
COMPARATIVE ANALYSIS AND IMPLEMENTATION OF

DIJKSTRA’S AND

FLOYD’S ALGORITHMS FOR OPTIMAL TRANSPORTATION

NETWORK OF

MOTORCYCLE TOWN SERVICE

PRESENTED DURING NAMP CONFERENCE AT OMU-ARAN, NIGERIA,

6TH – 9TH NOV., 2018

Idrisu M., Evans P. O. and Nyor N.

1,3Department of Mathematics, Federal University of Technology Minna.

2Department of Mathematics, federal Polytechnic Bida

Abstract

• The paper aimed at presenting the results of a comparative analysis of the

shortest path using Dijkstra’s and floyd’s Algorithms to find minimum

links for commercial motorcycles that ply the routes in particular town.

For the two algorithms, minimum paths were identified to ease good

movement and reduce cost of fueling for the commercial motorcyclists.

The results shows that floyd’s is more effective in solving shortest path

between all pairs while dijkstra is more effective between a given pairs. It

was concluded that both algorithms are effective/efficient (because they

provide the same solution) depending on what the problem solver wants

• Keywords: Dijksta’s Algorithm, Floyd’s, Algorithm, Optimal

transportation Network, Town Service.

1.0 Introduction

Networks arise in numerous settings and in a variety of ways, ranging from

transportation, electrical, and communication networks which pervade our daily

lives. It is necessary for the movement of people, transportation of goods,

communicate information and control of the flow of matter and energy.

Network application is quite vast. Phenomena that are represented and analyzed

as networks are roads, railways, cables, pipelines, production, distribution,

project planning, facilities location,resource management, and financial

planning, etc. It provides a powerful visual and conceptual aid that is used to

portray the relationships between the components of systems in virtually every

field of scientific, social, and economic endeavor.

The shortest path problem is a problem of finding the shortest path or route

from a starting point to a final destination. Generally, in order to represent the

shortest path problem we use graphs. A graph is a mathematical abstraction

that is useful for solving different networking problems. It is used to solve such

problems contains sets of vertices and edges. Pairs of vertices are connected by

edges, while movement from one vertex to other vertices can be done along the

edges. It can be directed or undirected depending on the movement along the

edges, either walking on both sides or on only one side. Lengths of edges are

often called weights which are normally used to calculate the shortest path

from a particular point to another point.

1.0 Introduction

In the real world, the graph theory can be applied to different scenarios. A

practical example is map representation using a graph, where vertices and

edges represent cities and routes that connect the cities respectively. One-way

routes are directed graphs, while routes that are not one-way are undirected.

Finding the shortest paths plays an important role in solving network based

systems. In graph theory, a number of algorithms can be applied for finding the

shortest path in a graph based network system. This reduces the complexity of

the network path, the cost, and the time to build and maintain the network

based systems.

1.0 Introduction

 1.0 Introduction

In recent times, planning efficient routes is very essential for business and

industry with applications as varied as product distribution. It is essential for

products or services to be delivered on time at the best price using the

shortest available route. The shortest route network model is an efficient route

that can be used in planning. This network model is applied in

telecommunications and transportation planning. There are different types of

algorithms that are used to solve shortest path problems. However, the

Dijkstra’s and floyd’s algorithms are the concern for this paper.

2.0 Aim of the Study

This paper aimed to compare the performance of Dijkstra’s and

Floyd’s algorithms in determining the minimum link paths and

associated trip volumes between given origin-destination zones for

commercial Motorcycles that carry out town service in Bida.

 3.0 LITERATURE REVIEW

3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is an algorithm named after its developer, Dijkstra

Oliver in 1959. He conceived a graph search algorithm that can be used

to solve the single-source shortest path problem for any graph that has a

non-negative edge path cost. This graph search algorithm was later

modified by Lee in 2006 and was applied to the vehicle guidance system.

Dijkstra’s algorithm or variations of it are the most commonly used route

finding algorithm for solving the shortest path (Sadeghi-Niarakiet al.,

2011). This vehicle guidance system is divided into two paths; namely, the

shortest path and the fastest path algorithms(Chen et al., 2009).

