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a b s t r a c t

Email spam is an increasing problem that not only affects normal users of internet but also causes a
major problem for companies and organizations. Earlier techniques have been impaired by the adaptive
nature of unsolicited email spam. Inspired by adaptive algorithm, this paper introduces a modified
machine learning technique of the human immune system called negative selection algorithm (NSA). A
local selection differential evolution (DE) generates detectors at the random detector generation phase of
NSA; code named NSA–DE. Local outlier factor (LOF) is implemented as fitness function to maximize the
distance of generated spam detectors from the non-spam space. The problem of overlapping detectors is
also solved by calculating the minimum and maximum distance of two overlapped detectors in the spam
space. From the experiments, the results show that the detection accuracy of NSA–DE is 83.06% while the
standard negative selection algorithm is 68.86% at 7000 generated detectors.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The cheapest and most important form of communication in
the world today is email. It is effective, simple and available for all
computer users. The simplicity of email makes it vulnerable to a
lot of threats. One of the most important threat to email is spam;
virtually all email users across the world suffer from email spam
(Cormack et al., 2011). The word spam was used to describe
unwanted, junk mails sent to an internet user's inbox. It is very
convenient for spammers to send millions of email spam all over
the world with no cost at all (Carpinter and Hunt, 2006). This
makes it a common scenario for all internet users to receive junk
mail hundred times daily. Different techniques have been adopted
to stop the threat of spam or drastically reduce the amount of
spam that attacks internet users across the world. An anti-spam
law was enacted by legislating penalty for spammers that dis-
tribute email spam (Schryen, 2007). Also, two general approaches
have been used in email spam detection; a knowledge engineering
approach and a machine learning approach (Wamli et al., 2009).
In the knowledge engineering approach, the use of network
information and internet protocol address techniques to

determine if a message is spam or non-spam is called origin-
based filter. Sets of rules have to be specified in the knowledge
engineering approach in order to determine which email is to be
categorized as spam or non-spam. Such rules could be created by
the use of filter or by some other authority. An example of this
process is the software company that provides a particular rule
based spam filtering tools. By the application of this method, there
is promising result. However, the rules need to be maintained all
the time and updated which is a waste of time and inconvenient
for most users. Machine learning is more efficient than knowledge
engineering approach (Guzella and Caminhas, 2009) and does not
require specifying rules; a set of pre-classified email message
(training sample) is applied. Specific algorithms are used to learn
the classification rules from the email messages. The filtering
techniques are the most commonly used methods; it identifies
whether a message is spam or non-spam based solely on the
message content and some other characteristics of the message.
Despite different approaches and techniques adopted to fight the
scourge called spam, the internet today still witnesses huge
amount of spam (Zhang et al., 2004; Massey et al., 2003), and
more attention is needed by adaptive techniques on how the
menace can be drastically reduced if not totally eliminated.

Due to the wide knowledge of machine learning approach,
several algorithms have been used for email spam detection
(Guzella and Caminhas, 2009). They include artificial immune
system (AIS), support vector machine (SVM), neural network
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(NN), Naïve Bayes (NB), k-nearest neighbour (KNN), etc. In this
paper, we propose a new approach that is inspired by artificial
immune system model; that is a negative selection algorithm
(NSA) with the combined effort of differential evolution (DE)
which modifies the standard negative selection algorithm in order
to generate more accurate results. The engineering goals required
in hybrid negative selection algorithm can be viewed in three
ways; first, is to generate an efficient detector set; secondly,
is to limit the number of detectors that will be generated and
thirdly, is to maximize the detector set distance as much as
possible. Problems that require attention in this research work
are: (i) generating detectors in the spam space; (ii) maximizing
distance between spam detectors and the non-spam space and (iii)
solving the problem of overlapping detectors in the spam space.
These problems are solved by the implementation of local differ-
ential evolution for generating detectors, application of local
outlier factor as fitness function to maximize the distance between
generated detector in the spam space and the non-spam space,
calculating the minimum and maximum distance between two
overlapped generated detectors as fitness function. The perfor-
mance of NSA is determined by detector generation and how
effective it is able to utilize the detector coverage space of spam
and non-spam. This paper is organized into six sections, Section 1
is the introduction, Section 2 discusses the related work in
negative selection algorithm, the proposed improved model and
its constituent framework are presented in Section 3. Empirical
studies, results and discussions are presented in Section 4, Section
5 discusses the experimental results while conclusions and
recommendations are presented in Section 6.

2. Related work

Over the past years, rapid expansion of computer network
systems has changed the world. The expansion is essential for an
effective computer security system because attacks and criminal
intend are increasingly popular in computer network (Golovko
et al., 2010). Negative selection algorithm, while not reacting to the
self cells uses the immune system capability to detect unknown
antigens. Its mechanism protects body against—reactive lympho-
cytes. Receptors are made through a pseudo-random genetic re-
arrangement process during the generation of T-cells (Wang and
Zhao, 2008); they then undergo a censoring process in the thymus
called the negative selection. In this process T-cells that do not
bind to self-proteins are destroyed. Therefore, immunological
function and protection of the body against foreign antigens is
possible through circulation of matured T-cells (Zhang et al., 2010).
Recent work uses immunological function to solve complex
problems in negative selection algorithm. The work of Gong
et al. (2012) introduced a further training strategy to generate
more self-detectors to be able to cover the self-space for effective
detectors. The technique reduces the false rate, as wrongly
classified non-self will be re-classified for correctness. The draw-
back of the techniques was that it leads to scalability and part of
the self-detector may be covered by overlapped detectors. An
immune local concentration based detection approach was pro-
posed by Wie et al. (2011), two element local concentration as a
feature vector was combined with negative selection algorithm
and optimized with genetic algorithm. The technique generates
effective and efficient detectors as the local concentration feature
vectors are optimized before training the features. The technique
is computationally expensive and also time consuming in achiev-
ing desired feature detectors. A similar work was presented by
Yildiz (2009, 2013a) and Prakash et al. (2008) to implement
optimized immunological functions in solving complex problems
in industry. This technique uses evolutionary algorithm to

implement parameters optimization in the immune system. A
detection model based on penalty factor was proposed by Zhang
et al. (2010) to construct a model for spam detection; by redefining
the harmfulness of self and non-self using the negative selection
algorithm penalty factor to divide the candidate signature library
into two detection signature libraries as a self-detector, and then
splitting of the programs in an orderly way into various short bit
strings. The work of Xin et al. (2010) and Yuebing et al. (2010)
proposed a self-detector by the use of real valued negative
selection algorithm. A variable size r-contiguous matching rule
was implemented and the value of the variable size r was used to
balance between more generalization and specification of the self-
space. This technique is not very sufficient in generating self-
detectors as it has a constant threshold value which may lead to
over-fitting problems in most cases. A shape space as an occu-
pancy of negative selection algorithmwas proposed by Wanli et al.
(2010). The work states the importance of full coverage of the
shape space for effective detectors by suggesting a heuristic for
detection generation which was demonstrated by antigen feed-
back mechanism. The issue of overlapping and scalability was not
addressed by Wanli et al. (2010); it will definitely have effect
on the shape space as effective detectors generated are unable
to sufficiently cover the shape space. The work of Forrest and
Perelson (1994) quantifies the number of resources that will be
required by NSA in order to exhibit a very good detector capability
rate and failure rate. Forrest and Perelson (1994) use a single
global affinity threshold value r which ranges between a specific
number with r-contiguous bits matching rule for each and every
instance within its population. The affinity threshold in this case is
determined through a trial and error method, where the best
threshold with the best performance is targeted as the affinity
threshold.

The understanding of artificial immune system (AIS) based on
the mammalian immune system is vital for this study. A compre-
hensive artificial immune system survey was analysed by Dasgupta
et al. (2011). The research discusses the history, recent development
and the four major AIS algorithms. The main goal of the immune
system is to distinguish between non-self and self element which is
the basis for our implementation with negative selection algorithm
(NSA), one amongst the algorithm of artificial immune system (AIS).
This research will replace self in the mammalian immune system as
non-spam in our system and non-self in the mammalian immune
system as spam in our system. Artificial immune system (AIS) is a
new mechanism implemented in the control of email spam. Pattern
matching was used to represent detectors as regular expression by
Oda and White (2003) in the analysis of message. A weight is
assigned to the detector which is decremented or incremented
when observing the expression in spam message with the classifi-
cation of the message based on threshold sum of the weight of
matching detectors. The system is meant to be corrected by either
increasing or decreasing of all matching detector weights with 1000
detectors generated from spam-assassin heuristic and personal
corpus. The results were acceptable based on small number of
detectors that was used. A comparison of two techniques to
determine message classification using spam-assassin corpus with
100 detectors was proposed by Oda and White (2003). This
approach is like the previous techniques but the difference is the
increment of weight where there is recognition of pattern in spam
messages. Random generation of detectors does not help in solving
the problem of best selected features; though, feature weights
are updated during the matching process. The weighting of fea-
tures complicates the performance of the matching process. More
experiments are performed by Oda and White (2005) with the
use of spam-assassin corpus and Bayesian combination of detector
weights. Messages are scored by simple sum of the message
matched by each non-spam in the detector space and also the use
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of Bayes scores. Words from the dictionary and patterns extracted
from the set of messages are considered in the detector generation
beside the commonly used filters in order to be assured of the
message classification. It was finally observed that the best results
emerged when the heuristic was used with similar performance of
other two techniques. A better balance seems to be provided by the
weighted average. The immune system classifies correctly 90% of
the messages. In specific terms, it classifies 84% of spam and 98% of
non-spam. The approach of scoring features or feature weighting
during and after the matching process creates ambiguity in the
selection of important features for spam detection due to its
computational cost.

