
© 2015. Joshua Abah, Waziri O.V., Abdullahi M.B., Ume U.A. & Adewale O.S. This is a research/review paper, distributed under the
terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/),
permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology: E
Network, Web & Security
Volume 15 Issue 5 Version 1.0 Year 2015
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

Extracting Android Applications Data for Anomaly-based
Malware Detection

By Joshua Abah, Waziri O.V., Abdullahi M.B., Ume U.A. & Adewale O.S.
 University of Technology Minna, Nigeria

Abstract- In order to apply any machine learning algorithm or classifier, it is fundamentally important
to first and foremost collect relevant features. This is most important in the field of dynamic analysis
approach to anomaly malware detection systems. In this approach, the behaviour patterns of
applications while in execution are analysed. The behaviour features that Android as a system allows
access permissions to depend on the type of device; either rooted or not. Android is based on the
Linux kernel at the bottom layer, all layers on top of the kernel run without privileged mode. Thus, if a
behaviour feature vector is created from features of Android (Application Programming Interface) API
in unrooted mode, then only system information made available by Android can be used. In this
paper, a Device Monitoring system for an unrooted device is developed and used to collect Android
application data. The application data is used to build feature vectors that describes the Android
application behaviour for Anomaly malware detection.

Keywords: android, anomaly detection, application behaviours, feature vectors, malware detection,
mobile device, rooted, unrooted.

GJCST-E Classification : C.1.3 D.4.6

ExtractingAndroidApplicationsDataforAnomalybasedMalwareDetection

Strictly as per the compliance and regulations of:

Extracting Android Applications Data for
Anomaly-based Malware Detection
Joshua Abah α, Waziri O.V.σ, Abdullahi M.B. ρ, Ume U.A.Ѡ & Adewale O.S. ¥

Keywords: android, anomaly detection, application
behaviours, feature vectors, malware detection, mobile
device, rooted, unrooted.

I. Introduction

ndroid is one of the most used Smartphone’s
operating System in the World (Srikanth, 2012).
Android is open source with huge user community

and documentations as a result of these, it allows any
programmer to develop and publish Applications to
both the Official or Unofficial market. There are over
seven hundred thousand Applications published via the
Official Android market, the Google Play Store (Zack,

2012). Malware attack is a challenging issue among the
Android user community. This is due to its open source
and a very huge adoption and market penetration,
making it a target for most malware developers. Android
is predicted to be the most used mobile Smartphone
platform by 2014 (You, Daeyeol, Hyung-Woo, Jae
&Jeong,2014) which has become a reality. This
ubiquitous gains of Android brings along with it security
risks in terms of malware attacks targeted at this
platform. It therefore becomes necessary to make the
platform safe for users by providing defence mechanism
especially against malware.

There are basically three approaches according
to (Burquera, Zurutuza&Nadjm-Tehrani,2011);(Aswathy,
2013); (Lovi&Divya, 2014) to mobile malware detection
approaches; static, dynamic and manifest file analyses.
While Static analysis focused on the use of patterns of
strings called signatures to detect malware presence,
dynamic analysis approach to malware detection uses
the behaviour pattern of Applications while in execution.
The third approach involves the analysis of Android
Manifest file. This paper presents a model for mining
Applications behaviours for detecting malware on the
Android platform using dynamic analysis.

The malware detector attempts to help protect
the system by detecting malicious behaviour (Aswathy,
2013). The malware detector performs its protection
through the manifested malware detection
Approaches.Detection methods for attacks on mobile
devices (Burquera, Zurutuza&Nadjm-Tehrani2011);(Wei,
Mao, Jeng, Lee, Wang& Wu, 2012); (Wu, Mao, Wei, Lee
& Wu, 2012);(Ham, Choi, Lee, Lim & Kim, 2012) have
been proposed to reduce the damage from the
distribution of malicious applications. However, a
mechanism that provides more accurate ways of
determining normal applications and malicious
applications on Android mobile devices must be
developed and a procedure for obtaining the features
well defined. This paper developed a model for
extracting Android application behaviours through
events of normal applications and malicious
applications, using a customized approach.