While the shortest path algorithm focuses on route length parameter and

calculates the shortest route between each OD pair, the fastest path algorithm

focuses on the path with minimum travel time. The future travel time can be

predicted based on prediction models using historical data for link travel time

information which can be daily, weekly or even a session.

Meghanathan (2012) reviewed Dijkstra’s algorithm and Bellman-Ford algorithm

for finding the shortest path in a graph. He concluded that the time complexity of

Dijkstra’s algorithm is O (|E|*log |V|) while the time complexity of the Bellman-

Ford algorithm is O (|V||E|).

3.1 Dijkstra’s Algorithm

3.2 Floyd’s Algorithm

Floyd-Warshall algorithm was familiarized by Robert Floyd in 1962 to

resolve the problem of all pairs shortest path for weighted graph. However, it

is essentially the same as algorithms previously published by Bernard Roy in

1959 and also by Stephen Warshall in 1962 for finding the transitive closure

of a graph. It is a graph analysis algorithm for finding shortest paths in a

weighted graph with positive or negative edge weights but with no negative

cycles, and also for finding transitive closure of a relation R. A single

execution of the algorithm will find the lengths (summed weights) of the

shortest paths between all pairs of vertices, though it does not return details

of the paths themselves.

3.2 Floyd’s Algorithm

Borgwardt et al (2005)researched on the shortest-path kernel as applicable

to all graphs on which Floyd-Warshall can be performed. The requirement

of Floyd-Warshall is that cycles that have negative weight do not exist. This

condition generally holds if distances are represented by edge labels.

 4.0 Methodology

This work had its case study at Bida town which is the second largest city in

Niger State with an estimated population of 178,840 (Census, 2007). It is

located southwest of Minna, capital of Niger State. It is a dry, arid town. The

major ethnic group is the Nupe. Bida is the headquarters of the Nupe

Kingdom led by the Etsu Nupe.

Primary data was obtained by noting the time (in minutes) that it took

motorcycles to ride from a particular origin to a particular destination; and

counting the volume of flow between the eight selected zones. The data

analysis was the application of Dijkstra’s algorithm with the following steps:

i. Initialize by assigning a permanent label of zero to the home node

(source). All other node labels are declared to be temporary and are

equal to the direct distance from the source node to that node. Select

the minimum of these temporary labels and declare it permanent. In

the event of a tie, choose them arbitrarily.

ii. Suppose that node K has been assigned a permanent label most

recently, consider the remaining nodes with temporary labels.

Compare, one at a time, the temporary label of each node to the sum of

the permanent label of node K and the direct distance from node K to

the node under consideration. Assign the minimum of these distances

as the new temporary label for that node. If the old temporary label is

still minimal, then it will remain unchanged during this step.

iii. Select the minimum of all of the temporary labels and declare it

permanent. In the case of ties, select just one of them and declare it

permanent. If this happens to the destination node, then terminate.

Otherwise go to step (i).

Floyd’s Algorithm on the other hand represents an n-node network as a

square matrix with n rows and n columns. It works by updating two matrices,

namely and, n times for an n - node network. The matrix, in any iteration k,

gives the value of the shortest distance (time) between all pairs of nodes (i, j)

as obtained till the kth iteration. The matrix has as its elements. The value of

gives the immediate predecessor node from node i to node j on the shortest

path as determined by the kth iteration.

D0 and S0 give the starting matrices and Dn and Sn give the final matrices for an

n-node system. The first task is to determine Do and So. Do is taken up first.

The element dij of matrix Do are defined as follows: If a link (branch) exists

between nodes i and j the length of the shortest path between these nodes

equals length l (i, j) of branch (i, j) which connects them. Should there be

several branches between nodes i and node j, the length of the shortest path dij

must equal the length of the shortest branch, that is,

d0
ij = min[l1(i,j),l2(i,j),…lm(i,j)] (1)

Where m is the number of branches between node i and node j.

It is clear that d0
ij = 0 when i = j. In the case when there is no direct link

between node i and node j, we have no information at the beginning concerning

the length of the shortest path between these two nodes so we treat them as

though they were infinitely far from each other, that is,

d0
ij = ∞ (2)

Elements s0
ij of the predecessor matrix So are defined as follows:

First, we assume that s0
ij = i, for i j, i.e. that for every pair of nodes (i, j) for i j,

the immediate predecessor of node j on the shortest path leading from node i to

node j is actually node i. After defining Do and So the following steps are used

repeatedly to determine Dn and Sn.