The research of Wamli et al. (2009) studies the possibility of
using negative selection in email spam detection without prior
information of the email spam. The negative selection algorithm is
divided into four concurrent working modules with two reposi-
tories; the random detector generation module, detector maturing
module, the antigen matching module and the detector ageing
module with selves' repository and detectors repository. After the
initial 1/3 of the time during the learning period, the spam
detection rate is over 80% and over 70% most of the time; the
research was implemented with TREC07 corpus (Cormack and
Lynam, 2007). A new solution to solve spam detection problem
inspired by the adaptive immune system model called cross-
regulation model was presented by Abi-Haidar and Rocha
(2008). The research shows the relevance of cross-regulation
model as a biological inspired algorithm in the detection of spam.
Enron corpus was used in its implementation with 70% spam
experiment. The accuracy and F-measure is at 83% and 79%
respectively. The analysis of major work done in negative selection
algorithms with the combination of two different algorithms in
email spam hybrid model is the work of Sirisanyalak and Sornil
(2007). An AIS based module which extracts features was designed
and further used for logistic regression model; the set of detectors
was initially generated with the use of terms that are extracted
from the training message, and also data on matched detectors
used in regression model. Spam-assassin (spamAssassin) was used
for the experimental work. A genetic algorithm optimized AIS to
cull old lymphocytes (replacing the old lymphocyte with new
ones) and also check for new interest for users in a way that is
similar was presented by Hamdan and Abu (2011) in updating
intervals such as the number of received messages. The interval is
updated with respect to time, user request and so on; many
choices were used in selecting the update intervals which was the
aim of using the genetic algorithm. The experiment was imple-
mented with spam-assassin corpus with 4147 non-spam messages
and 1764 spam messages. The optimized spam detector with 600
generated detectors gives a false positive rate of 1.117% and a false
negative rate of 3.741% while spam detection with AIS and 600
generated detectors gives a false positive rate of 1.214% and a false
negative rate of 4.906%. A proposed anti-spam filter with evolu-
tionary algorithm was also presented by Yevseyeva et al. (2013).
Scores of anti-spam filters are optimized to improve its accuracy.
The optimization problem is considered as single and multi-
objective problem formulation. Rough set theory which is a
mathematical approach for approximate reasoning in other to
group messages in three classes was proposed byWenqing and Zili
(2005), targeting low false positive. The selection of features;
spam, non-spam or suspicious elements was first implemented
on the training set after which genetic algorithm was implemen-
ted. The universe of message was divided into three regions based
on some induced set of rules. The experiment used only 11
features of the UCI corpus (Hopkins et al., 1999). It was concluded
that the technique is very efficient in reducing the number of
non-spam messages that are blocked. The work in Bereta and
Burczyński (2007) combines the characteristics of negative

selection and clonal selection in order to select the best subset
of features for classification. A combination of support vector
machine (SVM) and artificial immune system (AIS) was proposed
by Guangchen and Ying (2007) with the use of binary features
with same feature selection in Bezerra et al. 2006). The support
vector acquired after training SVM was implemented in the
generation of initial detector set of AIS and then AIS was used in
classification. During classification with the AIS, the detector with
smallest Euclidean distance to the message was added to commit-
tee set with major voting of detectors in the set as classification.
PU1 corpora and Ling-spam corpora (csmining) were used for the
experiment.

Other literatures on spam filtering is the application of an
integral evaluation methodology to compare eight different well
known content based spam filtering techniques with the use
of well known accuracy measures by Pérez-Diaz et al. (2012).
The measures are based on the filter accuracy in four different
complimentary scenarios. The scenarios are static, dynamic,
adaptive and internationalization. Basically, the idea of an integral
evaluation methodology is to cover the gap that was present
between basic research and the deployment of existing machine
learning algorithm for spam filtering. An intelligent hybrid spam
filtering framework (IHSFF) was proposed by Hu et al. (2010) to
detect spam by the analysis of email headers only. The framework
is suitable mainly for very big email servers due to its efficiency
and scalability. No one ever combined negative selection algorithm
with differential evolution; though, there are several combined or
optimized techniques (Khilwani et al., 2008; Yildiz, 2013b,c,d)
implemented with differential evolution and other evolutionary
algorithm that solve complex problems.

3. The proposed improved model and its constituent
frameworks

Hybrid systems in recent times have extensive success in many
real world complex problem solving. The importance of a hybrid
system is not negotiable, based on the fact that an individual
system has its weakness, and a hybrid system is meant to compli-
ment the weaknesses of these individual intelligent systems.
A smart hybridization of negative selection algorithm and differ-
ential evolution is investigated in order to compliment the param-
eters of each component of the system by using the advantages of
an individual system against its disadvantages while elevating
each weak component member of both systems (Selamat et al.,
2012) to achieve stability, consistency and an accurate intelligent
system extendable for usage in classification.

3.1. The original negative selection algorithm (NSA)

Negative selection algorithm (NSA) has been used successfully
for a broad range of applications in the construction of artificial
immune systems (Balthrop et al., 2002). The standard algorithm
was proposed by Forrest and Perelson (1994). The algorithm
comprises of the data representation, the training phase, and the
testing phase. In the data representation phase, data are repre-
sented in a binary or a real valued form. The training phase of the
algorithm or the detector generation phase randomly generates
detectors with binary or real valued data which is used conse-
quently to train the algorithm (Wang and Zhao, 2008); while the
testing phase evaluates the trained algorithm. The random gen-
eration of detectors by a negative selection algorithm makes it
impossible to analyse the type of data needed for the training
algorithm. Figs. 1 and 2 show the training and testing phase
of NSA.
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The main concept of the NSA as developed by Forrest and
Perelson (1994) was meant to generate a set of candidate detec-
tors, C, such that 8xiAC and 8zpAS, f MATCHðxi; zpÞor; where xi is a
detector, zp is a pattern and f MATCHðxi; zpÞ is the affinity matching
function. The algorithm of negative selection algorithm as given by
Forrest and Perelson (1994) is presented in Fig. 3.

The original NSA uses a binary r-contiguous bit (RCBITS) rule in
conjunction with a global affinity threshold, r for each detector in a
population of detectors, C. The determination of the affinity

threshold is by trial and error (Forrest and Perelson, 1994) because
the threshold value that gives the best system performance is
selected as the target affinity threshold. AIS researchers have
shown that the affinity matching distance is important and has
an impact on NSA performance (Balthrop et al., 2002; Gonzalez
and Gomez, 2003).

3.1.1. Implementation of negative selection algorithm
The proposed dataset for the research is in real value form

(Prabhakar and Basavaraju, 2010). The real value negative selection
algorithm is encoded in real valued form for classifying non-spam
and spam. In the case of real value, there is need to define the
non-spam and the spam space (Forrest and Perelson, 1994). The
non-spam space is the normal state of a system while the spam
space is the abnormal state of a system. The candidate detector is
randomly generated and then compared to the non-spam samples.
Candidate detectors that do not match any sample of the non-
spam set are accepted as viable detectors. Candidate detectors that
match samples of the non-spam set are discarded as unwanted
detectors. The generation of detectors continues until the detector
set reaches the required coverage of the spam space. After the
generation of detectors in the spam space, the generated detectors
can then monitor the status of the system. If some other new (test)
samples match at least one of the detectors in the system, it is
assumed to be spam which is abnormal to the system but if the
new (test) sample does not match any of the generated detectors
in the spam space; it is assumed to be non-spam.

The non-spam samples in a real value negative selection
algorithm are represented in N-dimensional points and a non-
spam radius Rs, as training dataset. In a clearer term, Eq. (1)
represents the non-spam space.

S¼ fXi j i¼ 1; 2;…;m;Rs¼ rg ð1Þ

Xi are some points in the normalized N-dimensional space.

Xi ¼ fxi1; xi2; xi3;…; xiNg; i¼ 1; 2; 3;…;m ð2Þ

All the normalized samples spaceI $ ½0; 1&N , the spam space can
then be represented as S¼ I'NS where S is spam and NS is non-
spam.

dj ¼ ðCj;R
d
j Þ ð3Þ

Eq. (3) is a representation of one detector dj with centre
Cj ¼ fCj1;Cj2;Cj3⋯CjNg as the detector centre with respect to
numbers of detector dj, while Rj is the detector radius of each
detector dj with respect to diameter Rd. The Euclidean distance is
used as the matching measurement. The distance between non-

Start

Input new email sample

Match any detector?

End

yes

Spam

Non-spam

No

Fig. 2. Testing of negative selection algorithm.

1. Let counter, , be the number of self detectors to train;
2. Let C be an empty set of self detectors;
3. Let r be the affinity threshold;
4. Create a training set, , made up of self patterns;
5. While do
6. Randomly generate a detector, 
7. Matched: = false:
8. For each self pattern, do
9. If then
10. Matched:= true;
11. Break;
12. end
13. end
14. If matched = false then
15. Add ;
16. end
17. end

Fig. 3. Original negative selection algorithm.

