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I. Introduction

ndroid is one of the most used Smartphone’s 
operating System in the World (Srikanth, 2012). 
Android is open source with huge user community 

and documentations as a result of these, it allows any 
programmer to develop and publish Applications to 
both the Official or Unofficial market. There are over 
seven hundred thousand Applications published via the
Official Android market, the Google Play Store  (Zack,

2012). Malware attack is a challenging issue among the 
Android user community. This is due to its open source 
and a very huge adoption and market penetration, 
making it a target for most malware developers. Android 
is predicted to be the most used mobile Smartphone 
platform by 2014 (You, Daeyeol, Hyung-Woo, Jae 
&Jeong,2014) which has become a reality. This 
ubiquitous gains of Android brings along with it security 
risks in terms of malware attacks targeted at this 
platform. It therefore becomes necessary to make the 
platform safe for users by providing defence mechanism 
especially against malware. 

There are basically three approaches according 
to (Burquera, Zurutuza&Nadjm-Tehrani,2011);(Aswathy, 
2013); (Lovi&Divya, 2014) to mobile malware detection 
approaches; static, dynamic and manifest file analyses. 
While Static analysis focused on the use of patterns of 
strings called signatures to detect malware presence, 
dynamic analysis approach to malware detection uses 
the behaviour pattern of Applications while in execution. 
The third approach involves the analysis of Android 
Manifest file. This paper presents a model for mining 
Applications behaviours for detecting malware on the 
Android platform using dynamic analysis. 

The malware detector attempts to help protect 
the system by detecting malicious behaviour (Aswathy, 
2013). The malware detector performs its protection 
through the manifested malware detection 
Approaches.Detection methods for attacks on mobile 
devices (Burquera, Zurutuza&Nadjm-Tehrani2011);(Wei, 
Mao, Jeng, Lee, Wang& Wu, 2012); (Wu, Mao, Wei, Lee 
& Wu, 2012);(Ham, Choi, Lee, Lim & Kim, 2012) have 
been proposed to reduce the damage from the 
distribution of malicious applications. However, a 
mechanism that provides more accurate ways of 
determining normal applications and malicious 
applications on Android mobile devices must be 
developed and a procedure for obtaining the features 
well defined. This paper developed a model for 
extracting Android application behaviours through 
events of normal applications and malicious 
applications, using a customized approach.

The research employs Anomaly-based 
detection in a host-based manner to monitor activity that 
occurs on the target host system. This system is 
capable of monitoring features of the Android system 
such as calls received, calls initiated, system calls 
invoked by running applications, Short Messaging 
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Abstract- In order to apply any machine learning algorithm or 
classifier, it is fundamentally important to first and foremost 
collect relevant features. This is most important in the field of 
dynamic analysis approach to anomaly malware detection 
systems.  In this approach, the behaviour patterns of 
applications while in execution are analysed. The behaviour 
features that Android as a system allows access permissions 
to depend on the type of device; either rooted or not. Android 
is based on the Linux kernel at the bottom layer, all layers on 
top of the kernel run without privileged mode. Thus, if a 
behaviour feature vector is created from features of Android 
(Application Programming Interface) API in unrooted mode, 
then only system information made available by Android can 
be used. In this paper, a Device Monitoring system for an 
unrooted device is developed and used to collect Android 
application data. The application data is used to build feature 
vectors that describes the Android application behaviour for 
Anomaly malware detection. This application is able to collect 
essential information from Android application such as 
installed applications and services running within the device 
before or after the Monitoring application was started, the 
date/time stamp, calls initiated from the device, calls received 
by the device, sent short message services (SMSs), SMSs 
received, and the status of the device as at when the event 
took place. This information is logged  in a comma separated 
value (.csv) file format and stored on the SDcard of the device. 
The .csv file is converted to  attribute relation file format (.arff); 
the format acceptable by WEKA machine learning tool. This.
arff file of feature vectors is then used as input to the Classifier 
in the Android malware detection system. 
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Services (SMSs) received, SMSs sent and screen status 
of the target device. Anomaly-based detection systems 
use a prior training phase to establish a normality model 
for the system activity. In this method of detection, the 
detection system is first trained on the normal behaviour 
of the application or target system to be monitored. 
Using this normality model of behaviour, it becomes 
possible to detect anomalous activities by looking for 
abnormal behaviour or activities that deviate from the 
defined normal behaviour occurring in the system. 
Though this technique look more complex, it has the 
advantage of being able to detect new and unknown 
malware attacks. Anomaly-based detection requires the 
use of feature vectors to train the classifier before 
subsequent classification can be carried out. These 
feature vectors are obtained from features or data 
collected from the system. 