The research employs Anomaly-based
detection in a host-based manner to monitor activity that
occurs on the target host system. This system is
capable of monitoring features of the Android system
such as calls received, calls initiated, system calls
invoked by running applications, Short Messaging

A

© 2015 Global Journals Inc. (US)

1

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

Abstract- In order to apply any machine learning algorithm or
classifier, it is fundamentally important to first and foremost
collect relevant features. This is most important in the field of
dynamic analysis approach to anomaly malware detection
systems. In this approach, the behaviour patterns of
applications while in execution are analysed. The behaviour
features that Android as a system allows access permissions
to depend on the type of device; either rooted or not. Android
is based on the Linux kernel at the bottom layer, all layers on
top of the kernel run without privileged mode. Thus, if a
behaviour feature vector is created from features of Android
(Application Programming Interface) API in unrooted mode,
then only system information made available by Android can
be used. In this paper, a Device Monitoring system for an
unrooted device is developed and used to collect Android
application data. The application data is used to build feature
vectors that describes the Android application behaviour for
Anomaly malware detection. This application is able to collect
essential information from Android application such as
installed applications and services running within the device
before or after the Monitoring application was started, the
date/time stamp, calls initiated from the device, calls received
by the device, sent short message services (SMSs), SMSs
received, and the status of the device as at when the event
took place. This information is logged in a comma separated
value (.csv) file format and stored on the SDcard of the device.
The .csv file is converted to attribute relation file format (.arff);
the format acceptable by WEKA machine learning tool. This.
arff file of feature vectors is then used as input to the Classifier
in the Android malware detection system.

Author α ρ ¥ : Department of Computer Science, Federal University of
Technology Minna, Nigeria. e-mails: jehoshua_a@yahoo.com,
abah@unimaid.edu.ng, el.bashir02@futminna.edu.ng,,
adewale@futa.edu.ng
Author σ : Department of Cyber Security Science, Federal University of
Technology Minna, Nigeria. e-mail: victor.waziri@futminna.edu.ng,
onomzavictor@gmail.com
Author Ѡ : Department of Information and Media Technology, Federal
University of Technology Minna, Nigeria.
e-mail: drarthurume@gmail.com

Services (SMSs) received, SMSs sent and screen status
of the target device. Anomaly-based detection systems
use a prior training phase to establish a normality model
for the system activity. In this method of detection, the
detection system is first trained on the normal behaviour
of the application or target system to be monitored.
Using this normality model of behaviour, it becomes
possible to detect anomalous activities by looking for
abnormal behaviour or activities that deviate from the
defined normal behaviour occurring in the system.
Though this technique look more complex, it has the
advantage of being able to detect new and unknown
malware attacks. Anomaly-based detection requires the
use of feature vectors to train the classifier before
subsequent classification can be carried out. These
feature vectors are obtained from features or data
collected from the system.

The objective of this work is to extract Android
applications data from an unrooted android device and
using them to effectively describe the system behaviour.
The structure of this paper is given as follows: section
one provides a brief introduction; section two gives
related literatures; section three discuss the
Experimental procedures and setup; section four
provides the discussion of result; section five provide
the hardware and software used for the experimentation
and finally, section six gives the summary and
conclusion of the work.

II. Related Works

Android malware detection systems available
currently employs static approach to malware detection
by scanning files for byte sequences of known malware
Applications. Anomaly-based detection is still in a
developmental stage and researches are ongoing. As a
result, the current approaches are not able to detect
unknown attacks. Unknown malware attacks also
referred to as ‘zero day attacks’ are attacks carried out
by unknown malware whose signatures have not been
analysed and obtained. Several approaches with
different metrics for defining Android application
behaviours have been developed and are discussed.

