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Abstract 

• The paper aimed at presenting the results of a comparative analysis of the 

shortest path using Dijkstra’s and floyd’s Algorithms to find minimum 

links for commercial motorcycles that ply the routes in particular town. 

For the two algorithms, minimum paths were identified to ease good 

movement and reduce cost of fueling for the commercial motorcyclists. 

The results shows that floyd’s is more effective in solving shortest path 

between all pairs while dijkstra is more effective between a given pairs. It 

was concluded that both algorithms are effective/efficient (because they 

provide the same solution) depending on what the problem solver wants 

 

•  Keywords: Dijksta’s Algorithm, Floyd’s, Algorithm, Optimal 

transportation Network, Town  Service. 



1.0 Introduction 

Networks arise in numerous settings and in a variety of ways, ranging from 

transportation, electrical, and communication networks which pervade our daily 

lives. It is necessary for the movement of people, transportation of goods, 

communicate information and control of the flow of matter and energy. 

Network application is quite vast. Phenomena that are represented and analyzed 

as networks are roads, railways, cables, pipelines, production, distribution, 

project planning, facilities location,resource management, and financial 

planning, etc. It provides a powerful visual and conceptual aid that is used to 

portray the relationships between the components of systems in virtually every 

field of scientific, social, and economic endeavor.  



The shortest path problem is a problem of finding the shortest path or route 

from a starting point to a final destination. Generally, in order to represent the 

shortest path problem we use graphs. A graph is a mathematical abstraction 

that is useful for solving different networking problems. It is used to solve such 

problems contains sets of vertices and edges. Pairs of vertices are connected by 

edges, while movement from one vertex to other vertices can be done along the 

edges. It can be directed or undirected depending on the movement along the 

edges, either walking on both sides or on only one side. Lengths of edges are 

often called weights which are normally used to calculate the shortest path 

from a particular point to another point.  

1.0 Introduction 



In the real world, the graph theory can be applied to different scenarios. A 

practical example is map representation using a graph, where vertices and 

edges represent cities and routes that connect the cities respectively. One-way 

routes are directed graphs, while routes that are not one-way are undirected. 

Finding the shortest paths plays an important role in solving network based 

systems. In graph theory, a number of algorithms can be applied for finding the 

shortest path in a graph based network system. This reduces the complexity of 

the network path, the cost, and the time to build and maintain the network 

based systems. 

 

1.0 Introduction 



 1.0 Introduction 

In recent times, planning efficient routes is very essential for business and 

industry with applications as varied as product distribution. It is essential for 

products or services to be delivered on time at the best price using the 

shortest available route. The shortest route network model is an efficient route 

that can be used in planning. This network model is applied in 

telecommunications and transportation planning. There are different types of 

algorithms that are used to solve shortest path problems. However, the 

Dijkstra’s and floyd’s algorithms are the concern for this paper. 



2.0 Aim of the Study 

This paper aimed to compare the performance of Dijkstra’s and 

Floyd’s algorithms in determining the minimum link paths and 

associated trip volumes between given origin-destination zones for 

commercial Motorcycles that carry out town service in Bida. 



 3.0 LITERATURE REVIEW  

3.1 Dijkstra’s Algorithm 

Dijkstra’s algorithm is an algorithm named after its developer, Dijkstra 

Oliver in 1959.  He conceived a graph search algorithm that can be used 

to solve the single-source shortest path problem for any graph that has a 

non-negative edge path cost. This graph search algorithm was later 

modified by Lee in 2006 and was applied to the vehicle guidance system. 

Dijkstra’s algorithm or variations of it are the most commonly used route 

finding algorithm for solving the shortest path (Sadeghi-Niarakiet al., 

2011). This vehicle guidance system is divided into two paths; namely, the 

shortest path and the fastest path algorithms(Chen et al., 2009). 



While the shortest path algorithm focuses on route length parameter and 

calculates the shortest route between each OD pair, the fastest path algorithm 

focuses on the path with minimum travel time. The future travel time can be 

predicted based on prediction models using historical data for link travel time 

information which can be daily, weekly or even a session. 

 

Meghanathan (2012) reviewed Dijkstra’s algorithm and Bellman-Ford algorithm 

for finding the shortest path in a graph. He concluded that the time complexity of 

Dijkstra’s algorithm is O (|E|*log |V|) while the time complexity of the Bellman-

Ford algorithm is O (|V||E|). 