Start

Generate random candidate

Match non-spam sample

Accept new detector

Enough detector

End

No

yes

No

yes

Fig. 1. Detector generation of negative selection algorithm.
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spam sample Xi and the detector dj can be defined as

LðXi; dj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1'Cj1Þ2þ⋯þðxiN'CjNÞ2

q
ð4Þ

The L(Xi, dj) is compared with the non-spam space threshold Rs,
obtaining the match value of ⋉ where

⋉¼ LðXi; dj Þ' Rs ð5Þ

The detector dj fails to match the non-spam sample Xi if ⋉40,
therefore if dj does not match any non-spam sample, it will be
retained in the detector set. The detector threshold Rd, j of detector
dj can be defined as

Rd; j¼ min ð⋉Þ if ⋉r0 ð6Þ

If the detector dj matches the non-spam sample, it will be
discarded. This process will not stop, until a detector set that
attain the desired spam space coverage is reached. The generated
detector set can then be used to monitor the entire system.

3.2. The proposed improved negative selection algorithm model

The detector generation as shown in real valued negative
selection algorithm in Section 3.1.1 is vital in enhancing the
performance of the negative selection algorithm. Random genera-
tion of detectors by the real value negative selection algorithmwas
improved with the introduction of differential evolution (DE) and
the local outlier factor (LOF) (Sajesh and Srinivasan, 2011) as
fitness function. These are as a result of the quest for efficiently
trained negative selection algorithm model for purely normal
detectors. The local outlier factor maximized the distance between
the generated spam detector and non-spam space. The approach
will model the data point by the implementation of stochastic
distribution (Sajesh and Srinivasan, 2011) using local outlier factor.

Another vital issue in spam space is the overlapping of generated
detectors. A fitness function that calculates the distance between
two overlapped detectors in the spam space was proposed in this
research. The proposed technique is able to improve the tradi-
tional random generation of detectors in real value negative
selection algorithm and optimize the generated detectors in spam
space at the same time. The sections below explain the processes
in its implementation.

3.2.1. Definition of spam and non-spam space
In the case of real value negative selection algorithm, there is

need to define the non-spam and the spam space. The non-spam
space is the normal state of a system while the spam space is the
abnormal state of a system.

Let us assume the non-spam space to be S where S is defined as
follows:

S¼ ðs1⋯snÞ ¼

s11 … s1m
⋮ ⋱ ⋮
sn1 … snm

2

64

3

75 ð7Þ

SijAKm; i ¼ 1;…; n; j ¼ 1;…; m

S is normalized as follows:

Si ¼
Si

j jSi j j
ð8Þ

Therefore, si is the ith non-spam unit; and sij is the jth vector of
the ith non-spam unit.

3.2.2. Generation of candidate detectors with differential evolution
Detector generation was implemented with differential evolu-

tion instead of the traditional random generation of detectors.

Fig. 4. Proposed hybrid NSA–DE detector generation model.
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The local differential evolution was used to generate detectors
one after the other in order to attain the best combination. Each
generated detector only needs to cover a short distance to attain
coverage in the spam space. The model of the hybrid system is
presented in Fig. 4. It shows the detector generation phase of the
real valued negative selection algorithm using differential evolu-
tion in the generation of detectors.

3.2.2.1. Detector generation parameters and implementation. The
population size¼100; the mutation factor F¼random number
between 0.5 and 1. Preferred value is 0.7; crossover rate C¼
random number between 1 and 0, where the preferred value
is 0.5.

Initializing the population:

j¼ 0; i¼ 1;2;3;…; P;

where P is the size of the population.
A differential candidate vector is added to the population of the

vector by mutation. For each target detector vector xi;½J&, a muta-
tion vector is produced as follows:

Vi½ J& ¼ Xr1 ½ J&þFðXr2 ½ J&' Xr3 ½ J&Þ ð9Þ

F is the mutation factor; it provides the amplification between
two individual differences ðXr2 ½ J&' Xr3 ½ J&Þ. It is usually taken in
the range [0,1] to avoid search stagnation where r1; r2 ; r3A
f1;2;3;…; pg is chosen randomly and p is the number of population.

By replacing parameters from the target candidate detector
vector to generate a trial candidate detector vector with the
corresponding parameters of randomly generated mutant, we
apply recombination or crossover CR to the population.

Therefore, crossover constant CR¼(0rcr1)
rand J A ½0;1&; is a random number that is less than c.

Ui½ J& ¼
vi ½ J& if rand rCR
xi ½ J& otherwise

(

ð10Þ

where J¼1, 2, 3,…, d, where d is the number of parameters to be
optimized.

If the trial candidate detector vector Ui½ J& has equal or lower
value than the target candidate detector vector xi½ J& the target
candidate detector vector is replaced in the next generation. e.g.
replace xi with ui or else xi is retained in the population for at least
one more generation. This is represented as follows:

f ðUi½ J&Þr f ðxi½ J&Þ ð11Þ

The process of mutation, recombination, and selection is
required once a new population is installed until specific termina-
tion criteria are reached.

J’Jþ1 determine the incremental features until the maximum
number of generated detectors is reached. This makes the local
differential evolution unique as best features are acquired one
after the other in order to attain best combination (Fig. 5).

The process of the methodology can be explained as follows:

Step 1: Choose parameters of population size P, mutation factor
F and crossover rate C.
Step 2: Initialization of the population of i¼ 1;2;…; p real value
d-dimensional solution vectors with generated random values
based on a probability distribution in the d-dimensional pro-
blem space.
Step 3: A candidate detector vector differential is added to a
population of vectors by mutation as represented in Eq. (9). For
each target candidate detector vector xi½ J& a mutant is
produced.

Step 4: Recombination is applied to the population to generate
a trial candidate detector vector as shown in Eq. (10)
Step 5: Compare both trail candidate detector vector and target
candidate detector vector to produce a better offspring as in
Eq. (11)
Step 6: Repeat process until maximum generation of detectors
is attained and specified termination criteria is satisfied.

3.2.2.2. Implementation model. Lets assume the jth parameter has
its lower and upper bound as xmin; j and xmax; j respectively.

Initializing the jth parameter of the ith population (P)

xi; j ¼ xmin; jþrand j ð0;1Þðxmax; j'xmin; jÞ ð12Þ

Suppose F(x) is a function of single variable x
f x1; x2 ;…; xPg is a trial solution with P as the populatiom size
xm be the mth individual of the population.
m¼ 1ð1ÞP is used as a target vector in differential evolution

iteration.
This undergoes a modelled step of mutation, crossover, and

selection were the upper case number denotes random variables.
Three trial solutions are chosen from the population at random.
Let Xr1 ; Xr2 ; Xr3 be the trial solution from the population

at random
Xr1 ; Xr2 ; Xr3 are independent of each other based on the

assumption of the probability Pr as:

Prð Xri ¼ Xl\Xrj ¼ XkÞ ¼ Prð Xri ¼ XlÞ PrðXrj ¼ XkÞ ð13Þ

where i; j¼ 1; 2; 3 and k; l¼ 1ð1ÞP and i a j
The difference between Xr2 ; Xr3 is scaled by factor F while Xr1 is

added with the scaled difference.
We assume Vm as the generated donor vector

Vm ¼ Xr1 þ FðXr2 ' Xr3 Þ ð14Þ

The crossover CR equals the time probability of the event that
Um¼Vm. Let us assume that a trial component vector must come
from the donor vector. This assumption leads to the following
theorem.

Theorem. The expected value E of U2
m with Um¼Vm can be repre-

sented as

Eð U2
mÞ ¼ ð1'CRÞx2mþ CRð2F2þ 1ÞvarðxÞþ CRx2av ð15Þ

Proof. The probability of the event rrCR¼ Pr ðrrCRÞ ¼ area of
the spam region¼1) CR¼ CR

Differential Evolution Algorithm.
Input:P //Initial population

F //Scale factor
//Crossover constant

Output: Candidate detector vector
[1] Begin
[2]

[3] 

[4] 

[5] 

[6] 

[7] If then

[8] = 

[9] else,
[10] =

[11] .

Fig. 5. Differential evolution algorithm.
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rrCR and r4CR are mutually exclusive events.
Prðr4CRÞ ¼ 1'PrðrrCRÞ ¼ 1'CR ð16Þ

EðUmÞ ¼ PrðroCRÞxmþ ∑
P

i ¼ 1
∑
P

j ¼ 1
∑
P

k ¼ 1
½Prf rrCRÞ \ ððXr1 ¼ XiÞ

\ ðXr2 ¼ XjÞ \ ðXr3 ¼ XK ÞÞgfXiþ Fðxj'xkÞg& ð17Þ

EðUmÞ ¼ ð1'CRÞxmþ CR
1
NP

∑
P

i ¼ 1
xi

EðUmÞ ¼ ð1'CRÞxmþCRxav ð18Þ

Since mutation and crossover are independent of one another; r is
independent of Xr1 ; Xr2 ; Xr3 . They are independent random variables.