Step 1: Let k = 1

Step 2: We calculate elements dk
ij of the shortest path length matrix found

after the kth passage through algorithm Dk using the following equation:

dk
ij = min[dk-1

ij, d
k-1

ik + dk-1
kj] (3)

Step 3: Elements of predecessor matrix Sk found after the kth passage through

the algorithm are calculated as follows:

 (4)

Step 4: If k = n, the algorithm is finished. If k <n, increase k by 1, i.e. K = k+1

and return to step 2.

5.0 Data Presentation

The Data on commercial motorcycles popularly called Byke or Okada or

Kabukabu in Bida were collected in June, 2018 from 8 Traffic Analysis Zones

define as follows:

1 2

3 4

5 6

7 8

CIRICO JUNCTION ESSO JUNCTION

BANGAYE LUNCHITA

WADATA POLY JUNCTION

BANYAGI FEDERAL POLY BIDA

Table 1: Names of Zones and Nodes Identification

Table 2: Link Array Table

From/To 1 2 3 4 5 6 7 8

1 - 2 4 - - - - -

2 2 - - 2 4 - - -

3 4 - - 5 - - 8 -

4 - 2 5 - 4 5 - -

5 - 4 - 4 - 7 - -

6 - - - 4 7 - 2 5

7 - - 8 - - 2 - 4

8 - - - - - 5 4 -

Source: The data were collected primarily by obtaining how much time (in minutes) it

took Motorcycles between O-D zones

7

4
1

8

4

4

2
2

5

5

4

4

7

5
2

3

8

6

5

2

Figure 1: Network Diagram of Study Zones

6.0 Data Analysis

6.1 Dijkstra’s Algorithm

Label node 1 with (0*,-) and declare it to be permanently labeled using a (*).

Label the other nodes with upper bounds of (∞,-) and declare them to be

temporary labels.
(∞, -)

1

8

4

4

2 2

5

5

4

4

7

5 2

3
7

8

4 6

5

2

(0*, -)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

Figure 2: Iteration 0

7

4
1

8

4

4

2 2

5

5

4

4

7

5 2

3
8

6

5

2

(0*, -)

(4, 1)

(2, 1)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

Node 2 and node 3 can be reached from (the last permanent labeled) node 1,

thus the list of labeled nodes becomes (temporary and permanent). We consider

Node 2: min(∞, 0+1) = 1, Node 3: min(∞, 0+4) = 4

Figure 3: Iteration 1

For the two temporary labels, node 2 yields the smaller travel time (2). Thus the

status of node 2 is changed to permanent.

(2*, 1)

7

4
1

8

4

4

2
2

5

5

4

4

7

5
2

3

8

6

5

2

(0*, -)

(4, 1)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

(∞, -)

Figure 4: Iteration 2

Node 3 temporary label [4, 1] obtained in iteration 1 remains the same. We

observed that node 3 and 4 can be reached through node 2. We consider Node3:

min(∞, 0+4) = 4, Node 4: min(∞, 2+2) = 4 and Node 5: min(∞, 2+4) = 6.

From the temporally nodes we observed that node 3 and 4 are the smallest and

break the tie arbitrary by taking node 3 and permanent it.

(4*, 1)

(2*, 1)

7

4
1

8

4

4

2 2

5

5

4

4

7

5 2

3
8

6

5

2

(0*, -)

(6, 2)

(4, 2)

(∞, -)

(∞, -)

(∞, -)

Figure 5 : Iteration 3

Node 4 and 5 remain temporary labeled and node 4 can again be reached through

node 3. Similarly, node 7 can be reach through node 3. We consider Node 4:

min(4, 4 + 5) = 4, Node 5: min(∞, 2+4) = 6 and Node 7: min(∞, 4+8) = 12.

From the temporary nodes we observed that node 4 the smallest and labeled it

permanent.