3.1 Dijkstra’s Algorithm 



3.2 Floyd’s Algorithm 

Floyd-Warshall algorithm was familiarized by Robert Floyd in 1962 to 

resolve the problem of all pairs shortest path for weighted graph. However, it 

is essentially the same as algorithms previously published by Bernard Roy in 

1959 and also by Stephen Warshall in 1962 for finding the transitive closure 

of a graph. It is a graph analysis algorithm for finding shortest paths in a 

weighted graph with positive or negative edge weights but with no negative 

cycles, and also for finding transitive closure of a relation R. A single 

execution of the algorithm will find the lengths (summed weights) of the 

shortest paths between all pairs of vertices, though it does not return details 

of the paths themselves. 



3.2 Floyd’s Algorithm 

Borgwardt et al (2005)researched on the shortest-path kernel as applicable 

to all graphs on which Floyd-Warshall can be performed. The requirement 

of Floyd-Warshall is that cycles that have negative weight do not exist. This 

condition generally holds if distances are represented by edge labels. 



 4.0 Methodology 

This work had its case study at Bida town which is the second largest city in 

Niger State with an estimated population of 178,840 (Census, 2007). It is 

located southwest of Minna, capital of Niger State. It is a dry, arid town. The 

major ethnic group is the Nupe. Bida is the headquarters of the Nupe 

Kingdom led by the Etsu Nupe.  

Primary data was obtained by noting the time (in minutes) that it took 

motorcycles to ride from a particular origin to a particular destination; and 

counting the volume of flow between the eight selected zones. The data 

analysis was the application of Dijkstra’s algorithm with the following steps:  



i. Initialize by assigning a permanent label of zero to the home node 

(source). All other node labels are declared to be temporary and are 

equal to the direct distance from the source node to that node. Select 

the minimum of these temporary labels and declare it permanent. In 

the event of a tie, choose them arbitrarily. 

ii. Suppose that node K has been assigned a permanent label most 

recently, consider the remaining nodes with temporary labels. 

Compare, one at a time, the temporary label of each node to the sum of 

the permanent label of node K and the direct distance from node K to 

the node under consideration. Assign the minimum of these distances 

as the new temporary label for that node. If the old temporary label is 

still minimal, then it will remain unchanged during this step. 



iii. Select the minimum of all of the temporary labels and declare it 

permanent. In the case of ties, select just one of them and declare it 

permanent. If this happens to the destination node, then terminate. 

Otherwise go to step (i). 

Floyd’s Algorithm on the other hand represents an n-node network as a 

square matrix with n rows and n columns. It works by updating two matrices, 

namely and, n times for an n - node network. The matrix, in any iteration k, 

gives the value of the shortest distance (time) between all pairs of nodes (i, j) 

as obtained till the kth iteration. The matrix has  as its elements. The value of  

gives the immediate predecessor node from node i to node j on the shortest 

path as determined by the kth iteration. 



D0 and S0 give the starting matrices and Dn and Sn give the final matrices for an 

n-node system. The first task is to determine Do and So. Do is taken up first. 

The element dij of matrix Do are defined as follows: If a link (branch) exists 

between nodes i and j the length of the shortest path between these nodes 

equals length l (i, j) of branch (i, j) which connects them. Should there be 

several branches between nodes i and node j, the length of the shortest path dij 

must equal the length of the shortest branch, that is,  

 

d0
ij = min[l1(i,j),l2(i,j),…lm(i,j)]                                                     (1) 

 

Where m is the number of branches between node i and node j. 



It is clear that d0
ij = 0 when i = j. In the case when there is no direct link 

between node i and node j, we have no information at the beginning concerning 

the length of the shortest path between these two nodes so we treat them as 

though they were infinitely far from each other, that is, 

d0
ij = ∞        (2) 

Elements s0
ij of the predecessor matrix So are defined as follows: 

First, we assume that s0
ij = i, for i  j, i.e. that for every pair of nodes (i, j) for i  j, 

the immediate predecessor of node j on the shortest path leading from node i to 

node j is actually node i. After defining Do and So the following steps are used 

repeatedly to determine Dn and Sn. 

Step 1: Let k = 1 

 



Step 2: We calculate elements dk
ij of the shortest path length matrix found 

after the kth passage through algorithm Dk using the following equation: 

dk
ij = min[dk-1

ij, d
k-1

ik + dk-1
kj]      (3) 

Step 3: Elements  of predecessor matrix Sk found after the kth passage through 

the algorithm are calculated as follows: 

 

         (4) 

         

Step 4: If k = n, the algorithm is finished. If k <n, increase k by 1, i.e. K = k+1 

and return to step 2. 