EðU2
mÞ ¼ Prðr4CRÞx2mþ ∑

P

i ¼ 1
∑
P

j ¼ 1
∑
P

k ¼ 1
½Prf rrCRÞ \ ððXr1 ¼ XiÞ

\ ðXr2 ¼ XjÞ \ ðXr3 ¼ XK ÞÞgfXiþ Fðxj'xkÞg2& ð19Þ

EðU2
mÞ ¼ ð1'CRÞx2mþCR

1
P3 ∑

P

i ¼ 1
∑
P

j ¼ 1
∑
P

k ¼ 1
fxiþ Fðxj'xkÞg2 ð20Þ

EðU2
mÞ ¼ ð1'CRÞx2m

þCR
1
P3 ∑

P

i ¼ 1
∑
P

j ¼ 1
∑
P

k ¼ 1
x2i þ F2ðxj'xkÞ

2þ2Fxiðxj'xkÞ
n o

ð21Þ

EðU2
mÞ ¼ ð1'CRÞx2mþCR ð2F2þ1Þ

1
P

∑
P

i ¼ 1
x2i '2F2

1
P

∑
P

i ¼ 1
xi

 !2
2

4

3

5 ð22Þ

EðU2
mÞ ¼ ð1'CRÞx2mþCR ð2F2þ1Þ

1
P

∑
P

i ¼ 1
x2i '

1
P

∑
P

i ¼ 1
xi

 !2
2

4

3

5þCR
1
P

∑
P

i ¼ 1
xi

 !2

ð23Þ

where variable

ðxÞ ¼
1
P

∑
P

i ¼ 1
x2i '

1
P

∑
P

i ¼ 1
xi

 !2

and xav ¼
1
P

∑
P

i ¼ 1
xi ð24Þ

Therefore,

EðU2
mÞ ¼ ð1'CRÞx2mþCR½ð2F2þ1ÞvarðxÞþCRx2av proved: ð25Þ

Eq. (13) is for discrete function as proved. Since we are dealing
with a continuous function, the variance of a continuous function
is represented as

Mean¼
Z b

a
xiðtÞf ðtÞdt ð26Þ

Variance¼
Z b

a
xiðtÞ2f ðtÞdt'

Z b

a
xiðtÞf ðtÞdt ð27Þ

f ðtÞ ¼ Mutation ) f ðxj ðtÞ'xkðtÞ, where t is the time taken for
each mutation process.

From Eq. (12), for any change in Um there will be ΔUm

‘E½ðUmþΔUmÞ2& ¼ EðU2
mÞþ2EðUmÞEðΔUmÞþEðΔU2

mÞ ð28Þ

Substituting Eqs. (14) and (15) into EðU2
mÞ; EðΔU2

mÞ;
EðUmÞ and EðΔUmÞ respevtively, we have:

EðU2
mÞ ¼ ð1'CRÞxiðtÞ2þCR½ð2F2þ1Þ

Z b

a
xiðtÞ2f ðtÞdt'

Z b

a
xiðtÞf ðtÞdt

" #

þCR
Z b

a
xiðtÞf ðtÞdt

" #2
ð29Þ

EðΔU2
mÞ ¼ ð1'CRÞΔxiðtÞ2þCR½ð2F2þ1Þ

Z b

a
ΔxiðtÞ2f ðΔtÞdt

"

'
Z b

a
ΔxiðtÞf ðΔtÞ dt

#

þCR½
Z b

a
ΔxiðtÞf ðΔtÞ dt&2 ð30Þ

EðUmÞ ¼ ð1'CRÞxmðtÞþCR
Z b

a
xiðtÞf ðtÞdt ð31Þ

EðΔUmÞ ¼ ð1'CRÞxmðtÞþCR
Z b

a
xiðΔtÞf ðΔtÞ dt ð32Þ

We further substitute Eqs. (29)–(32) into Eq. (28) to generate
expectation equation of E½ðUmþΔUmÞ2& which is the change in
target vector at a given time t. xm is the best selection during the
mutation process, F is the mutation of selection without time t of
xi; xj; xk, FðtÞ is the mutation of selection with time t change in
xi ðtÞ; xj ðtÞ; xkðtÞ, F

I is the change of mutation with respect to time
t, Δx is the difference between the selected point and CR is the
crossover mutation.

3.2.3. Computing the generated detectors in the spam space
From Eqs. (7) and (8) of the normalized non-spam space, the

non-spam space is represented in Eq. (33) with radius Rs as:

S¼ fXi j i¼ 1; 2;…;m;Rs¼ rg ð33Þ

where Xi is some point in the normalized N-dimensional space.

Xi ¼ fxi1; xi2; xi3;…; xiNg; i¼ 1; 2; 3;…;m ð34Þ

All the normalized samples spaceI $ ½0; 1&N , the spam space can
then be represented as S¼ I'NS. S is spam and NS is non-spam.

dj ¼ ðCj ; R
d
j Þ ð35Þ

Eq. (35) denotes one detector dj where Cj ¼ fCj1; Cj2;Cj3;…;CjNg
is the detector centre, Rj is the detector radius. The Euclidean
distance was used as the matching measurement. The distance
between non-spam sample Xi and the detector dj can be defined as

LðXi; dj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1'Cj1Þ2þ ⋯þðxiN'CjNÞ2

q
ð36Þ

L(Xi, dj) is compared with the non-spam space threshold Rs, obtain-
ing the match value of ⋉

⋉¼ LðXi; dj Þ' Rs ð37Þ

The detector dj fails to match the non-spam sample Xi if ⋉40,
therefore if dj does not match any non-spam sample, it will be
retained in the detector set. The detector threshold Rd, j of detector
dj can be defined as

Rd; j¼ min ð⋉Þ if⋉ r0 ð38Þ

Also, if detector dj matches any non-spam samples, the detector
will be eliminated. The generation of detectors continues until the
number of detectors needed to cover the spam space is attained.
After the generation of detectors in the spam space, the detectors
are then used to monitor the system status. If the testing dataset
matches any detector in the spam space, it is labelled as spam but
if the testing dataset does not match any detector in the spam
space, it is labelled as non-spam.

3.3. Computation of fitness function in the spam and non-spam
space

One most important quality of spam and non-spam detector
space is how distant the generated spam detector is from the non-
spam space; this helps in improving the proposed model. We
decided to employ the local outlier factor as a fitness function to
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maximize the distance between generated spam detectors and the
non-spam space. An outlier can be defined as a data point that is
not the same as the remaining data with respect to some
measures. The technique will model the data point with the use
of a stochastic distribution (Sajesh and Srinivasan, 2011) and the
point is determined to be an outlier based on its relationship with
the model. The outlier detection algorithm that was proposed as
fitness function in this study to maximize the generated spam
detector space is very unique in computing the full dimensional
distance from one point to another (Ramaswamy et al., 2000;
Knorr and Ng, 1998) while computing the density of local
neighbourhood.

* Let us assume k-distance (i) to be the distance of the generated
detector (i) to the nearest neighbourhood (non-spam).

* Set of k-nearest neighbour (non-spam element) includes all
spam detectors at this distance.

* Set S of k-nearest neighbour is denoted as NkðiÞ.
* Here non-spam space¼S.
* This distance is used to define the reach-ability distance.
* Reach' ability'distancekði; sÞ ¼ max fk'distanceðsÞ; di;sg
* The local reach-ability density (LRD) of r is defined as

lrdðiÞ ¼ 1=
∑sϵNkðiÞreachability'distancek ði; sÞ

jNkðiÞj

" #
ð39Þ

Eq. (39) is the quotient of the average reach-ability distance of the
generated detector i from non-spam element. It is not the average
reach-ability of the neighbour from i but the distance from which it
can be reached from its neighbour. We then compare the local reach-
ability density with those of its neighbour using the equation below:

LOFKðiÞ ¼
∑sANkðiÞðlrdðsÞ=lrdðiÞÞ

jNkðiÞj
¼

∑sANkðiÞlrd ðsÞ
jNK ðiÞj

=lrdðiÞ ð40Þ

Eq. (40) shows the average local reach-ability density of the
neighbour divided by the candidate detectors own local reach-
ability density. In this scenario, values of spam detector approxi-
mately 1 indicates that the detector is comparable to its neighbour
(not an outlier) and valueo1 indicates a dense region (which is an
inliers) while value41 indicates an outlier. The major idea of this
technique is to assign to each detector the degree of being an
outlier. The degree is called the local outlier factor (LOF) of the
detector as shown in Eq. (40). The methodology of the computa-
tion of LOF for all detectors is explained in steps as follows:

Step 1: For each generated detector i compute k distance ele-
ment in non-spam region (distance of k-nearest neighbour in
non-spam space s) as shown in Eq. (41).
Step 2: Eq. (42) computes reach-ability distance for gene-
rated detector i with non-spam region as: Reach'dist.ðiÞ ¼
max fk'distanceðsÞ; di;sg, when di;s is the distance from detec-
tor i to non-spam space s.
Step 3: Computation of the local reach-ability density of gene-
rated detector i as inverse of the average reach-ability distance
based on Minpts (minimum number of non-spam region)
nearest neighbour of detector i in Eq. (43).
Step 4: Eq. (44) computes LOF of generated detector i as average
of the ratios of the local reach-ability density of the neighbours
in non-spam space divided by number of the objects own local
reach-ability density.