(12, 3)

(4*, 2)

(4*, 1)

(2*, 1)

7

4
1

8

4

4

2
2

5

5

4

4

7

5 2

3
8

6

5

2

(0*, -)

(6, 2)

(∞, -)

(∞, -)

Figure 6: Iteration 4

Node 5 and 7 remain temporary and we observed that node 5 can again be

reached through node 4. Similarly, node 6 can be reach through node 4. We

consider Node 5: min(6, 4 + 4) = 6, Node 6: min(∞, 4+5) = 9 and Node 7:

min(∞, 4+8) = 12

From the temporally nodes we observed that node 5 the smallest and labeled it

permanent.

(6*, 2)

(4*, 2)

(4*, 1)

(2*, 1)

7

4
1

8

4

4

2 2

5

5

4

4

7

5 2

3
8

6

5

2

(0*, -)

(9, 4)

(12, 3)

(∞, -)

Figure 7: Iteration 5

Node 6 and 7 remain temporary and we observed that node 6 can again be

reached through node 5. Similarly, node 6 can be reach through node 4. We

consider Node 6: min(9, 6 + 7) = 9 and Node 7: min(∞, 4+8) = 12

From the temporally nodes we observed that node 6 the smallest and labeled it

permanent.

(9*, 4)

(6*, 2)

(4*, 2)

(4*, 1)

(2*, 1)

7

4
1

8

4

4

2
2

5

5

4

4

7

5 2

3
8

6

5

2

(0*, -)

(12, 3)

(∞, -)

Figure 8: Iteration 6

Node 7 remains temporary and observed that node 7 can again be reached

through node 6. Similarly, node 8 can be reach through node 6. We consider

Node 7: min(12, 9 + 2) = 11 and Node 8: min(∞, 9 + 5) = 14

From the temporary nodes we observed that node 7 the smallest and labeled it

permanent.

(9*, 4)

(6*, 2)

(4*, 2)

(4*, 1)

(2*, 1)

7

4
1

8

4

4

2
2

5

5

4

4

7

5
2

3

8

6

5

2

(0*, -)

(11*, 6)

(14, 6)

Figure 9: Iteration 7

From node 7, only node 8 can be reached so we check this: min (14, 11+ 4) =

14 (no change to the label).

The only temporary label remaining is that for node 8 so we label it

permanently, and now the algorithm is complete.

1

8

4

4

2 2

5

5

4

4

7

5 2

3
7

8

4 6

5

2

[0, --]

[4, 1]

[2, 1]

[6, 2]

[4, 2]

[9, 4]

[11, 6]

[14, 6]

Figure 10: Final Iteration with Minimum Links with Travel Time from Node 1 to Other Nodes

Now all nodes in the list have attained their status as permanent. Thus, the

maximum iteration for the problem is obtained. Therefore the solution to the

shortest route from node 1 to other nodes in the network can be seen in table 3.

To get the shortest distance for other nodes, we make the required node our

starting node and repeat the iteration. By backtracking through the nodes using

the information given by the permanent labels, the links and the associate link

impedances can be obtained. After carrying out dijktra’s algorithm from

designated starting nodes 2, 3, 4, 5, 6, 7, 8 to all other nodes, the results are

also seen in table 3.

Table 3: Showing the results of shortest route and the travel time between nodes 1,