You Jounget al. (2014);You Joung&Hyung-Woo,
(2014)presented an approach for determining malicious
attack on Android using System Call Event Pattern
Analysis. In their work, system calls invoked by
executing Applications of different categories and their
frequency of occurrences is used as the metrics for
defining Applications behaviour. Their analysis was
carried out on Linux system rather than on mobile
device. Abelaet al.(2013) developed AMDA an
automated malware detection system for the Android
platform. The core modules of the system included the
Feature Extraction Module and the Behaviour Analysis
Module. The Feature Extraction Module generates
activity log from running applications retrieved from the
application repository of the system. The activity log

contains the system calls from application activity which
are the features that the module retrieves.

 Mohammed et al. (2014) in the Automatic
Feature Extraction part of their work proposed and
implemented an approach to detect malicious
applications statically through a set of well-defined APIs.
Similarly, Tchakounté, &Dayang (2013) used a static
approach to analyse System calls of malware on the
Android platform.Lin et al, (2013)proposed SCSdroid,
which uses the thread-grained system calls sequences,
because these sequences can be regarded as the
actual behaviour of the application. Their approach is a
step further from just system calls of Applications to
carter for malware repackaged applications.
Luoxu & Qinghua, (2013) presented a static approach to
their Runtime-based Behaviour Dynamic Analysis
System for Android Malware Detection. They used
Loadable Kernel Module hooking to hook the Android
system and then collect data. The collected data consist
of IMSI, SIM, IMEI, TEL, call log, SMS, MAIL and so on.
The technology of analysis is semantic analysis and
regular expression.

 Yousra, Wenliang&Heng,(2013) used APIs as
the feature for describing Android behaviours used for
detecting malware. To select the best features that
distinguish between malware from benign applications,
API level information within the bytecode were used
since it conveys substantial semantics about the apps
behaviour. More specifically, they focused on critical API
calls, their package level information, as well as their
parameters. Dini, Martinelli, Saracino&Sgandurra,
(2012)employed two-layer applications behaviour
features in order to properly described Android malware
behaviours. These include System calls from the kernel
layer and other features from the Applications layer. This
approach tend to provide a better description of the
system than a monolithic view of just a single layer as it
considered both the Operating System layer behaviours
and the Applications layer behaviours.

 It is observed from all the reviewed literatures
that System calls pattern analysis played a critical role in
providing Android Applications behaviour pattern. It is
therefore clear that System calls as features could best
be used either singly or in addition to other features to
describe Application behaviours not just in Android but
any mobile platform.

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)1

2

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

In this section, the various activities carried out
and the different modules implemented to ensure
application feature behaviours are intercepted for use in
malware detection process are discussed. But before
then we show the big picture of the entire malware
detection system in a schematic form as in Figure 1.0.

III. Experimental Procedures and
Setup

Figure 1. 0

: Architecture of the Android Malware Detection System (HOSBAD)

a)

Application Acquisition Process

The Application Acquisition process involves
downloading applications from Android Markets and
storing them into the application repository folder.
Applications which could be normal or malicious are
downloaded both from the Official Android market and
unofficial Android markets. Figure 1.1 shows the
Application acquisition processes.

Each of these Applications is executed in an
instrumented Android emulator via Android Virtual
Device (AVD). An Android 2.3.3 software development
kit (SDK) emulator is used to run the Android
applications because this is the only medium to
automate the generation of application system activity
logs without using an actual mobile device. There is no
much actual difference to using human input to be able
to activate the behavioural activity of an application.

However, the log data contains activities which are
irrelevant for detection of malicious activity. With this
problem of noise in the log data, the system utilizes a
self-developed parser which is customized as to which
features are to be collected.

b)

The Data Collection Processes

In order to collect the Android Applications
data, the various monitors described are implemented
as Android java programs in the Device Monitoring
Application. This application is actually just a module in
the complete detection system called HOSBAD. The
application will serve as

the feature mining model which
will run on the Android device to collect the features
while the user interacts with Applications on the device.
The feature mining model will monitor Android
application activities implemented using a broadcast
receiver and

record on going activity taking place on the
device. Figure 1.2 shows the data collection stages by
the feature mining model.