Assume p as the population of the generated detectors, S is the
non-spam space and i is the ith detector in p (Fig. 6)

For each detector i we have

iAp:Maxðk'distðsÞÞ ð41Þ

= Reach' ability distancep=n maxðdisti;sÞ ð42Þ

jpj nðMinpt ðs; iÞÞ ð43Þ

jpj nðsimilarity ði; pÞ ð44Þ

3.4. Overlapping in spam space (generated detector)

Overlapping exists during the generation of detectors in the
spam space. This is as a result of detectors not spreading properly
in the spam space. The detectors overlapped each other and affect
the evaluation of the algorithm negatively. A fitness function is
introduced to solve the problem of overlapping in spam space, the
minimum and maximum distance between two overlapped detec-
tors a and b in spam space are calculated. Each of the detectors is
modelled and an algorithm is developed to eliminate or minimize
overlapping. The overlapped detectors will be pulled apart from
each other along the shortest distance to correct overlapping
between them.

The overlapping distance is calculated by subtracting the
distance between each overlapped detector along the shortest
path and also doubling the radius. The distance that each detector
is to travel is half the distance of the direction each detector needs
to travel that same distance. The sum of the Y-distance is divided
by the sum of X-distance and the arc tan of the result in the
division is the angle that is used in the offset. Fig. 7 shows two

Algorithm LOF
Input: //Generated detector population

//Non-spam space

// th generated detector in p

Output: The degree of local outlier factor for all record of detector.

[1] Begin
[2] Population of generated detector

[3] Reach-dist: k = 

[4] For each

[5] Reach-dist

[6] * ( )

[7]   

[8] Find population with max reach-ability distance with

[9]   

[10] Find population with maximum similarity with

[11] end
[12] Return * similarity ( )

[13] end

Fig. 6. Algorithm of fitness function in spam and non-spam space.

Fig. 7. Overlapped detectors. (For interpretation of the references to colour in this
figure, the reader is referred to the web version of this article.)
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overlapping detectors; distance between both overlapped detec-
tors is shown as red. dX and dY represent the X distance and Y
distance respectively with radius R.

Let us assume both detectors as X and Y coordinates respectively.

Detector A¼ ðX1; Y1Þ ð45Þ

Detector B¼ ðX2; Y2Þ ð46Þ

Calculating the distance between detectors coordinate X and Y
in Eqs. (47) and (48) we have

ðX ' axisÞ; dX ¼ X1'X2 ð47Þ

ðY ' axisÞ; dY ¼ Y1'Y2 ð48Þ

Calculating the distance between the two detectors D in
Eq. (49) we have:

D¼ sqrt ððdX2ÞþðdY2ÞÞ ð49Þ

Calculating the distance between each overlapped detectors
along the shortest path will also double the radius each over-
lapped detector needed to be moved as follows:

Dd¼ 2R'D ð50Þ

The result of the algorithm above shows how the equations
solve overlapping of detectors. The angle of offset is defined as
follows:

tan '1ðdY=dXÞ ð51Þ

where d represents distance and D represents detectors.

3.5. Flow of proposed model

A dataflow diagram for the proposed NSA–DE hybrid model
was proposed in Fig. 8. This becomes imperative in order to make
clearer steps that are followed to attain the proposed model. The

flow depicts the standard training and testing procedures with
strict adherence. The diagram shows how the training set is kept
separately from the testing set without any known knowledge of
the testing set. After training, the testing set is used to evaluate the
new model. This work follows the implementation of the model in
a sequential manner in lure of respect to standard practice.

Though, the proposed hybridization model works at the random
generation phase of negative selection algorithm, differential evolu-
tion is initialized at the detector generation phase of the algorithm.
Several researchers have proved that the effectiveness of any
computational algorithm depends on how effective data is repre-
sented for learning process (Gong et al., 2012). This is the main
reason we choose to explore the hybridization of negative selection
algorithm at detector generation phase. This makes the proposed
model different from other models as our hybridization model will
be implemented at the random generation of detector phase of
negative selection algorithm. From Fig. 8, after the input data, the
sample datasets are divided into training and testing sets. The
training set was used as a prospective detector (candidate detector)
by implementing differential evolution for generation of detector.
Euclidean distance with a threshold value is further used to measure
each generated detector before occupying the spam space. If the
generated detector matches with the non-spam region, it is dis-
carded but if it does not match with non-spam, it is accepted as a
valid detector. The iteration process continues until the maximum
coverage area of the spam space is attained. The maximization of
distance with spam detector and non-spam element is also improved
upon by the use of local outlier factor (LOF) as fitness function to
maximize the distance of spam detector for good coverage. Distance
between two overlapped detectors in the spam region is also
calculated as fitness function to solve the problem of overlapping
among detectors in spam space. The testing set is separated from the
training set, the testing set attributes was used after proper coverage
and maximization of the spam space for testing; at the end of the

Input Data Sample Dataset

Training Set

Testing Set

Candidate Detector

Non-spam Space

Attributes

Differential Evolution
Detector Generation

Trained Detector in
Non-spam Space

Maximizing Distance
and Overlappingin

Spam Space

Final Classification

Fig. 8. Dataflow diagram of proposed NSA–DE hybrid model.
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testing, a final value is acquired by classification and final output
generated for the hybrid scheme.

3.5.1. Graphical representation of the model
The graph theory is implemented to model the detection

generation system. We represent the computer system as graph
G while the algorithm to be executed by G is represented as
negative selection algorithm-differential evolution (NSA–DE) algo-
rithm. G and NSA–DE are represented by means of a graph whose
nodes (entity) are a representation of the computing facility. The
paper present a graph model and algorithms for computing
system for detector generation as represented in Fig. 9. The graph
shows the computing facility of the computation and the inter-
connection between the facilities. The representation of the model
is in the form of a facility graph. The nodes (entity) of the facility
graph G represent the system facilities and the edges (Relation-
ship) represent the access links between facilities. The facility is
the hardware and software component of the system. The graph is
an indication of the type of facilities that are accessed by other
facilities. Fig. 9 shows the graph with the nodes (entity) xi1 access
the nodes of xi2 and xi6. The nodes xi2 of facility type xj2 and xi6 of
facility type xj7 access the facility type xj1 of node xi1. Similarly, the
node xi5 with facility type xj6 access the facility type xj5 of node xi4.
Each xi node as a facility type xj access which represent both nodes
(entity) and edges (relationship) respectively.

The NSA–DE model is executable by G1 if NSA–DE model is
isomorphic to a sub-graph of G1.

Therefore, let us assume l labelled example ðxi1; xj1Þ…
ðxil; xjlÞA ℝd)f1; 0g where xi is the d-dimensional feature vectors
associated with the ith host and xj is the label 1 for spam and 0 for
non-spam.

We have a set of weighted directed graph with nodes xlþ1…xn.
Let x be the set of pairs (i, j) whenever node i is connected to node
j, and let kZ0 be the weight of the link from xi to xj.

The individual population is created randomly. Each xi consist
of k nodes (k is a representation of the number of weights in the
trained negative selection algorithm). Each ðjth ½1; k&Þ edges of
node xi have value of determined variable ranges from minj to
maxj. The values ofminj ¼ 0 andmaxj ¼ 1 has proposed. The coding
scheme of the weight in node xi is connected to the edges.

A mutated individual vi (vector) for each xi individual in the
population is based on the formulae

vi ¼ xr1þFðxr2'xr3Þ ð52Þ

where F A ð0:5;1Þ; and r1; r2; r3; i A ½1; popsize& satisfy constraint:

r1ar2ar3a i ð53Þ
Indices r2 and r3 points at the individual that are choosing

randomly from the population while index r1 points at the

population of the individual that is best with the lowest value of
training error function ERRð:Þ.

All the xi individual are crossed-over with mutated vi indivi-
dual. Due to the cross-over operation ui individual is created. The
operation is as follows:

For nodes xi ¼ ðxi1; xi2; xi3…xijÞ and vi ¼ ðvi1; vi2; vi3…vijÞ; for
each edges jA ½1; k& of the node xi, a randomly generated number
ranj ranging from [0, 1] is presented with the following rules:

if randj oCR Then

uij ¼ vij
Use
uij ¼ xij ð54Þ

where CRA ½0;1&
The selection of the nodes to new population is performed

based on the rules below:

if ERR ðuiÞoERR ðxiÞ then;

Replace xi by ui in the new population
Else
Leave xi in the new population ð55Þ

It then checks if the algorithm as reached the number of
generation required. If number of generation reached, the algo-
rithm is stopped and the result stored in node xr1 is returned; else
the algorithm jumped back to start the mutation process.

Each generation from differential evolution is used to train the
negative selection algorithm.

The weighted sum of the differential evolution is taken as a
model of negative selection algorithm edges. The weighted sum
wsj of jth edges is defined as

wsj ¼ ∑
p

i ¼ 1
w; i; jui ð56Þ

where p is the number of input in jth edges, wij is the value of
weight representing the connection between jth edges and its ith
input node. ui is the value occurring on ith input.

The classic model of negative selection algorithm includes the
matching measurement with Euclidean distance and the measure
of the threshold value.