The objective of this work is to extract Android 
applications data from an unrooted android device and 
using them to effectively describe the system behaviour. 
The structure of this paper is given as follows: section 
one provides a brief introduction; section two gives 
related literatures; section three discuss the 
Experimental procedures and setup; section four 
provides the discussion of result; section five provide 
the hardware and software used for the experimentation 
and finally, section six gives the summary and 
conclusion of the work. 

II. Related Works 

Android malware detection systems available 
currently employs static approach to malware detection 
by scanning files for byte sequences of known malware 
Applications. Anomaly-based detection is still in a 
developmental stage and researches are ongoing. As a 
result, the current approaches are not able to detect 
unknown attacks. Unknown malware attacks also 
referred to as ‘zero day attacks’ are attacks carried out 
by unknown malware whose signatures have not been 
analysed and obtained. Several approaches with 
different metrics for defining Android application 
behaviours have been developed and are discussed. 

You Jounget al. (2014);You Joung&Hyung-Woo, 
(2014)presented an approach for determining malicious 
attack on Android using System Call Event Pattern 
Analysis. In their work, system calls invoked by 
executing Applications of different categories and their 
frequency of occurrences is used as the metrics for 
defining Applications behaviour. Their analysis was 
carried out on Linux system rather than on mobile 
device.  Abelaet al.(2013) developed AMDA an 
automated malware detection system for the Android 
platform. The core modules of the system included the 
Feature Extraction Module and the Behaviour Analysis 
Module. The Feature Extraction Module generates 
activity log from running applications retrieved from the 
application repository of the system. The activity log 

contains the system calls from application activity which 
are the features that the module retrieves. 

 Mohammed et al. (2014) in the Automatic 
Feature Extraction part of their work proposed and 
implemented an approach to detect malicious 
applications statically through a set of well-defined APIs. 
Similarly, Tchakounté, &Dayang (2013) used a static 
approach to analyse System calls of malware on the 
Android platform.Lin et al, (2013)proposed SCSdroid, 
which uses the thread-grained system calls sequences, 
because these sequences can be regarded as the 
actual behaviour of the application. Their approach is a 
step further from just system calls of Applications to 
carter for malware repackaged applications. 
Luoxu & Qinghua, (2013) presented a static approach to 
their Runtime-based Behaviour Dynamic Analysis 
System for Android Malware Detection. They used 
Loadable Kernel Module hooking to hook the Android 
system and then collect data. The collected data consist 
of IMSI, SIM, IMEI, TEL, call log, SMS, MAIL and so on. 
The technology of analysis is semantic analysis and 
regular expression. 

 Yousra, Wenliang&Heng,(2013) used APIs as 
the feature for describing Android behaviours used for 
detecting malware. To select the best features that 
distinguish between malware from benign applications, 
API level information within the bytecode were used 
since it conveys substantial semantics about the apps 
behaviour. More specifically, they focused on critical API 
calls, their package level information, as well as their 
parameters. Dini, Martinelli, Saracino&Sgandurra, 
(2012)employed two-layer applications behaviour 
features in order to properly described Android malware 
behaviours. These include System calls from the kernel 
layer and other features from the Applications layer. This 
approach tend to provide a better description of the 
system than a monolithic view of just a single layer as it 
considered both the Operating System layer behaviours 
and the Applications layer behaviours. 

 It is observed from all the reviewed literatures 
that System calls pattern analysis played a critical role in 
providing Android Applications behaviour pattern. It is 
therefore clear that System calls as features could best 
be used either singly or in addition to other features to 
describe Application behaviours not just in Android but 
any mobile platform. 
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In this section, the various activities carried out 
and the different modules implemented to ensure 
application feature behaviours are intercepted for use in 
malware detection process are discussed. But before 
then we show the big picture of the entire malware 
detection system in a schematic form as in Figure 1.0.