Apps from Official
Android Market

Apps from unofficial
Android Market

Android
Emulator/Device

Android Apps Logger

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)

3

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

Figure 1. 1: Schematic of Application Acquisition
Process

Figure 1. 2 : The Data Collection Process

c)

Android Feature Collection

In order to apply any machine learning
algorithm or classifier, it is fundamentally important to
first and foremost collect relevant features. The features
that Android as a system allows access permissions to
depend on the type of device. The type of device here
implies whether the device has been rooted or not.
Android is based on the Linux kernel at the bottom layer,
all layers on top of the kernel layer run without privileged
mode. That is, all applications and system libraries are
inside a virtual application sandbox. As a result of this
architecture, applications are prohibited from accessing

other application data (unless explicitly granted
permission by other applications called the rooting
applications). Thus, if a feature vector is created from

features of Android API in unrooted mode, then only
system information made available by Android can be
used. On the other hand, having a rooted device allows
one to install system tools that could gather features
from underlying host and network behaviour

but doing
this subject the device to serious security vulnerabilities
as the entire device file system will be opened up to
attacks.

In this Work, an unrooted device is used in
order to collect Android application data. To be able to
do this, a feature mining model which is a self-
developed application module that will be part of the
detection system is used. This application is able to
collect essential information from Android application
such as installed applications and services running
within the device before or after the Monitoring
application was started, the date/time stamp, calls
initiated from the device (outCalls), calls received by the
device (InCalls), sent SMSs (OutSMS), SMSs received
(InSMS), and the status of the device (Screen) as at
when

the event took place. This information is written
into a log file and stored on the SDcard of the device.
This log file is a comma separated value in .csv format.
Parsing these data with another self-developed code
module will produce the feature vectors which is in .arff
file format; the format acceptable by WEKA. This self-
developed code module that serves as a feature mining
model for application enable us to create a folder were
all monitored/recorded application logs in csv file format
will be stored.

This csv file will be parsed by another
parserto make feature vector file in arff. This arff file of
feature vectors will be used as input to the Classifier in
the Android malware detection system.

 Figure 1. 3 :

Features Extraction Processes

The data extraction application performs the
following major task as it runs either in foreground or
background. This is represented in Figure 1.3: the
features extraction processes.

i.

First, the Android application runs either on the
emulator or real device, the Device Monitoring which
implements the feature extraction model; a self-
developed module that implements the monitors
runs in the background to intercepts and records

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)1

4

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

App Android
Emulator/

Device

App
Interaction Feature

Extraction LogFile

Log File
Parsing

App Trace
logging Feature

File.csv

the specified features (out call, in call, out SMS, in
SMS, and device status).

ii. Secondly, the log stream is input to the parser in the
Device Monitoring application and is parsed by
filtering and formatting the log data to a readable
form in a comma separated value (csv) format.

iii. Finally, the csv file will then be parsed by another
parser to generate a .arff file that will be used by the
classifier.

i. Implementation Details
Although the code for the Device Monitoring

application which is the data extraction model cannot be
given here, the skeletal description of the different
modules representing the respective monitors is
presented. The broadcast receiver class for the calls
and receiving incoming SMS record the calls and SMS
events into app preferences, there is no proper receiver
for the outgoing SMS so special observer class is used
in the service class. When this receiver is started in
service, it doesn't work on real device, so it is registered

The collector module in conjunction with the
monitors will help to collect as much information as
possible from the Android Applications installed on the
device. This information include the Date/Time stamp,
the application and services running on the device, out-
going calls, incoming calls, out-going SMS, incoming
SMS, and Device screen status. This information is
collectively referred to as feature of application or
behaviours . For each .apk file, the device user interaction
is created or the emulator simulates user interaction by
randomly interacting with the application interface. It
should be note that due to the numerous Android
Applications available in the Android market, it is not
possible for one to monitor and record all Applications
for the numerous available Android Applications, doing
this will require the researcher to spend many years
collecting all of the information about Applications
available in the Android market. For this reason, few of
the Applications were selected.

in the manifest and the preferences is used. The
structure of the public class; ReceiverCallSms that
implements the calls and the SMS is given as;

Within this class, the methods for the calls (out -
going and in-coming calls) and the in-coming SMS are
implemented in a single method with a nextedif ..else

statement.