The distance between non-spam sample Xi and the weighted
sum wsj can be defined as

LðXi; wsj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1'Cj1Þ2þ ⋯þðxiN'CjNÞ2

q
ð57Þ

L(Xi, wsj) is compared with the non-spam space threshold Rs,
obtaining the match value of ⋉

⋉¼ LðXi; wsjÞ'Rs ð58Þ

The detector swj fails to match the non-spam sample Xi if ⋉40,
therefore if swj does not match any non-spam sample, it will be
retained in the detector set.

There is a 1–1 mapping from the nodes of xi into the nodes of
swj. This is an indication that swj is made up of all the facilities and
connections between facilities required by xi. xi can be inserted in
graph G, if G1 and G2 represent a system and an algorithm, G2 is
then executable by G1. G2 is represented in Fig. 10.

The isomorphism is as follows:

ðy1; y2Þ-ðxi1; xi2Þ

ðy1; y2Þ-ðxi6; xi1Þ

A k-detector D in a graph G, is the implementation of any k-nodes
(entity) {xi1; xi2; xi3; xi4;…; xi7} from G. All edges (relationship)
connected to the nodes (entity) are also implemented. As a result
of this, the graph will be denoted as GD. This can be represented as
D¼ fxi1; xi2; xi3; xi4;…; xi7g:

xi6 (xj7)
xi1 (xj1)

xi2 (xj2 )

xi3 (xj3 )

xi4 (xj4 )

xi4 (xj5 )

xi5 (xj6 )

xi7

Fig. 9. Graph G1.
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Therefore the basic concepts from this definition of detector
generation model are:

1. The implementation of a graph G for detector generation
with respect to NSA–DE and detectors D, if NSA–DE is execu-
table by GD.

2. G is a detector generator with respect to a set of algorithm
(NSA–DE) {A1;A2; A3; A4;…;AP} and a set of generated detector
{D1; D2; D3; D4;…;Dq}, if Ai is executable by GDj for all
i and j where 1r irp.

4. Empirical study, results and discussion

To carry out an empirical study, spam base dataset was
acquired. The entire dataset was divided using stratified sampling
approach into training and testing set in order to evaluate the
performance of negative selection algorithm and the proposed
hybrid model. 70% of the entire dataset was used for training and
construction of the proposed implementation model while 30% of
the remaining dataset was used for testing and validating the
model. For effective comparative study of testing and validation of
negative selection algorithm and the newly proposed model, the
commonly used standard statistical quality measure used in data
mining and machine learning journals was adopted in this
research. They are discussed briefly in the course of the section.

4.1. Spam base dataset analysis

The corpus bench mark is obtained from spam base dataset
which is an acquisition from email spam messages. In acquiring
this email spam messages, it is made up of 4601 messages and
1813 (39%) of the messages are marked to be spam messages and
2788 (61%) are identified as non-spam and was acquired by
Hopkins et al. (1999). Acquisition of this corpus is already pre-
processed, unlike most corpora that come in their raw form. The
instances or features are represented as 58-dimensional vectors.
In the corpus of 57 features, 48 of the features of the corpus is
represented by words generated from the original messages with
the absence of stop list or stemming and they are considered and
enlisted as most unbalanced words for the class spam. The
remaining 6 features are the percentage of manifestation of the
special characters “;”, “(”, “[”, “!”, “$” and “#”. Some other
3 features are a representation of various measures of manifesta-
tion of capital letters that exist in the text of the messages. Lastly,
is the class label in the corpus; it gives the condition of an instance
to be spam or non-spam with 1 and 0 representation. Spam base
dataset is one of the best test beds that performs well (Koprinska,
2007) during learning and evaluation techniques.

4.2. Criteria for performance evaluation

Different measures are used to evaluate the accuracy and
performance of NSA and NSA–DE model. To evaluate and compare
performance and accuracy of both models, statistical quality
measures used in machine learning and data mining journals
were used (Biggio et al., 2011). They are Sensitivity (SN), Specificity

(SP), Positive prediction value (PPV), Accuracy (ACC), Negative
prediction value (NPV), Correlation coefficient (CC) and F-measure
(F1). See Biggio et al. (2011) for more detailed mathematical
formulae; though, they are briefly discussed below. Table 1 shows
the performance evaluation for all listed criteria of 1000 generated
detectors with threshold value of 0.4.

(i) Sensitivity (SN): The SN measures the proportion of positive
patterns that are correctly recognized as positive.

SN ¼
TP

TPþ FN
ð59Þ

(ii) Specificity (SP): The SP measures the proportion of negative
patterns that are correctly recognized as negative

SP ¼
TN

TNþFP
ð60Þ

(iii) Positive prediction value (PPV): PPV of a test gives a mea-
surement of the percentage of true positives to the overall
number of patterns that are recognized to be positive. It
measures the probability of a positively predicted pattern as
positive

PPV ¼
TP

TPþFP
ð61Þ

(iv) Negative prediction value (NPV): NPV of a test also gives the
measurement of percentage of true negative to the overall
number of patterns recognized to be negative. It measures
the probability of a negatively predicted pattern as negative.

NPV ¼
TN

FNþTN
ð62Þ

(v) Accuracy (Acc): Acc measures the percentage of samples
correctly classified

Acc¼
TPþTN

TPþTNþFNþFP
ð63Þ

(vi) Correlation Coefficient (CC): is used as a measure of the
quality binary (two class) classification in machine learning.

CC ¼
½ ðTPÞðTNÞ'ðFPÞðFNÞ&ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFNÞðTPþFPÞðTNþFPÞðTNþFNÞ
p ð64Þ

(vii) F-measure (F1): It is a measure that combines both positive
predictive value and sensitivity. The positive predictive value
and sensitivity are evenly weighted.

F1¼ 2 )
Positive prdictive value ) Sensitivity
Positive prdictive valueþ Sensitivity

ð65Þ

(viii) Statistical T-test: Looks at the t-statistics, t-distribution and
degree of freedom to determine the p value (probability)

xi2xi1

y2y1

Fig. 10. Graph G2.

Table 1
At 1000 generated detectors with threshold value of 0.4, gives summary and
comparison of results in percentage for NSA and NSA–DE model.

Model ACC MCC F1 SN PPV SP NPV

NSA 68.86 36.06 36.01 22.24 94.53 99.16 66.24
NSA–DE 80.66 60.08 69.76 56.62 90.86 96.30 77.35

Note: ACC¼accuracy, CC¼correlation coefficient, F1¼F measure, SN¼sensitivity,
PPV¼Positive prediction value, SP¼Specificity and NPV¼Negative prediction value.
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that can be use to determine whether the mean population
differs. It is a hypothesis test.

T ¼
XI'X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS1ð2=n1Þ þS2ð2=n2ÞÞ
p ð66Þ

The evaluation equations listed from (i) to (viii) above, TP is the
number of true positive, TN is the number of true negative, FN is
the number of false negative and FP is the number of false positive.

4.3. Experimental settings and implementation

The evaluation of the NSA model and the proposed NSA–DE
hybrid model is implemented by the division of the dataset using a
stratified sample approach with 70% training set and 30% testing
set for investigating the performance of the new model on an
unseen data. The training set is used in the construction of the
model by training the dataset on both models while evaluating the
capability of the model with the testing set. The process of
implementation did not use any ready-made code and all func-
tions needed are coded using the same platform. The evaluation
of both NSA model and its hybrid are implemented with threshold
values of between 0.1 and 1 while the number of generated
detectors is between 100 and 8000. The different threshold value
and number of detectors generated have tremendous impact on
the final output measure.

5. Experimental results and discussion

Performance comparison between negative selection algorithm
model and proposed hybrid model using validation of an unseen
data is summarized in Figs. 11–13. The result of hybridized NSA–
DE model out performs the NSA model. The proposed hybrid
model shows an improved accuracy when compared with the
standard model which performs poorly by all measuring stan-
dards. It is clear that the hybrid model is better than the individual
models due to the good forecasting scheme used in the evaluation
of the model.

Though, performance evaluation criteria of the two models was
listed in Section 4.2, graphical representation of accuracy, F1
measure and negative prediction values were represented in the
paper as shown in Figs. 11–13 respectively. Accuracy measures the
percentage of sample that is correctly classified. It can be observed
that the proposed hybrid model performs better than negative
selection algorithm model with average accuracy of the standard
negative selection algorithm at 65.147%, the hybrid negative
selection algorithm and differential evolution model is at 69.383%.
At 7000 detectors with threshold value of 0.4, accuracy for
negative selection algorithm is 68.863% while hybrid negative
selection algorithm and differential evolution is at 83.056%. Also,

F1 measures combine both positive prediction value and sensitiv-
ity by weighing both evenly. At 7000 detectors and threshold
value of 0.4 positive predictive values for negative selection
algorithm is 94.531% while hybrid negative selection algorithm
and differential evolution is 87.081%; sensitivity with the same
generated detectors and threshold values for negative selection
algorithm is 22.243% while hybrid negative selection algorithm
and differential evolution is at 66.912%. Overall F1 measure for
negative selection algorithm is 36.012% while hybrid negative
selection algorithm and differential evolution is 75.676%. Average
F1 measure for negative selection algorithm is 22.094% while
hybrid negative selection algorithm and differential evolution is
38.944%.