III. Experimental Procedures and 
Setup



 

 

  

 

Figure 1. 0

 

: Architecture of the Android Malware Detection System (HOSBAD)

 

 

a)

 

Application Acquisition Process

 

The Application Acquisition process involves 
downloading applications from Android Markets and 
storing them into the application repository folder. 
Applications which could be normal or malicious are 
downloaded both from the Official Android market and 
unofficial Android markets. Figure 1.1 shows the 
Application acquisition processes. 

 

 
 

 

 

 

 

 

 

 

 

 

Each of these Applications is executed in an 
instrumented Android emulator via Android Virtual 
Device (AVD). An Android 2.3.3 software development 
kit (SDK) emulator is used to run the Android 
applications because this is the only medium to 
automate the generation of application system activity 
logs without using an actual mobile device. There is no 
much actual difference to using human input to be able 
to activate the behavioural activity of an application. 

However, the log data contains activities which are 
irrelevant for detection of malicious activity. With this 
problem of noise in the log data, the system utilizes a 
self-developed parser which is customized as to which 
features are to be collected.

 

b)

 

The Data Collection Processes

 

In order to collect the Android Applications 
data, the various monitors described are implemented 
as Android java programs in the Device Monitoring 
Application. This application is actually just a module in 
the complete detection system called HOSBAD. The 
application will serve as

 

the feature mining model which 
will run on the Android device to collect the features 
while the user interacts with Applications on the device. 
The feature mining model will monitor Android 
application activities implemented using a broadcast 
receiver and

 

record on going activity taking place on the 
device. Figure 1.2 shows the data collection stages by 
the feature mining model. 

 
 
 
 
 
 
 

Apps from Official 
Android Market

 

 

   

 

 

  

 

 

  

 

  

 

Apps from unofficial 
Android Market

 

 

 

 

Android 
Emulator/Device

 

Android Apps Logger

 

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015   Global Journals Inc.  (US)

3

G
lo
ba

l 
Jo

ur
na

l 
of
 C 
 o

m
p u

te
r 
S c

ie
nc

e 
an

d 
T  
ec

hn
ol
og

y  
  
  
  
  
V
ol
um

e 
X
V
 I
ss
ue

 V
 V

er
sio

n 
I

  
 (

)
E

Ye
ar

20
15

Figure 1. 1: Schematic of Application Acquisition 
Process

Figure 1. 2 :  The  Data  Collection Process



 

 

 

 

 

 

 

c)

 

Android Feature Collection

 

In order to apply any machine learning 
algorithm or classifier, it is fundamentally important to 
first and foremost collect relevant features. The features 
that Android as a system allows access permissions to 
depend on the type of device. The type of device here 
implies whether the device has been rooted or not. 
Android is based on the Linux kernel at the bottom layer, 
all layers on top of the kernel layer run without privileged 
mode. That is, all applications and system libraries are 
inside a virtual application sandbox. As a result of this 
architecture, applications are prohibited from accessing 

 

other application data (unless explicitly granted 
permission by other applications called the rooting 
applications). Thus, if a feature vector is created from 

features of Android API in unrooted mode, then only 
system information made available by Android can be 
used. On the other hand, having a rooted device allows 
one to install system tools that could gather features 
from underlying host and network behaviour

 

but doing 
this subject the device to serious security vulnerabilities 
as the entire device file system will be opened up to 
attacks.

 

In this Work, an unrooted device is used in 
order to collect Android application data. To be able to 
do this, a feature mining model which is a self-
developed application module that will be part of the 
detection system is used. This application is able to 
collect essential information from Android application 
such as installed applications and services running 
within the device before or after the Monitoring 
application was started, the date/time stamp, calls 
initiated from the device (outCalls), calls received by the 
device (InCalls), sent SMSs (OutSMS), SMSs received 
(InSMS), and the status of the device (Screen) as at 
when

 

the event took place. This information is written 
into a log file and stored on the SDcard of the device. 
This log file is a comma separated value in .csv format. 
Parsing these data with another self-developed code 
module will produce the feature vectors which is in .arff 
file format; the format acceptable by WEKA. This self-
developed code module that serves as a feature mining 
model for application enable us to create a folder were 
all monitored/recorded application logs in csv file format 
will be stored.