 



5.0 Data Presentation 

The Data on commercial motorcycles popularly called Byke or Okada or 

Kabukabu in Bida were collected in June, 2018 from 8 Traffic Analysis Zones 

define as follows:   

1 2 

3 4 

5 6 

7 8 

CIRICO JUNCTION ESSO JUNCTION 

BANGAYE LUNCHITA 

WADATA POLY JUNCTION 

BANYAGI FEDERAL POLY BIDA 

Table 1:  Names of Zones and Nodes Identification 



Table 2: Link Array Table  
 

From/To 1 2 3 4 5 6 7 8 

1 - 2 4 - - - - - 

2 2 - - 2 4 - - - 

3 4 - - 5 - - 8 - 

4 - 2 5 - 4 5 - - 

5 - 4 - 4 - 7 - - 

6 - - - 4 7 - 2 5 

7 - - 8 - - 2 - 4 

8 - - - - - 5 4 - 

Source: The data were collected primarily by obtaining how much time (in minutes) it 

took Motorcycles between O-D zones 
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Figure 1: Network Diagram of Study Zones 



6.0 Data Analysis 

6.1 Dijkstra’s Algorithm 

Label node 1 with (0*,-) and declare it to be permanently labeled using a (*). 

Label the other nodes with upper bounds of (∞,-) and declare them to be 

temporary labels. 
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Figure 2: Iteration 0 
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Node 2 and node 3 can be reached from (the last permanent labeled) node 1, 

thus the list of labeled nodes becomes (temporary and permanent). We consider 

Node 2: min(∞, 0+1) = 1, Node 3: min(∞, 0+4) = 4 

Figure 3: Iteration 1 



For the two temporary labels, node 2 yields the smaller travel time (2). Thus the 

status of node 2 is changed to permanent. 
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Figure 4: Iteration 2 



Node 3 temporary label [4, 1] obtained in iteration 1 remains the same. We 

observed that node 3 and 4 can be reached through node 2. We consider  Node3: 

min(∞, 0+4) = 4, Node 4: min(∞, 2+2) = 4 and Node 5: min(∞, 2+4) = 6.  

From the temporally nodes we observed that node 3 and 4 are the smallest and 

break the tie arbitrary by taking node 3 and permanent it. 
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Figure 5 : Iteration 3 



Node 4 and 5 remain temporary labeled and node 4 can again be reached through 

node 3. Similarly, node 7 can be reach through node 3.  We consider Node 4: 

min(4, 4 + 5) = 4, Node 5: min(∞, 2+4) = 6 and Node 7: min(∞, 4+8) = 12.  

From the temporary nodes we observed that node 4 the smallest and labeled it 

permanent. 
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Figure 6: Iteration 4 



Node 5 and 7 remain temporary and we observed that node 5 can again be 

reached through node 4. Similarly, node 6 can be reach through node 4. We 

consider Node 5: min(6, 4 + 4) = 6, Node 6: min(∞, 4+5) = 9 and Node 7: 

min(∞, 4+8) = 12 

From the temporally nodes we observed that node 5 the smallest and labeled it 

permanent. 
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Figure 7: Iteration 5 



Node 6 and 7 remain temporary and we observed that node 6 can again be 

reached through node 5. Similarly, node 6 can be reach through node 4. We 

consider Node 6: min(9, 6 + 7) = 9  and Node 7: min(∞, 4+8) = 12 

From the temporally nodes we observed that node 6 the smallest and labeled it 

permanent. 
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Figure 8: Iteration 6 



Node 7 remains temporary and observed that node 7 can again be reached 

through node 6. Similarly, node 8 can be reach through node 6. We consider 

Node 7: min(12, 9 + 2) = 11  and Node 8: min(∞, 9 + 5) = 14 

From the temporary nodes we observed that node 7 the smallest and labeled it 

permanent. 
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Figure 9: Iteration 7 
 



From node 7, only node 8 can be reached so we check this: min (14, 11+ 4) = 

14 (no change to the label). 

The only temporary label remaining is that for node 8 so we label it 

permanently, and now the algorithm is complete. 
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Figure 10: Final Iteration with Minimum Links with Travel Time from Node 1 to Other Nodes 



Now all nodes in the list have attained their status as permanent. Thus, the 

maximum iteration for the problem is obtained. Therefore the solution to the 

shortest route from node 1 to other nodes in the network can be seen in table 3. 