From the results reported, it could be noted easily that hybrid
NSA–DE model performed better in all ramifications. This proves
consistency of the quality of measure used in every respect. Fig. 13
shows the negative prediction value with 7000 detectors and
threshold value of 0.4 for negative selection algorithm at 66.241%
while hybrid negative selection algorithm and differential evolu-
tion is 81.308%. The average negative prediction values for nega-
tive selection algorithm is 63.872% while hybrid negative selection
algorithm and differential evolution is 68.059%. The NSA model
performs very low when compared with the hybrid model. The
improvement is on a very big scale and it shows the relevance of
differential evolution in improving the detector generation phase
of negative selection algorithm. This practically solves the problem
of detector generation and reduces the false rate as more reliable
features are generated, making the standard model a robust and
more effective model.

Table 1 gives summary of result obtained with 1000 generated
detectors and threshold value of 0.4. The table shows the improve-
ment of hybrid negative selection algorithm based on detector
generation and maximization of the coverage area.

5.1. Statistical t-test

The p value (probability) is used to determine if the population
mean differs or not. T-test examines the t-statistic, t-distribution
and the degree of freedom in order to establish this fact. The
analysis presented in Table 2 indicates a high correlation between
the mean of negative selection algorithm and hybrid negative
selection algorithm-differential evolution at 0.05 alpha levels.
This shows that there is a mutual unity between negative selection
algorithm and hybrid negative selection algorithm-differential
evolution among their variables. This is corroborated by the
mean of each of the negative selection algorithm and hybrid
negative selection algorithm-differential evolution ranging between
65.1477 and 70.4763 for accuracy and also the standard deviation
indicated that there is a deviation between 0.98 and 1.89. Other
evaluation measure analysis is represented in Table 2.

Fig. 11. Accuracy of negative selection algorithm and hybrid negative selection algorithm with differential evolution.
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Therefore, there is significant correlation between the mean
of negative selection algorithm and hybrid negative selection
algorithm-differential evolution. This also shows a high level of
accuracy between them.

6. Conclusion and recommendations

A new hybrid model that combines negative selection algo-
rithm (NSA) and differential evolution (DE) has been proposed and
implemented. The uniqueness of this model is that the DE is
implemented at the random generation phase of NSA; also the
generated detector distance was maximized and overlapping of
detectors was also minimized. The detector generation phase of
NSA and detector coverage area determines how robust and

effective an algorithm will perform. DE implementation improved
detector generation phase of NSA while local outlier factor (LOF)
was used as fitness function to maximize the distance of generated
detectors and distance between overlapped detectors are calcu-
lated as fitness function to resolve overlapping between two
detectors. The proposed hybrid serves as a better replacement to
NSA model. Spam base dataset was used to investigate the
performance of NSA model against hybrid NSA–DE model. Perfor-
mance and accuracy investigation as shown that the proposed
hybrid model was able to detect email spam better than the NSA
model. Validation of the proposed framework has been carried out
with published dataset and an in-depth comparative study of the
proposed hybrid model and the standard model has been carried
out in order to show the improvement of the proposed hybrid
model over the NSA model. Statistical t-test was also used to
determine the correlation between negative selection algorithm
and hybrid negative selection algorithm-differential evolution in
this paper. In totality, the empirical report has shown the super-
iority of the proposed NSA–DE hybrid model over the NSA model.
The proposed hybrid system will be useful in other applications as
negative selection algorithm solves vast number of complex
problems. Based on the results presented, this research should
be viewed as an improvement in the field of computational
intelligence. As future work, we will propose a parallel hybridiza-
tion of two evolutionary algorithms to perform single task of
detector generation.
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Fig. 12. F-measure of negative selection algorithm and hybrid negative selection algorithm with differential evolution.

Fig. 13. Negative predictive value of negative selection algorithm and hybrid negative selection algorithm with differential evolution.

Table 2
t-test for negative selection algorithm (NSA) and hybrid negative selection algo-
rithm-differential evolution (NSA–DE)

Measure Algorithm t Df
(n'1)

Mean SD Sig
(2-tailed)

Comment

ACC NSA 273.003 16 65.1477 0.9840 0.000 Higher
correlationNSA–DE 203.56 16 69.3828 1.4053 0.000

F1 NSA 22.385 16 22.0938 4.0694 0.000 Higher
correlationNSA–DE 27.304 16 38.9436 5.8809 0.000

PPV NSA 229.009 16 85.0243 1.5308 0.000 Higher
correlationNSA–DE 93.457 16 81.7766 3.6078 0.000

CC NSA 40.210 16 23.2112 2.3800 0.000 Higher
correlationNSA–DE 49.363 16 33.6978 2.8146 0.000

SN NSA 17.166 16 13.6344 3.2748 0.000 Higher
correlationNSA–DE 17.468 16 28.6430 6.7610 0.000

SP NSA 778.802 16 98.6269 0.5221 0.000 Higher
correlationNSA–DE 166.871 16 95.8612 2.3686 0.000

NPV NSA 309.986 16 63.8717 0.8496 0.000 Higher
correlationNSA–PSO 145.310 16 68.0587 1.9311 0.000

Note: ACC¼accuracy, CC¼correlation coefficient, F1¼F measure, SN¼sensitivity,
PPV¼positive prediction value, SP¼specificity and NPV¼negative prediction value.

I. Idris et al. / Engineering Applications of Artificial Intelligence 28 (2014) 97–110 109



References

Abi-Haidar, A., Rocha, L., 2008. Adaptive spam detection inspired by a cross-
regulation model of immune dynamics: a study of concept drift. In: Bentley, P.,
Lee, S., Jung, S. (Eds.), Artificial Immune Systems, vol. 5132. Springer, Berlin,
Heidelberg, pp. 36–47.

Balthrop, J., Forrest, S., Glickman, M.R., 2002. Revisiting LISYS: parameters and
normal behavior. In: Proceedings of the 2002 Congress on Evolutionary
Computing: 2002, pp.1045–1050.

Bereta, M., Burczyński, T., 2007. Comparing binary and real-valued coding in hybrid
immune algorithm for feature selection and classification of ECG signals. Eng.
Appl. Artif. Intell. 20 (5), 571–585.

Bezerra, G., Barra, T., Ferreira, H., Knidel, H., Castro, L., Zuben, F., 2006. An
immunological filter for spam. In: Bersini, H., Carneiro, J. (Eds.), Artificial
Immune Systems, vol. 4163. Springer, Berlin, Heidelberg, pp. 446–458.

Biggio, B., Fumera, G., Pillai, I., Roli, F., 2011. A survey and experimental evaluation
of image spam filtering techniques. Pattern Recognition Lett. 32 (10),
1436–1446.

Carpinter, J, Hunt, R, 2006. Tightening the net: a review of current and next
generation spam filtering tools. Comput. Secur. 25 (8), 566–578.

Cormack, G., Lynam, T., 2007. TREC Public Spam Corpus. 〈http://plguwaterlooca/
+ gvcormac/treccorpus07/〉 (cited 15.01.09).

Cormack, G, Smucker, M, Clarke, C, 2011. Efficient and effective spam filtering and
re-ranking for large web datasets. Inform. Retr. 14 (5), 441–465.

Dasgupta, D., Yu, S., Nino, F., 2011. Recent advances in artificial immune systems:
models and applications. Appl. Soft Comput. 11 (2), 1574–1587.

Forrest, S., Perelson, A.S., 1994. Self nonself discrimination in computer.
Golovko, V., Bezobrazov, S., Kachurka, P., Vaitsekhovich, L., 2010. Neural network and

artificial immune systems for malware and network intrusion detection. In:
Advances in Machine Learning II. Koronacki, J., Wierzchon, S.T., Ras, Z.W.,
Kacprzyk, J. (Eds.), Springer Berlin Heidelberg, vol. 263, pp. 485–513.

Gong, M., Zhang, J., Ma, J., Jiao, L., 2012. An efficient negative selection algorithm
with further training for anomaly detection. Knowledge-Based Syst. 30 (0),
185–191.

Gonzalez, F., Gomez, J., Madhavi, K., Dipankar, D., 2003. An evolutionary approach
to generate fuzzy anomaly (attack) signatures. In: Information Assurance
Workshop, 2003 IEEE Systems, Man and Cybernetics Society, 18–20 June
2003, pp. 251–259.

Guangchen, R., Ying, T., 2007. Intelligent detection approaches for spam. In: Third
International Conference on Natural Computation, 2007 ICNC 2007, 24–27
August 2007, pp. 672–676.

Guzella, T.S., Caminhas, W.M., 2009. A review of machine learning approaches to
Spam filtering. Expert Syst. Appl. 36 (7), 10206–10222.

Hamdan, Mohammad Adel, Abu, Z.R., 2011. Application of genetic optimized
artificial immune system and neural networks in spam detection. Appl. Soft
Comput. 11 (4), 3827–3845.

Mark Hopkins, Erik Reeber, George Forman, Jaap Suermondt, 1999. Spam Base
Dataset. Hewlett-Packard Labs. 〈http://archiveicsuciedu/ml/datasets/Spambase〉.

Hu, Y., Guo, C., Ngai, E.W.T., Liu, M., Chen, S., 2010. A scalable intelligent non-content-
based spam-filtering framework. Expert Syst. Appl. 37 (12), 8557–8565.

Khilwani, N., Prakash, A., Shankar, R., Tiwari, M.K., 2008. Fast clonal algorithm. Eng.
Appl. Artif. Intell. 21 (1), 106–128.

