: SMC PHD filter tracking trajectory of all 4 targets.

truths. On the one hand, it can be observed from Figure

3 that the MCMC PF track of the targets appears to be

’wild’ even though the tracking was achieved. The SMC

PHD filter track on the other hand appears to give a much

smoother tracking of the target trajectories as observed from

Figure 4. Table I shows the RMSE values of both filters for

different number of particles and the computation time for

all for targets. The RMSE values of the targets remained

fairly constant for the MCMC PF as the number of particles

were increased with the computation time increasing. With

the SMC PHD filter however, the filter performance was

observed to significantly increase as the number of particles

increases. The computation time increases with number of

particles as well but less when compared to the MCMC PF.

Table I
MTT: FILTER PERFORMANCE WITH MEASUREMENT NOISE, σ2

z = 0.5.

Filter Particles RMSE Time (s)
Target 1 Target 2 Target 3 Target 4

MCMC PF 100 0.12 0.14 0.28 0.31 3.06
500 0.12 0.13 0.27 0.30 9.25

1000 0.11 0.13 0.27 0.30 16.90
4000 0.11 0.12 0.27 0.30 63.40

PHD 100 0.01 0.02 0.72 0.20 2.00
500 0.003 0.01 0.40 0.11 7.21

1000 0.003 0.008 0.32 0.10 13.82
4000 0.002 0.006 0.18 0.07 53.10

In Table II, similar observations can be made about both

filters. Observing Table III, it is seen that under relatively

high noise, the SMC PHD filter performs almost as well as

it does under lower measurement noise conditions.

Overall, from observing Tables I, II, and III, it can be

deduced that

- As measurement noise increases, the MCMC PF track-

ing performance decreases while the SMC PHD filter

still performs optimally.

- Under a given measurement noise condition the MCMC

PF saturates irrespective of the number of particles

used.

- The SMC PHD filter gives best performance in tracking

multiple targets when compared to the MCMC PF and

is more robust to measurement noise.

Table II
MTT: FILTER PERFORMANCE WITH MEASUREMENT NOISE, σ2

z = 1.

Filter Particles RMSE Time (s)
Target 1 Target 2 Target 3 Target 4

MCMC PF 100 0.21 0.28 0.55 0.59 3.14
500 0.22 0.29 0.54 0.59 9.25
1000 0.23 0.28 0.53 0.60 17.00
4000 0.24 0.28 0.52 0.60 62.83

PHD 100 0.01 0.05 0.92 0.30 1.74
500 0.01 0.03 0.58 0.18 7.32
1000 0.008 0.02 0.40 0.14 13.51
4000 0.008 0.02 0.27 0.13 53.37

Table III
MTT: FILTER PERFORMANCE WITH MEASUREMENT NOISE, σ2

z = 2.

Filter Particles RMSE Time (s)
Target 1 Target 2 Target 3 Target 4

MCMC PF 100 0.51 0.52 1.12 1.28 3.13
500 0.50 0.51 1.14 1.27 9.37
1000 0.46 0.50 1.14 1.27 17.14
4000 0.45 0.48 1.10 1.27 63.58

PHD 100 0.04 0.07 1.11 0.48 1.72
500 0.03 0.06 0.68 0.33 7.10
1000 0.03 0.06 0.48 0.30 13.80
4000 0.03 0.06 0.40 0.28 53.30

It is the general belief with SMC methods that as the

number of particles increases, so does the accuracy of

the posterior density being approximated, with the cost of

computational complexity. However, it has been shown here

that:

i An SMC filter can reach saturation such that increasing

number of particles won’t matter. This was the case

with MCMC PF.

ii In the SMC PHD filtering, performance was seen to

increase as the number of particles was increased. This

seemed to be the only case which agrees with the

general belief on SMC methods.

V. CONCLUSIONS

Two SMC filtering techniques, the MCMC PF and SMC

PHD filter have been presented and implemented to track

multiple targets in an enclosed environment. Algorithms

used to achieve tracking have also been shown. Overall, it

was seen that as measurement noise increases, the MCMC

PF tracking performance decreases while the SMC PHD

filter still performs optimally. Under a given measurement
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noise condition the MCMC PF saturates irrespective of the

number of particles used. The SMC PHD filter gives best

performance in tracking multiple targets when compared

to the MCMC PF even under relatively high measurement

noise. There are various potential research avenues along

which this work could be extended. Firstly, it would be

of great practical interest to consider more sophisticated

measurement models. Secondly, it would be interesting to

use a non-Gaussian distribution having more pronounced

tails as the importance distribution to accommodate non-

Gaussian priors in a more challenging problem.
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