The Inner broadcast receiver for monitoring the
screen condition is implemented with the class
ScreenReceiver which implements the onReceive
method using special observer “intent”.

The service monitoring is implemented by a
class Service

Monitoring

with a method that records the
services running on the device and the features to be
extracted. The Binder function initiates the monitoring
process when the start button is clicked and to stop the
monitoring when the stop button is clicked. All
monitored events and activities are written to a file in a
comma separated value format. The method checks for
the presence of an SD card and create a folder there
where the file will be stored or setup a Gmail account
where the file will be sent to without user interference.
The file is named using the device date/time stamp.csv.

Figure 1.4 shows a screenshot of the feature mining
model application for the malware detection system.

Figure 1.4 :

Feature Mining

Model Application

The settings menu provides the avenue for
creating folder where reports will be stored on the SD
card and to also specify a Gmail account and mail
subject if the report is to be sent to a remote recipient or
possibly server for analysis.

d)

Feature Vectors

Analysing activities of the system will give an
accurate representation of the behaviour of the
applications. The aim of intercepting these activities is to
create an output file containing the events generated by
the Android applications. This file provides useful
information such as opened and accessed applications,
running applications, running services, timestamps,
received SMSs, sent SMSs, calls received, calls initiated
and device status as at the time of occurrence of the
activity. This information generated by the Device
Monitoring application is used to represent the
behaviour of applications.

IV.

Discussion of Result

A sample report obtained from a single run of
the feature extraction model implemented as a Device
Monitoring application is given and discussed here.

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)

5

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

public class ReceiverCallSms extends
BroadcastReceiver {

07.10.2015 20:33:55,Monitoring Started
Time,AppName,OutCall,InCall,OutSMS,InSMS,Screen,Class
before,YouTube,0,0,0,0,1,?
before,Launcher,0,0,0,0,1,?
before,Torch,0,0,0,0,1,?
before,Opera Mini beta,0,0,0,0,1,?
before,Contacts,0,0,0,0,1,?
before,Phone,0,0,0,0,1,?