Knorr, E.M., Ng, R.T., 1998. Algorithms for mining distance-based outliers in large
datasets. In: Proceedings of the 24rd International Conference on Very Large
Data Bases. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; pp. 392–
403.

Koprinska, I., 2007. Learning to classify e-mail. Inform. Sci.: .Int. J. Arch., 177.
Gong, M., Zhang, J., Ma, J., Jiao, L., 2012. An efficient negative selection algorithm

with further training for anomaly detection. Knowl.-Based Syst. 30, 185–191.
Massey, B., Thomure, M., Budrevich, R., Long, S., 2003. Learning spam: simple

techniques for freely-available software. In: Proceedings of the annual con-
ference on USENIX Annual Technical Conference. (ATEC '03). USENIX Associa-
tion, Berkeley, CA, USA, p. 13.

Oda, T., White, T., 2003. Increasing the accuracy of a spam-detecting artificial
immune system. In: Proceedings of the 2003 Congress on Evolutionary
Computation, 2003 CEC ’03, 8–12 December 2003, vol. 391, pp. 390–396.

Oda, T., White, T., 2005. Immunity from Spam: an analysis of an artificial immune
system for junk email detection. In: Jacob, C., Pilat, M., Bentley, P., Timmis, J.
(Eds.), Artificial Immune Systems, vol. 3627. Springer, Berlin, Heidelberg,
pp. 276–289.

Oda, T., White, T., 2003. Developing an immunity to Spam. In: Cantú-Paz, E., Foster,
J., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G.,

Wilson, S., et al. (Eds.), Genetic and Evolutionary Computation — GECCO, vol.
2723. Springer, Berlin, Heidelberg, pp. 231–242.

Pérez-Diaz, N., Ruano-Ordás, D., Fdez-Riverola, F., Méndez, J.R., 2012. SDAI: an
integral evaluation methodology for content-based spam filtering models.
Expert Syst. Appl. 39 (16), 12487–12500.

Prabhakar, R., Basavaraju, M., 2010. A novel method of spam mail detection using
text based clustering approach. Int. J. Comput. Appl. 5 (4), 15–25.

Prakash, A., Khilwani, N., Tiwari, M.K., Cohen, Y., 2008. Modified immune algorithm
for job selection and operation allocation problem in flexible manufacturing
systems. Adv. Eng. Softw. 39 (3), 219–232.

Ramaswamy, S., Rastogi, R., Shim, K., 2000. Efficient algorithms for mining outliers
from large data sets. SIGMOD Rec. 29 (2), 427–438.

Sajesh, T.A., Srinivasan, M.R., 2011. Outlier detection for high dimensional data
using the Comedian approach. J. Stat. Comput. Simul. 82 (5), 745–757.

Schryen, G, 2007. Anti-spam legislation: an analysis of laws and their effectiveness.
Inform. Commun. Technol. Law 16 (1), 17–32.

Selamat, A., Olatunji, S.O., Abdul Raheem, A.A., 2012. A hybrid model through the
fusion of type-2 fuzzy logic systems and sensitivity-based linear learning
method for modeling PVT properties of crude oil systems. Adv. Fuzzy Syst.
2012, 19.

Sirisanyalak, B., Sornil, O., 2007. An artificial immunity-based spam detection
system. In: IEEE Congress on evolutionary computation, 2007 CEC 2007, 25–
28 September 2007, pp. 3392–3398.

Wamli, M., Dat, T., Dharmendra, S., 2009. A novel Spam email detection system
based on negative selection. In: Proceedings of the Fourth International
Conference on Computer Science and Convergence Information Technology.

Wang, C., Zhao, Y., 2008. A new fault detection method based on artificial immune
systems. Asia-Pac. J. Chem. Eng. 3 (6), 706–711.

Wanli, M., Dat, T., Sharma, D., 2010. A practical study on shape space and its
occupancy in negative selection. In: 2010 IEEE Congress on Evolutionary
Computation (CEC), 18–23 July 2010, pp. 1–7.

Wenqing, Z., Zili, Z., 2005. An email classification model based on rough set theory.
In: Proceedings of the 2005 International Conference on Active Media Technol-
ogy, 2005 (AMT 2005), 19–21 May 2005, pp. 403–408.

Wie, W., Zhang, P.T., Tan, Y., He, X., 2011. An immune local concentration based
virus detection approach. J. Zhejiang Univ. – Sci. C 12 (6), 443–454.

Xin Y., Fengbin Z., Liang X., Dawei W., 2010. Optimization of self set and detector
generation base on real-value negative selection algorithm. In: 2010 Interna-
tional Conference on Computer and Communication Technologies in Agricul-
ture Engineering (CCTAE), 12–13 June 2010, pp. 12–15.

Yevseyeva, I., Basto-Fernandes, V., Ruano-Ordás, D., Méndez, J.R., 2013. Optimising
anti-spam filters with evolutionary algorithms. Expert Syst. Appl. 40 (10),
4010–4021.

Yildiz, A.R., 2013a. A new hybrid differential evolution algorithm for the selection of
optimal machining parameters in milling operations. Appl. Soft Comput. 13 (3),
1561–1566.

Yıldız, A.R., 2009. An effective hybrid immune-hill climbing optimization approach
for solving design and manufacturing optimization problems in industry. J.
Mater. Process. Technol. 209 (6), 2773–2780.

Yildiz, A.R., 2013b. Comparison of evolutionary-based optimization algorithms for
structural design optimization. Eng. Appl. Artif. Intell. 26 (1), 327–333.

Yildiz, A.R., 2013c. Hybrid Taguchi-differential evolution algorithm for optimization
of multi-pass turning operations. Appl. Soft Comput. 13 (3), 1433–1439.

Yildiz, A.R., 2013d. A new hybrid artificial bee colony algorithm for robust optimal
design and manufacturing. Appl. Soft Comput. 13 (5), 2906–2912.

Yuebing C., Chao F., Quan Z., Chaojing T., 2010. Negative selection algorithm with
variable-sized r-contiguous matching rule. In: 2010 IEEE International Con-
ference on Progress in Informatics and Computing (PIC), 10–12 December 2010,
pp. 150–154.

Zhang, L, Zhu, J, Yao, T, 2004. An evaluation of statistical spam filtering techniques.
ACM Trans. Asian Lang. Inform. Process. 3 (4), 243–269.

Zhang, P.T., Wang, W., Tan, Y., 2010. A malware detection model based on a negative
selection algorithm with penalty factor. Sci. China Inform. Sci. 53 (12),
2461–2471.

Zhang, Y., Wu, L., Xia, F., Liu, X., 2010. Immunity-based model for malicious
code detection. In: Lecture Notes in Computer Science, vol. 6215. Changsha,
pp. 399–406.

csmining.org/index.php/ling-spam-datasets (cited: available from: csminingorg/
indexphp/ling-spam-datasets).

spamAssassin: The Apache SpamAssassin Project, 〈http://spamassassin.apache.org/〉
(cited: Available from: 〈http://spamassassinapacheorg〉).

I. Idris et al. / Engineering Applications of Artificial Intelligence 28 (2014) 97–110110

http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref1
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref1
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref1
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref1
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref3
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref3
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref3
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref4
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref4
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref4
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref5
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref5
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref5
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref6
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref6
http://plguwaterlooca/~gvcormac/treccorpus07/
http://plguwaterlooca/~gvcormac/treccorpus07/
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref7
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref7
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref8
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref8
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref9
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref9
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref9
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref10
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref10
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref11
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref11
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref11
http://archiveicsuciedu/ml/datasets/Spambase
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref12
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref12
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref13
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref13
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref14
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref15
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref15
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref16
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref16
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref16
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref16
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref17
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref17
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref17
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref17
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref18
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref18
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref18
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref2
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref2
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref19
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref19
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref19
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref20
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref20
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref21
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref21
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref22
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref22
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref23
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref23
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref23
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref23
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref24
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref24
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref25
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref25
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref26
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref26
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref26
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref27
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref27
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref27
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref28
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref28
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref28
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref29
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref29
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref30
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref30
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref31
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref31
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref32
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref32
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref33
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref33
http://refhub.elsevier.com/S0952-1976(13)00235-2/sbref33
http://spamassassin.apache.org/
http://spamassassinapacheorg

	Bookmarks
	Hybrid email spam detection model with negative selection algorithm and differential evolution
	Introduction
	Related work
	The proposed improved model and its constituent frameworks
	The original negative selection algorithm (NSA)
	Implementation of negative selection algorithm

	The proposed improved negative selection algorithm model
	Definition of spam and non-spam space
	Generation of candidate detectors with differential evolution
	Detector generation parameters and implementation
	Implementation model

	Computing the generated detectors in the spam space

	Computation of fitness function in the spam and non-spam space
	Overlapping in spam space (generated detector)
	Flow of proposed model
	Graphical representation of the model


	Empirical study, results and discussion
	Spam base dataset analysis
	Criteria for performance evaluation
	Experimental settings and implementation

	Experimental results and discussion
	Statistical t-test

	Conclusion and recommendations
	Acknowledgements
	References