2, 3, 4,5, 6, 7, 8 and other nodes

FROM TO MINIMUM LINK PATH TRAVE TIME

1

2 1 - 2 2

3 1 - 3 4

4 1 - 2 - 4 4

5 1 - 2 - 5 6

6 1 - 2 - 4 - 6 9

7 1 - 2 - 4 - 6 - 7 11

8 1 - 2 - 4 - 6 - 8 14

2

1 2 - 1 8

3 2 - 1- 3 6

4 2 - 4 2

5 2 - 5 4

6 2 - 4 - 6 7

7 2 - 4 - 6 - 7 9

8 2 - 4 - 6 - 8 12

FROM TO MINIMUM LINK PATH TRAVE TIME

3

1 3 - 1 4

2 3 - 1- 2 6

4 3 - 4 5

5 3 - 4 - 5 9

6 3 - 4 - 6 10

7 3 - 7 8

8 3 - 7 - 8 12

4

1 4 - 2 - 1 4

2 4 - 2 2

3 4 - 3 5

5 4 - 5 4

6 4 - 6 5

7 4 - 6 - 7 7

8 4 - 6 - 8 10

FROM TO MINIMUM LINK PATH TRAVE TIME

5

1 5 - 2 - 1 6

2 5 - 2 4

3 5 - 4 - 3 9

4 5 - 4 4

6 5 - 6 7

7 5 - 6 - 7 9

8 5 - 6 - 8 12

6

1 6 - 4 -2 - 1 9

2 6 - 4 - 2 7

3 6 - 4 -3 10

4 6 - 4 5

5 6 - 5 7

7 6 - 7 2

8 6 - 8 5

FROM TO MINIMUM LINK PATH TRAVE TIME

7

1 7- 6 - 4 - 2 -1 11

2 7- 6 - 4 - 2 9

3 7 - 3 8

4 7 - 6 - 4 7

5 7 - 6 - 5 9

6 7 - 6 2

8 7 - 8 4

8

1 8 - 6- 4 - 2 -1 14

2 8 - 6 - 4 - 2 12

3 8 - 7 - 3 12

4 8 - 6 - 4 10

5 8 - 6 - 5 12

6 8 - 6 5

7 8 - 7 4

6.2 Floyd’s Algorithm

Table 4: Showing Matrix T0 and Matrix S0 (times and paths of the network)

1 2 3 4 5 6 7 8

 1 - 2 4 ∞ ∞ ∞ ∞ ∞

2 2 - ∞ 2 4 ∞ ∞ ∞

3 4 ∞ - 5 ∞ ∞ 8 ∞

4 ∞ 2 5 - 4 5 ∞ ∞

5 ∞ 4 ∞ 4 - 7 ∞ ∞

6 ∞ ∞ ∞ 5 7 - 2 5

7 ∞ ∞ 8 ∞ ∞ 2 - 4

8 ∞ ∞ ∞ ∞ ∞ 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 1 1 1 1 1

2 2 - 2 2 2 2 2 2

3 3 3 - 3 3 3 3 3

4 4 4 4 - 4 4 4 4

5 5 5 5 5 - 5 5 5

6 6 6 6 6 6 - 6 6

7 7 7 7 7 7 7 - 7

8 8 8 8 8 8 8 8 -

T0 = S0 =

All elements along the main diagonal of matrix T0 equal zero since by

definition t0
12=0 for i = j. We note element t0

12 and t0
13 of matrix T0 have

elements equal to 2 and 4 since the length of the branches connecting nodes 1 –

2 and 1-3 are 2 and 4 respectively. Element t0
14 equals infinity since the

network has no branch which is oriented from node 1 to node 4. Element t0
15 of

matrix T0 equals infinity as well since there is direct branch linking nodes 1

and 5 and so on.

 We also note that node i is the immediate predecessor of node j on the shortest

path leading from node i to node j (for i ≠ j). For this reason we have, elements

of s0
12 = s0

13 = s0
14 … =1 and s0

21 = s0
23 = s0

24 … = 2 and so on in matrix S0

The iterations of Floyd’s algorithm look as shown below:

Table 5: Matrices T1 and S1 (first iteration)

1 2 3 4 5 6 7 8

1 - 2 4 ∞ ∞ ∞ ∞ ∞

2 2 - 6 2 4 ∞ ∞ ∞

3 4 6 - 5 ∞ ∞ 8 ∞

4 ∞ 2 5 - 4 5 ∞ ∞

5 ∞ 4 ∞ 4 - 7 ∞ ∞

6 ∞ ∞ ∞ 5 7 - 2 5

7 ∞ ∞ 8 ∞ ∞ 2 - 4

8 ∞ ∞ ∞ ∞ ∞ 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 1 1 1 1 1

2 2 - 1 2 2 2 2 2

3 3 1 - 3 3 3 3 3

4 4 4 4 - 4 4 4 4

5 5 5 5 5 - 5 5 5

6 6 6 6 6 6 - 6 6

7 7 7 7 7 7 7 - 7

8 8 8 8 8 8 8 8 -

T1 = S1 =

Table 6: Matrices T2 and S2 (second iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 ∞ ∞ ∞