before,Facebook,0,0,0,0,1,?
before,Messages,0,0,0,0,1,?
before,com.mediatek.voicecommand.service.VoiceCommandManagerService,0,0,0,0,1,?
before,com.mobogenie.service.WifiUpdateService,0,0,0,0,1,?
before,ua.com.doublekey.devicemonitoring.ServiceMonitoring,0,0,0,0,1,?
before,com.mobogenie.service.CommonService,0,0,0,0,1,?
before,com.mediatek.CellConnService.PhoneStatesMgrService,0,0,0,0,1,?
before,com.tecno.ime.IME,0,0,0,0,1,?
before,com.mediatek.filemanager.service.FileManagerService,0,0,0,0,1,?
before,com.mobogenie.service.MobogeniePushService,0,0,0,0,1,?
before,com.afmobi.palmchat.LaunchService,0,0,0,0,1,?
before,com.whatsapp.messaging.MessageService,0,0,0,0,1,?
before,com.mediatek.FMRadio.FMRadioService,0,0,0,0,1,?
before,com.facebook.push.mqtt.service.MqttPushService,0,0,0,0,1,?
before,com.mobogenie.service.MobogenieService,0,0,0,0,1,?
before,com.mobogenie.plugin.cys.cleaner.service.BackgroudCheckService,0,0,0,0,1,?
07.10.2015 20:36:47,com.facebook.fbservice.service.DefaultBlueService,0,0,0,0,1,?
07.10.2015 20:36:47,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 20:36:50,com.facebook.vault.service.VaultManagerService,0,0,0,0,1,?
07.10.2015 20:36:52,com.facebook.analytics.service.AnalyticsService,0,0,0,0,1,?
07.10.2015 20:37:50,com.facebook.fbservice.service.DefaultBlueService,0,0,0,0,1,?
07.10.2015 20:41:07,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 20:41:15,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 20:42:24,Launcher,0,0,0,0,1,?
07.10.2015 20:42:36,YouTube,0,0,0,0,1,?
07.10.2015 20:45:35,Launcher,0,0,0,0,1,?
07.10.2015 20:45:38,Google Play Store,0,0,0,0,1,?
07.10.2015 20:45:44,Launcher,0,0,0,0,1,?
07.10.2015 20:45:48,Gallery,0,0,0,0,1,?
07.10.2015 20:47:55,Launcher,0,0,0,0,1,?
07.10.2015 20:48:02,Torch,0,0,0,0,1,?
07.10.2015 20:48:05,Launcher,0,0,0,0,1,?
07.10.2015 20:48:18,Contacts,0,0,0,0,1,?
07.10.2015 20:48:32,?,1,0,0,0,1,?
07.10.2015 20:48:32,Phone,0,0,0,0,1,?
07.10.2015 20:49:27,Contacts,0,0,0,0,1,?
07.10.2015 20:49:29,Launcher,0,0,0,0,1,?
07.10.2015 20:49:32,Email,0,0,0,0,1,?
07.10.2015 20:51:12,Launcher,0,0,0,0,1,?
07.10.2015 20:51:20,SendSMS,0,0,0,0,1,?
07.10.2015 20:51:20,?,0,0,0,1,0,?
07.10.2015 20:51:32,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 20:51:40,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 20:51:57,?,0,1,0,0,1,?
07.10.2015 20:51:57,Phone,0,0,0,0,1,?
07.10.2015 20:52:01,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 20:58:48,Launcher,0,0,0,0,1,?
07.10.2015 20:58:49,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 21:07:04,WhatsApp,0,0,0,0,1,?
07.10.2015 21:08:52,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 21:09:40,com.facebook.conditionalworker.ConditionalWorkerService,0,0,0,0,1,?
07.10.2015 21:13:08,Tecno Input,0,0,0,0,1,?
07.10.2015 21:13:10,WhatsApp,0,0,0,0,1,?
07.10.2015 21:16:12,Launcher,0,0,0,0,1,?
07.10.2015 21:16:28,SendSMS,0,0,0,0,1,?
07.10.2015 21:16:53,Launcher,0,0,0,0,1,?
07.10.2015 21:16:59,Device Monitoring,0,0,0,0,1,?

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)1

6

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

07.10.2015 21:17:00,Monitoring Stopped
Tally:,,out calls: 1,in calls: 1,out sms: 0,in sms: 1
The report shows the date and time the

Monitoring Device application was started. Immediately
after that line is the field or attributes of the collected
information in a CSV manner. After the attributes are the
attribute values entered in the order of the specified
attributes. The first attribute is the Date/Time, followed
by AppName, OutCall, InCall, OutSMS, InSMS, Screen,
and finally the Class in that order. For applications and
services running before the Monitoring Device
application was started, the Date/Time stamp is
indicated as “before” while the applications and services
started after the Monitoring Device application was
started, the date/time stamp is indicated.

It is indeed very difficult to know which
application performs a given activity since certain tasks
are deprecated at application layer. Therefore, any
activity that occurred without knowing which application
perform the activity is given ‘?’ as the value for the
AppName attribute at that point. For the OutCall, InCall,
OutSMS, InSMS and Screen attribute, the attributes
have Boolean values; the value 0 is entered to represent
the absence of the attribute and 1 is entered to
represent the presence of that attribute. For the Screen
attribute that represents the device status which is either
idle or active, the value 1 means that the screen is in
‘ON’ or active state while 0 imply ‘OFF’ or idle state.
Finally, the last attribute Class is not actually extracted
from the applications or services by the Device
Monitoring application but appended to the log file to
indicate the class after classification is done using the
classifier. Since the classification has not yet
beencarried out on the data, the classes of the
instances are undetermined and so they all have the
value of ‘?’ that means unknown class (normal or
malicious).