To get the shortest distance for other nodes, we make the required node our 

starting node and repeat the iteration. By backtracking through the nodes using 

the information given by the permanent labels, the links and the associate link 

impedances can be obtained. After carrying out dijktra’s algorithm from 

designated starting nodes 2, 3, 4, 5, 6, 7, 8 to all other nodes, the results are 

also seen in table 3.   



Table 3: Showing the results of shortest route and the travel time between nodes 1, 

2, 3, 4,5, 6, 7, 8 and other nodes 

FROM TO MINIMUM LINK PATH TRAVE TIME 

 

1 

2 1 - 2 2 

3 1 - 3 4 

4 1 - 2 - 4 4 

5 1 - 2 - 5 6 

6 1 - 2 - 4 - 6 9 

7 1 - 2 - 4 - 6 - 7 11 

8 1 - 2 - 4 - 6 - 8 14 

 

2 

1 2 - 1 8 

3 2 - 1- 3 6 

4 2 - 4 2 

5 2 - 5 4 

6 2 - 4 - 6 7 

7 2 - 4 - 6 - 7 9 

8 2 - 4 - 6 - 8 12 



FROM TO MINIMUM LINK PATH TRAVE TIME 

 

3 

1 3 - 1 4 

2 3 - 1- 2 6 

4 3 - 4 5 

5 3 - 4 - 5 9 

6 3 - 4 - 6   10 

7 3 - 7 8 

8 3 - 7 - 8 12 

 

4 

1 4 - 2 - 1 4 

2 4 - 2 2 

3 4 - 3 5 

5 4 - 5 4 

6 4 - 6 5 

7 4 - 6 - 7 7 

8 4 - 6 - 8 10 



FROM TO MINIMUM LINK PATH TRAVE TIME 

 

5 

1 5 - 2 - 1 6 

2 5 - 2 4 

3 5 - 4 - 3 9 

4 5 - 4 4 

6 5 - 6 7 

7 5 - 6 - 7 9 

8 5 - 6 - 8 12 

 

6 

1 6 - 4 -2 - 1 9 

2 6 - 4 - 2 7 

3 6 - 4 -3 10 

4 6 - 4 5 

5 6 - 5 7 

7 6 - 7 2 

8 6 - 8 5 



FROM TO MINIMUM LINK PATH TRAVE TIME 

 

7 

1 7- 6 - 4 - 2 -1 11 

2 7- 6 - 4 - 2 9 

3 7 - 3 8 

4 7 - 6 - 4 7 

5 7 - 6 - 5 9 

6 7 - 6 2 

8 7 - 8 4 

 

8 

1 8 - 6- 4 - 2 -1 14 

2 8 - 6 - 4 - 2 12 

3 8 - 7 - 3 12 

4 8 - 6 - 4 10 

5 8 - 6 - 5 12 

6 8 - 6 5 

7 8 - 7 4 



6.2 Floyd’s Algorithm 

Table 4: Showing Matrix T0 and Matrix S0 (times and paths of the network) 

1 2 3 4 5 6 7 8 

 1 - 2 4 ∞ ∞ ∞ ∞ ∞ 

2 2 - ∞ 2 4 ∞ ∞ ∞ 

3 4 ∞ - 5 ∞ ∞ 8 ∞ 

4 ∞ 2 5 - 4 5 ∞ ∞ 

5 ∞ 4 ∞ 4 - 7 ∞ ∞ 

6 ∞ ∞ ∞ 5 7 - 2 5 

7 ∞ ∞ 8 ∞ ∞ 2 - 4 

8 ∞ ∞ ∞ ∞ ∞ 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 1 1 1 1 1 

2 2 - 2 2 2 2 2 2 

3 3 3 - 3 3 3 3 3 

4 4 4 4 - 4 4 4 4 

5 5 5 5 5 - 5 5 5 

6 6 6 6 6 6 - 6 6 

7 7 7 7 7 7 7 - 7 

8 8 8 8 8 8 8 8 - 

T0 = S0 = 



All elements along the main diagonal of matrix T0 equal zero since by 

definition t0
12=0 for i = j. We note element t0

12 and t0
13 of matrix T0 have 

elements equal to 2 and 4 since the length of the branches connecting nodes 1 – 

2 and 1-3 are 2 and 4 respectively. Element t0
14 equals infinity since the 

network has no branch which is oriented from node 1 to node 4. Element t0
15 of 

matrix T0 equals infinity as well since there is direct branch linking nodes 1 

and 5 and so on. 