2 2 - 6 2 4 ∞ ∞ ∞

3 4 6 - 5 10 ∞ 8 ∞

4 4 2 5 - 4 5 ∞ ∞

5 6 4 10 4 - 7 ∞ ∞

6 ∞ ∞ ∞ 5 7 - 2 5

7 ∞ ∞ 8 ∞ ∞ 2 - 4

8 ∞ ∞ ∞ ∞ ∞ 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 2 2 1 1 1

2 2 - 1 2 2 2 2 2

3 3 1 - 3 2 3 3 3

4 2 4 4 - 4 4 4 4

5 2 5 2 5 - 5 5 5

6 6 6 6 6 6 - 6 6

7 7 7 7 7 7 7 - 7

8 8 8 8 8 8 8 8 -

T2 = S2 =

Table 7: Matrices T3 and S3 (third iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 ∞ 12 ∞

2 2 - 6 2 4 ∞ 14 ∞

3 4 6 - 5 10 ∞ 8 ∞

4 4 2 5 - 4 5 13 ∞

5 6 4 10 4 - 7 18 ∞

6 ∞ ∞ ∞ 5 7 - 2 5

7 12 14 8 13 18 2 - 4

8 ∞ ∞ ∞ ∞ ∞ 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 2 2 1 3 1

2 2 - 1 2 2 2 3 2

3 3 1 - 3 2 3 3 3

4 2 4 4 - 4 4 3 4

5 2 5 2 5 - 5 3 5

6 6 6 6 6 6 - 6 6

7 3 3 7 3 3 7 - 7

8 8 8 8 8 8 8 8 -

T3= S3=

Table 8: Matrices T4 and S4 (fourth iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 9 12 ∞

2 2 - 6 2 4 7 14 ∞

3 4 6 - 5 9 10 8 ∞

4 4 2 5 - 4 5 13 ∞

5 6 4 9 4 - 7 17 ∞

6 9 7 10 5 7 - 2 5

7 12 14 8 13 17 2 - 4

8 ∞ ∞ ∞ ∞ ∞ 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 2 2 4 3 1

2 2 - 1 2 5 4 3 2

3 3 1 - 3 4 4 3 3

4 2 2 3 - 4 4 3 4

5 2 5 4 5 - 5 4 5

6 4 4 4 6 6 - 6 6

7 3 3 7 3 4 7 - 7

8 8 8 8 8 8 8 8 -

T4= S4=

Table 9: Matrices T5 and S5 (fifth iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 9 12 ∞

2 2 - 6 2 4 7 10 ∞

3 4 6 - 5 9 10 8 ∞

4 4 2 5 - 4 5 13 ∞

5 6 4 9 4 - 7 17 ∞

6 9 7 10 5 7 - 2 5

7 12 10 8 13 17 2 - 4

8 ∞ ∞ ∞ ∞ ∞ 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 2 2 4 3 1

2 2 - 1 2 2 4 3 2

3 3 1 - 3 4 4 3 3

4 2 4 4 - 4 4 3 4

5 2 5 4 5 - 5 4 5

6 4 4 4 6 6 - 6 6

7 3 3 7 3 4 7 - 7

8 8 8 8 8 8 8 8 -

T5= S5=

Table 10: Matrices T6 and S6 (sixth iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 9 11 14

2 2 - 6 2 4 7 9 12

3 4 6 - 5 9 10 8 15

4 4 2 5 - 4 5 7 10

5 6 4 9 4 - 7 9 12

6 9 7 10 5 7 - 2 5

7 11 9 8 7 9 2 - 4

8 14 12 15 10 12 5 4 -

1 2 3 4 5 6 7 8

1 - 2 3 2 2 4 6 6

2 1 - 1 2 2 4 6 6

3 3 1 - 3 4 4 3 6

4 2 4 4 - 4 4 6 6

5 2 5 4 5 - 5 6 6

6 4 4 4 6 6 - 6 6

7 6 6 7 6 6 7 - 8

8 6 6 6 6 6 6 8 -

T6= S6=

Table 11: Matrices T7 and S7 (third iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 9 11 14