When the Device Monitoring application is
stopped, the event together with the Date/Time stamp of
the event is registered and finally the report gives a
summary of all the events in the form of count or tally.

V. Hardware and Software
The experiments were run on a laptop machine

with the Intel Core-i3 -370M Processor, 3GBof available
memory and 500GB Hard Disk Drive (HDD). This
machine runs Windows 7 Operating System while
Android Studio 1.2.2 Integrated Development
Environment (IDE) was used as the Software
Development Kit (SDK).

VI. Summary and Conclusion

In this paper, we describe the development of a
feature extraction model that is used to extract Android
application behaviour for anomaly malware detection.
The type of information that can be extracted depends
on whether the device has been rooted or not. Our focus
is on unrooted Android devices and the information that

were extracted and used to describe Android
application behaviours include date/time stamp of the
running application and services given as Time,
Application and service name (AppName), Outbound
call (OutCall), Inbound call (InCall), Outbound SMS
(OutSMS), Inbound SMS (InSMS) and the device status
(Screen). The device status indicates whether there is an
active interaction with the device by the user or not.
When the screen is active (value of 1), it means there is
active interaction with the device by the user and when
the screen is idle or hibernated, it implies no active user
interaction. Activities like sending SMS and initiating
calls requires active user interaction. If these attributes
have values of 1 when the screen state is idle (value of
0) implies a suspicious or malicious behaviour is taking
place on the device by an application.

Although other features could be added, these

were used as a test base to realise the concept of
anomaly detection system. As earlier stated, the type of
information that can be intercepted depends on whether
the device is rooted or not. Rooting a device is a bridge
of security and therefore opens up the device to attacks.
Since the aim is to improve security of mobile devices
and applications with Android platform, an unrooted
device is used. To be able to access more information
that could be used to describe application behaviour for
anomaly detection purposes, it is recommended that
access to certain information like system calls, network
traffic etc. which are presently deprecated in unrooted
Android systems should be allowed access by Google
in some ways.

 References Références Referencias

 1.

Abela Kevin, Joshua AngelesL., Don Kristopher E.,
Delas Alas, Jan Raynier P., Tolentino, Robert
Joseph and Gomez, Miguel Alberto N. (2013). An
Automated Malware Detection System for Android
using Behavior-based Analysis AMDA. International
Journal of Cyber-Security and Digital Forensics
(IJCSDF) 2 (2), pp 1-11

The Society of Digital
Information and Wireless Communications.

2.

You Joung Ham and Hyung-Woo Lee (2014).
Detection of Malicious Android Mobile Applications
Based on Aggregated System Call Events.
International Journal of Computer and
Communication Engineering, 3 (2), pp 149 -154,

March 2014.

3.

Ham Y.J., Choi W.B., Lee H.W., Lim J.D. and Kim

J.N. (2012), Vulnerability monitoring mechanism in
Android based smartphone with correlation analysis
on event-driven activities” 2012 2nd

International

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)

7

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

Conference on Computer Science and Network
Technology, pp. 371-375.

4. Wu D.J., Mao C.H., Wei T.E., Lee H.M. and Wu K.P.
(2012), Droid Mat: Android Malware Detection

through Manifest and API Calls Tracing, 7th

Asia
Joint Conference on Information Security.

5.

Wei T.E., Mao C.H., Jeng A.B., Lee H.M., Wang H.T.
and Wu D.J. (2012), Android Malware Detection via
a Latent Network Behaviour Analysis, IEEE 11th
International Conference on Trust, Security and
Privacy in Computing and Communications.

6.