 We also note that node i is the immediate predecessor of node j on the shortest 

path leading from node i to node j (for i ≠ j). For this reason we have, elements 

of s0
12 = s0

13 = s0
14 … =1 and s0

21 = s0
23 = s0

24 … = 2 and so on in matrix S0  



The iterations of Floyd’s algorithm look as shown below: 

Table 5: Matrices T1 and S1 (first iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 ∞ ∞ ∞ ∞ ∞ 

2 2 - 6 2 4 ∞ ∞ ∞ 

3 4 6 - 5 ∞ ∞ 8 ∞ 

4 ∞ 2 5 - 4 5 ∞ ∞ 

5 ∞ 4 ∞ 4 - 7 ∞ ∞ 

6 ∞ ∞ ∞ 5 7 - 2 5 

7 ∞ ∞ 8 ∞ ∞ 2 - 4 

8 ∞ ∞ ∞ ∞ ∞ 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 1 1 1 1 1 

2 2 - 1 2 2 2 2 2 

3 3 1 - 3 3 3 3 3 

4 4 4 4 - 4 4 4 4 

5 5 5 5 5 - 5 5 5 

6 6 6 6 6 6 - 6 6 

7 7 7 7 7 7 7 - 7 

8 8 8 8 8 8 8 8 - 

T1 = S1 = 



Table 6: Matrices T2 and S2 (second iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 ∞ ∞ ∞ 

2 2 - 6 2 4 ∞ ∞ ∞ 

3 4 6 - 5 10 ∞ 8 ∞ 

4 4 2 5 - 4 5 ∞ ∞ 

5 6 4 10 4 - 7 ∞ ∞ 

6 ∞ ∞ ∞ 5 7 - 2 5 

7 ∞ ∞ 8 ∞ ∞ 2 - 4 

8 ∞ ∞ ∞ ∞ ∞ 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 2 2 1 1 1 

2 2 - 1 2 2 2 2 2 

3 3 1 - 3 2 3 3 3 

4 2 4 4 - 4 4 4 4 

5 2 5 2 5 - 5 5 5 

6 6 6 6 6 6 - 6 6 

7 7 7 7 7 7 7 - 7 

8 8 8 8 8 8 8 8 - 

T2 = S2 = 



Table 7: Matrices T3 and S3 (third iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 ∞ 12 ∞ 

2 2 - 6 2 4 ∞ 14 ∞ 

3 4 6 - 5 10 ∞ 8 ∞ 

4 4 2 5 - 4 5 13 ∞ 

5 6 4 10 4 - 7 18 ∞ 

6 ∞ ∞ ∞ 5 7 - 2 5 

7 12 14 8 13 18 2 - 4 

8 ∞ ∞ ∞ ∞ ∞ 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 2 2 1 3 1 

2 2 - 1 2 2 2 3 2 

3 3 1 - 3 2 3 3 3 

4 2 4 4 - 4 4 3 4 

5 2 5 2 5 - 5 3 5 

6 6 6 6 6 6 - 6 6 

7 3 3 7 3 3 7 - 7 

8 8 8 8 8 8 8 8 - 

T3= S3= 



Table 8: Matrices T4 and S4 (fourth iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 9 12 ∞ 

2 2 - 6 2 4 7 14 ∞ 

3 4 6 - 5 9 10 8 ∞ 

4 4 2 5 - 4 5 13 ∞ 

5 6 4 9 4 - 7 17 ∞ 

6 9 7 10 5 7 - 2 5 

7 12 14 8 13 17 2 - 4 

8 ∞ ∞ ∞ ∞ ∞ 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 2 2 4 3 1 

2 2 - 1 2 5 4 3 2 

3 3 1 - 3 4 4 3 3 

4 2 2 3 - 4 4 3 4 

5 2 5 4 5 - 5 4 5 

6 4 4 4 6 6 - 6 6 

7 3 3 7 3 4 7 - 7 

8 8 8 8 8 8 8 8 - 

T4= S4= 



Table 9: Matrices T5 and S5 (fifth iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 9 12 ∞ 