 

This csv file will be parsed by another 
parserto make feature vector file in arff. This arff file of 
feature vectors will be used as input to the Classifier in 
the Android malware detection system.

 Figure 1. 3 :

 

Features Extraction Processes

 

 

 

 

 

 

The data extraction application performs the 
following major task as it runs either in foreground or 
background. This is represented in Figure 1.3: the 
features extraction processes.  

 

i.

 

First, the Android application runs either on the 
emulator or real device, the Device Monitoring which 
implements the feature extraction model; a self-
developed module that implements the monitors 
runs in the background to intercepts and records 
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App Android 
Emulator/

Device

App 
Interaction Feature

Extraction LogFile

Log File
Parsing

App Trace 
logging Feature 

File.csv

the specified features (out call, in call, out SMS, in 
SMS, and device status).

ii. Secondly, the log stream is input to the parser in the 
Device Monitoring application and is parsed by 
filtering and formatting the log data to a readable 
form in a comma separated value (csv) format. 

iii. Finally, the csv file will then be parsed by another 
parser to generate a .arff file that will be used by the 
classifier.

i. Implementation Details
Although the code for the Device Monitoring 

application which is the data extraction model cannot be 
given here, the skeletal description of the different 
modules representing the respective monitors is 
presented. The broadcast receiver class for the calls
and receiving incoming SMS record the calls and SMS 
events into app preferences, there is no proper receiver 
for the outgoing SMS so special observer class is used 
in the service class. When this receiver is started in 
service, it doesn't work on real device, so it is registered 

The collector module in conjunction with the 
monitors will help to collect as much information as 
possible from the Android Applications installed on the 
device. This information include the Date/Time stamp, 
the application and services running on the device, out-
going calls, incoming calls, out-going SMS, incoming 
SMS, and Device screen status. This information is 
collectively referred to as feature of application or 
behaviours . For  each .apk file, the device user interaction 
is created or the emulator simulates user interaction by 
randomly interacting with the application interface. It 
should be note that due to the numerous Android 
Applications available in the Android market, it is not 
possible for one to monitor and record all Applications 
for the numerous available Android Applications, doing 
this will require the researcher to spend many years 
collecting all of the information about Applications 
available in the Android market. For this reason, few of 
the Applications were selected. 



 

 

 
 

 
 

 
  

 

in the manifest and the preferences is used. The 
structure of the public class; ReceiverCallSms that 
implements the calls and the SMS is given as; 

 

 
 

Within this class, the methods for the calls (out -
going and in-coming calls) and the in-coming SMS are 
implemented in a single method with a nextedif ..else

 

statement. 

 

The Inner broadcast receiver for monitoring the 
screen condition is implemented with the class 
ScreenReceiver which implements the onReceive 
method using special observer “intent”. 

 

The service monitoring is implemented by a 
class Service

 

Monitoring

 

with a method that records the 
services running on the device and the features to be 
extracted. The Binder function initiates the monitoring 
process when the start button is clicked and to stop the 
monitoring when the stop button is clicked. All 
monitored events and activities are written to a file in a 
comma separated value format.  The method checks for 
the presence of an SD card and create a folder there 
where the file will be stored or setup a Gmail account 
where the file will be sent to without user interference. 
The file is named using the device date/time stamp.csv.

 

Figure 1.4 shows a screenshot of the feature mining 
model application for the malware detection system.

 

 

 

Figure 1.4 :

 

Feature Mining

 

Model Application

 

The settings menu provides the avenue for 
creating folder where reports will be stored on the SD 
card and to also specify a Gmail account and mail 
subject if the report is to be sent to a remote recipient or 
possibly server for analysis.

 

d)

 

Feature Vectors

 

Analysing activities of the system will give an 
accurate representation of the behaviour of the 
applications. The aim of intercepting these activities is to 
create an output file containing the events generated by 
the Android applications. This file provides useful 
information such as opened and accessed applications, 
running applications, running services, timestamps, 
received SMSs, sent SMSs, calls received, calls initiated 
and device status as at the time of occurrence of the 
activity. This information generated by the Device 
Monitoring application is used to represent the 
behaviour of applications. 

 

IV.