2 2 - 6 2 4 7 9 12

3 4 6 - 5 9 10 8 12

4 4 2 5 - 4 5 7 10

5 6 4 9 4 - 7 9 12

6 9 7 10 5 7 - 2 5

7 11 9 8 7 9 2 - 4

8 14 12 12 10 12 5 4 -

1 2 3 4 5 6 7 8

1 - 2 3 2 2 4 6 6

2 1 - 1 2 2 4 6 6

3 3 1 - 3 4 4 3 7

4 2 4 4 - 4 4 6 6

5 2 5 4 5 - 5 6 6

6 4 4 4 6 6 - 6 6

7 6 6 7 6 6 7 - 7

8 6 6 7 6 6 8 8 -

T7= S7=

Table 12: Matrices T8 and S8 (eighth iteration)

1 2 3 4 5 6 7 8

1 - 2 4 4 6 9 11 14

2 2 - 6 2 4 7 9 12

3 4 6 - 5 9 10 8 12

4 4 2 5 - 4 5 7 10

5 6 4 9 4 - 7 9 12

6 9 7 10 5 7 - 2 5

7 11 9 8 7 9 2 - 4

8 14 12 12 10 12 5 4 -

1 2 3 4 5 6 7 8

1 - 1 1 2 2 4 6 6

2 2 - 1 4 5 4 6 6

3 3 1 - 3 4 4 3 7

4 2 4 4 - 4 4 6 6

5 2 5 4 5 - 5 6 6

6 4 4 4 6 6 - 6 6

7 6 6 3 6 6 7 - 7

8 6 6 7 6 6 8 8 -

T8= S8=

7.0 Discussion of Result

Dijkstra's algorithm is designed to determine the shortest routes between the

source node and every other node in the network. Floyd's algorithm is more

general than Dijkstra's because it determines the shortest route between any

two nodes in the network. The result of the study has shown that table 12

holds the same solution as table 3

8.0 Recommendation

Based on the findings and results of this study, we recommend that,

commercial motorcycles should follow the links shown in Table 3 to enable

them save time and fuel in their business of town service in Bida town.

Management of other transport agencies like Tricycles in other towns should

consult us for proper implementation of this study in their towns to save

time and fuel for commercial transporters who are engaged in town service.

9.0 Conclusion

Although the case study of this research is strictly on Motorcycles, it can be

concluded that the study could be generalized to any other means of

transportation in Bida. The study provided the present and future

motorcycles and other road users with minimum link paths in the town. It

can be clearly seen from the study that Esso and Lunchita happens to be the

shortest route to most of the routes in the town. Finally, it is discovered that

both algorithms produce the same solution, although Dijkstra's algorithm is

designed to determine the shortest routes between the source node and every

other node in the network while Floyd's algorithm determines the shortest

route between any two nodes in the network.

References

Bellman, R. (1958).On a Routing Problem. Quarterly of Applied Mathematics

16(1), 87–90. (http:/ / www.ams. org/ mathscinet-getitem?mr=0102435).

Chen, K. M. (2009). A Real-Time Wireless Route Guidance System for Urban

Traffic Management and its Performance Evaluation.70th Vehicular

Technology Conference Anchorage, Pp 1-5.

Floyd, R. W. (1962). Algorithm 97: Shortest Path. Communications of the

ACM 5 (6): 345. doi: 10.1145/367766.368168 (http:/ /dx. doi. org/ 10. 1145/

367766. 368168).

Meghanathan, D. N. (n.d.).Review of Graph Theory Algorithms.MS:

Department of Computer Science ,Jackson State University.

Moore, Edward F. (1959). The Shortest Path Through a Maze. Proc. Internat.

Sympos. Switching Theory Part II. Cambridge, Mass.: Harvard Univ. Press.

pp. 285–292. MR 0114710 (http:/ / www. ams. org/mathscinet-

getitem?mr=0114710).

Roy, B. (1959). “Transitivity et connexite”. C. R. Acad. Sci. Paris 249:

216–218.

Sadeghi-Niaraki, A., Varshosaz, M., Kim, K., and Jung, J. (2011). Real

World Representation of a Road Network for Route Planning in GIS.

Expert Systems with Applications, 38 (10), 11999-12008.

Warshall, S. (1962). “A Theorem on Boolean Matrices”. Journal of the

ACM 9(1), 11–12. doi: 10.1145/321105.321107 (http:/ / dx. doi. org/ 10.

1145/ 321105. 321107).

References

THANK YOU FOR LISTINING