2 2 - 6 2 4 7 10 ∞ 

3 4 6 - 5 9 10 8 ∞ 

4 4 2 5 - 4 5 13 ∞ 

5 6 4 9 4 - 7 17 ∞ 

6 9 7 10 5 7 - 2 5 

7 12 10 8 13 17 2 - 4 

8 ∞ ∞ ∞ ∞ ∞ 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 2 2 4 3 1 

2 2 - 1 2 2 4 3 2 

3 3 1 - 3 4 4 3 3 

4 2 4 4 - 4 4 3 4 

5 2 5 4 5 - 5 4 5 

6 4 4 4 6 6 - 6 6 

7 3 3 7 3 4 7 - 7 

8 8 8 8 8 8 8 8 - 

T5= S5= 



Table 10: Matrices T6 and S6 (sixth iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 9 11 14 

2 2 - 6 2 4 7 9 12 

3 4 6 - 5 9 10 8 15 

4 4 2 5 - 4 5 7 10 

5 6 4 9 4 - 7 9 12 

6 9 7 10 5 7 - 2 5 

7 11 9 8 7 9 2 - 4 

8 14 12 15 10 12 5 4 - 

1 2 3 4 5 6 7 8 

1 - 2 3 2 2 4 6 6 

2 1 - 1 2 2 4 6 6 

3 3 1 - 3 4 4 3 6 

4 2 4 4 - 4 4 6 6 

5 2 5 4 5 - 5 6 6 

6 4 4 4 6 6 - 6 6 

7 6 6 7 6 6 7 - 8 

8 6 6 6 6 6 6 8 - 

T6= S6= 



Table 11: Matrices T7 and S7 (third iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 9 11 14 

2 2 - 6 2 4 7 9 12 

3 4 6 - 5 9 10 8 12 

4 4 2 5 - 4 5 7 10 

5 6 4 9 4 - 7 9 12 

6 9 7 10 5 7 - 2 5 

7 11 9 8 7 9 2 - 4 

8 14 12 12 10 12 5 4 - 

1 2 3 4 5 6 7 8 

1 - 2 3 2 2 4 6 6 

2 1 - 1 2 2 4 6 6 

3 3 1 - 3 4 4 3 7 

4 2 4 4 - 4 4 6 6 

5 2 5 4 5 - 5 6 6 

6 4 4 4 6 6 - 6 6 

7 6 6 7 6 6 7 - 7 

8 6 6 7 6 6 8 8 - 

T7= S7= 



Table 12: Matrices T8 and S8 (eighth iteration) 

1 2 3 4 5 6 7 8 

1 - 2 4 4 6 9 11 14 

2 2 - 6 2 4 7 9 12 

3 4 6 - 5 9 10 8 12 

4 4 2 5 - 4 5 7 10 

5 6 4 9 4 - 7 9 12 

6 9 7 10 5 7 - 2 5 

7 11 9 8 7 9 2 - 4 

8 14 12 12 10 12 5 4 - 

1 2 3 4 5 6 7 8 

1 - 1 1 2 2 4 6 6 

2 2 - 1 4 5 4 6 6 

3 3 1 - 3 4 4 3 7 

4 2 4 4 - 4 4 6 6 

5 2 5 4 5 - 5 6 6 

6 4 4 4 6 6 - 6 6 

7 6 6 3 6 6 7 - 7 

8 6 6 7 6 6 8 8 - 

T8= S8= 



7.0 Discussion of Result 

Dijkstra's algorithm is designed to determine the shortest routes between the 

source node and every other node in the network. Floyd's algorithm is more 

general than Dijkstra's because it determines the shortest route between any 

two nodes in the network. The result of the study has shown that table 12 

holds the same solution as table 3 



8.0 Recommendation 

Based on the findings and results of this study, we recommend that, 

commercial motorcycles should follow the links shown in Table 3 to enable 

them save time and fuel in their business of town service in Bida town. 

Management of other transport agencies like Tricycles in other towns should 

consult us for proper implementation of this study in their towns to save 

time and fuel for commercial transporters who are engaged in town service.  



9.0 Conclusion 

Although the case study of this research is strictly on Motorcycles, it can be 

concluded that the study could be generalized to any other means of 

transportation in Bida. The study provided the present and future 

motorcycles and other road users with minimum link paths in the town. It 

can be clearly seen from the study that Esso and Lunchita happens to be the 

shortest route to most of the routes in the town. Finally, it is discovered that 

both algorithms produce the same solution, although Dijkstra's algorithm is 

designed to determine the shortest routes between the source node and every 

other node in the network while Floyd's algorithm determines the shortest 

route between any two nodes in the network. 
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