 

Discussion of Result

 

A sample report obtained from a single run of 
the feature extraction model implemented as a Device 
Monitoring application is given and discussed here.
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public class ReceiverCallSms extends 
BroadcastReceiver {

07.10.2015 20:33:55,Monitoring Started
Time,AppName,OutCall,InCall,OutSMS,InSMS,Screen,Class
before,YouTube,0,0,0,0,1,?
before,Launcher,0,0,0,0,1,?
before,Torch,0,0,0,0,1,?
before,Opera Mini beta,0,0,0,0,1,?
before,Contacts,0,0,0,0,1,?
before,Phone,0,0,0,0,1,?



 

 

before,Facebook,0,0,0,0,1,? 
before,Messages,0,0,0,0,1,? 
before,com.mediatek.voicecommand.service.VoiceCommandManagerService,0,0,0,0,1,? 
before,com.mobogenie.service.WifiUpdateService,0,0,0,0,1,? 
before,ua.com.doublekey.devicemonitoring.ServiceMonitoring,0,0,0,0,1,? 
before,com.mobogenie.service.CommonService,0,0,0,0,1,? 
before,com.mediatek.CellConnService.PhoneStatesMgrService,0,0,0,0,1,? 
before,com.tecno.ime.IME,0,0,0,0,1,? 
before,com.mediatek.filemanager.service.FileManagerService,0,0,0,0,1,? 
before,com.mobogenie.service.MobogeniePushService,0,0,0,0,1,? 
before,com.afmobi.palmchat.LaunchService,0,0,0,0,1,? 
before,com.whatsapp.messaging.MessageService,0,0,0,0,1,? 
before,com.mediatek.FMRadio.FMRadioService,0,0,0,0,1,? 
before,com.facebook.push.mqtt.service.MqttPushService,0,0,0,0,1,? 
before,com.mobogenie.service.MobogenieService,0,0,0,0,1,? 
before,com.mobogenie.plugin.cys.cleaner.service.BackgroudCheckService,0,0,0,0,1,? 
07.10.2015 20:36:47,com.facebook.fbservice.service.DefaultBlueService,0,0,0,0,1,? 
07.10.2015 20:36:47,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 20:36:50,com.facebook.vault.service.VaultManagerService,0,0,0,0,1,? 
07.10.2015 20:36:52,com.facebook.analytics.service.AnalyticsService,0,0,0,0,1,? 
07.10.2015 20:37:50,com.facebook.fbservice.service.DefaultBlueService,0,0,0,0,1,? 
07.10.2015 20:41:07,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 20:41:15,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 20:42:24,Launcher,0,0,0,0,1,? 
07.10.2015 20:42:36,YouTube,0,0,0,0,1,? 
07.10.2015 20:45:35,Launcher,0,0,0,0,1,? 
07.10.2015 20:45:38,Google Play Store,0,0,0,0,1,? 
07.10.2015 20:45:44,Launcher,0,0,0,0,1,? 
07.10.2015 20:45:48,Gallery,0,0,0,0,1,? 
07.10.2015 20:47:55,Launcher,0,0,0,0,1,? 
07.10.2015 20:48:02,Torch,0,0,0,0,1,? 
07.10.2015 20:48:05,Launcher,0,0,0,0,1,? 
07.10.2015 20:48:18,Contacts,0,0,0,0,1,? 
07.10.2015 20:48:32,?,1,0,0,0,1,? 
07.10.2015 20:48:32,Phone,0,0,0,0,1,? 
07.10.2015 20:49:27,Contacts,0,0,0,0,1,? 
07.10.2015 20:49:29,Launcher,0,0,0,0,1,? 
07.10.2015 20:49:32,Email,0,0,0,0,1,? 
07.10.2015 20:51:12,Launcher,0,0,0,0,1,? 
07.10.2015 20:51:20,SendSMS,0,0,0,0,1,? 
07.10.2015 20:51:20,?,0,0,0,1,0,? 
07.10.2015 20:51:32,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 20:51:40,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 20:51:57,?,0,1,0,0,1,? 
07.10.2015 20:51:57,Phone,0,0,0,0,1,? 
07.10.2015 20:52:01,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 20:58:48,Launcher,0,0,0,0,1,? 
07.10.2015 20:58:49,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 21:07:04,WhatsApp,0,0,0,0,1,? 
07.10.2015 21:08:52,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 21:09:40,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,? 
07.10.2015 21:13:08,Tecno Input,0,0,0,0,1,? 
07.10.2015 21:13:10,WhatsApp,0,0,0,0,1,? 
07.10.2015 21:16:12,Launcher,0,0,0,0,1,? 
07.10.2015 21:16:28,SendSMS,0,0,0,0,1,? 
07.10.2015 21:16:53,Launcher,0,0,0,0,1,? 
07.10.2015 21:16:59,Device Monitoring,0,0,0,0,1,? 
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07.10.2015 21:17:00,Monitoring Stopped 
Tally:,,out calls: 1,in calls: 1,out sms: 0,in sms: 1 
The report shows the date and time the 