Burquera I., Zurutuza U. and Nadjm-Tehrani S.
(2011). Crowdroid: behavior-based malware
detection system for Android, Proceedings of the
1st ACM

workshop on Security and privacy in
smartphones and mobile devices, pp. 15-26.

7.

You Joung Ham, Daeyeol Moon, Hyung-Woo Lee,
Jae Deok Lim and Jeong Nyeo Kim (2014). Android
Mobile Application System Call Event Pattern
Analysis for Determination of Malicious Attack.
International Journal of Security and Its Applications

8(1), pp.231-246, http://dx.doi.org/10. 14257/ijsia.
2014.8.1.22

8.

Zack, Islam (2012). Google Play Matches Apple's
iOS With 700,000 Apps. Businessweek, 30 October
2012. Retrieved fromhttp://www.tomsguide.com/u
s/Google-Play-Android-Apple-iOS,news-16235.html

9.

Dini, G., Martinelli, F., Saracino, A. and Sgandurra,
A. (2012). MADAM: A Multi-level Anomaly Detector
for Android Malware. Computer Network Security,
Lecture Notes in Computer Science, 7531, 240-253.

10.

YousraAafer, Wenliang Du, and Heng Yin, (2013).

Droid

APIMiner: Mining API-Level Features for
Robust Malware Detection in Android. pp 1-18.
Retrieved from http://www.google.com

11.

Luoxu Min and Qinghua Cao, (2013).Runtime-based
Behaviour Dynamic Analysis System for Android
Malware Detection. pp. 1-4. Retrieved from http://
www.google.com

12.

Ying-Dar Lin, Yuan-Cheng Lai, Chien-Hung Chen,
and Hao-Chuan Tsai (2013). Identifying Android
Malicious Repackaged Applications by Thread-
grained System call Sequences, Elsevier:Computers
& Security, pp 1-11, (2013), http://dx.doi.org/

10.1016/j.cose.2013.08.010

13.

Lovi

Dua and Divya Bansal (2014).Taxonomy:
Mobile MalwareThreats and Detection Techniques.
Dhinaharan Nagamalai et al. (Eds) :

ACITY, WiMoN,
CSIA, AIAA, DPPR, NECO, In

WeS–2014 pp. 213–
221.

14.

Aswathy Dinesh (2013). An Analysis of Mobile
Malware and Detection Techniques. pp 1-13.
Retrieved from http://www.google.com

15.

Tchakounté F. and Dayang P. (2013). System Calls
Analysis of Malwares on Android. International
Journal of Science and Technology

2(9), pp 669-674
September, 2013.

16.

Muhammad ZuhairQadir, AtifNisar Jilani, and
Hassam Ullah Sheikh (2014).

Automatic Feature
Extraction, Categorization and Detection of

Malicious Code in Android Applications.
International Journal of Information & Network
Security (IJINS)3(1), pp. 12~17, February 2014.

17.

Srikanth, R. (2012). Mobile Malware Evolution,
Detection and Defense. Unpublished Term Survey
Paper, Institute for Computing, Information and
Cognitive Systems, University of British Columbia,
Vancouver, Canada.

Extracting Android Applications Data for Anomaly-based Malware Detection

© 2015 Global Journals Inc. (US)1

8

G
lo
ba

l
Jo

ur
na

l
of
 C
 o

m
p u

te
r
S c

ie
nc

e
an

d
T
ec

hn
ol
og

y

V
ol
um

e
X
V
 I
ss
ue

 V
 V

er
sio

n
I

 (

)
E

Ye
ar

20
15

	Extracting Android Applications Data for Anomaly-based Malware Detection
	Author
	Keywords
	I. Introduction
	II. Related Works
	III. Experimental Procedures andSetup
	a) Application Acquisition Process
	b) The Data Collection Processes
	c) Android Feature Collection
	d) Feature Vectors

	IV. Discussion of Result
	V. Hardware and Software
	VI. Summary and Conclusion
	Referenc es Références Referencias