Monitoring Device application was started. Immediately 
after that line is the field or attributes of the collected 
information in a CSV manner. After the attributes are the 
attribute values entered in the order of the specified 
attributes. The first attribute is the Date/Time, followed 
by AppName, OutCall, InCall, OutSMS, InSMS, Screen, 
and finally the Class in that order. For applications and 
services running before the Monitoring Device 
application was started, the Date/Time stamp is 
indicated as “before” while the applications and services 
started after the Monitoring Device application was 
started, the date/time stamp is indicated.  

It is indeed very difficult to know which 
application performs a given activity since certain tasks 
are deprecated at application layer. Therefore, any 
activity that occurred without knowing which application 
perform the activity is given ‘?’ as the value for the 
AppName attribute at that point. For the OutCall, InCall, 
OutSMS, InSMS and Screen attribute, the attributes 
have Boolean values; the value 0 is entered to represent 
the absence of the attribute and 1 is entered to 
represent the presence of that attribute. For the Screen 
attribute that represents the device status which is either 
idle or active, the value 1 means that the screen is in 
‘ON’ or active state while 0 imply ‘OFF’ or idle state. 
Finally, the last attribute Class is not actually extracted 
from the applications or services by the Device 
Monitoring application but appended to the log file to 
indicate the class after classification is done using the 
classifier. Since the classification has not yet 
beencarried out on the data, the classes of the 
instances are undetermined and so they all have the 
value of ‘?’ that means unknown class (normal or 
malicious).  

When the Device Monitoring application is 
stopped, the event together with the Date/Time stamp of 
the event is registered and finally the report gives a 
summary of all the events in the form of count or tally. 

V. Hardware and Software 
The experiments were run on a laptop machine 

with the Intel Core-i3 -370M Processor, 3GBof available 
memory and 500GB Hard Disk Drive (HDD). This 
machine runs Windows 7 Operating System while 
Android Studio 1.2.2 Integrated Development 
Environment (IDE) was used as the Software 
Development Kit (SDK).  

VI. Summary and Conclusion
 

In this paper, we describe the development of a 
feature extraction model that is used to extract Android 
application behaviour for anomaly malware detection. 
The type of information that can be extracted depends 
on whether the device has been rooted or not. Our focus 
is on unrooted Android devices and the information that 

were extracted and used to describe Android 
application behaviours include date/time stamp of the 
running application and services given as Time, 
Application and service name (AppName), Outbound 
call (OutCall), Inbound call (InCall), Outbound SMS 
(OutSMS), Inbound SMS (InSMS) and the device status 
(Screen). The device status indicates whether there is an 
active interaction with the device by the user or not. 
When the screen is active (value of 1), it means there is 
active interaction with the device by the user and when 
the screen is idle or hibernated, it implies no active user 
interaction. Activities like sending SMS and initiating 
calls requires active user interaction. If these attributes 
have values of 1 when the screen state is idle (value of 
0) implies a suspicious or malicious behaviour is taking 
place on the device by an application.

 
Although other features could be added, these 

were used as a test base to realise the concept of 
anomaly detection system. As earlier stated, the type of 
information that can be intercepted depends on whether 
the device is rooted or not. Rooting a device is a bridge 
of security and therefore opens up the device to attacks. 
Since the aim is to improve security of mobile devices 
and applications with Android platform, an unrooted 
device is used. To be able to access more information 
that could be used to describe application behaviour for 
anomaly detection purposes, it is recommended that 
access to certain information like system calls, network 
traffic etc. which are presently deprecated in unrooted 
Android systems should be allowed access by Google 
in some ways.    
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