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Abstract: In this study, we modelled the effect of combiming Immumzation with latent tuberculosis treatment
mn controlling the spread of tuberculosis. The administration of BCG vaccines administered at birth protects
children from early infection of the disease but the effect of these vaccines expires with time. Hence, dstection
and treatment of latent tuberculosis infections by administering 1somazid preventive therapy prevents the break
down of latent infections mto infectious cases this however, reduces greatly the rate of spread of the disease
since, only members of the Infectious class can spread the disease to others. We established the existence of
equilibrium states and analyse the disease free equilibrium state for stability using Routh-Hurwitz theorem. The
disease free equilibrium state (i.e., the state of total eradication of tuberculosis) will be stable if effort is
intensified in bringing down both the contraction rate [ and the rate of break down to mfectious

tuberculosis T.
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INTRODUCTION

Tuberculosis progression from latent infection to
active disease varies greatly. For instance, people with
AIDS are more likely to develop to active TB after
mfection. A patient with ATDS who becomes mfected with
Mycobacterium tuberculosis has a 50% chance of
developing active tuberculosis within 2 months and a
5-10% chance of developmng active disease each year
thereafter. According to the World Health Organization
(WHO), infants and young children mfected with
Mycobacterium tuberculosis are also more likely to
develop active TB than older people since, their immune
system are not yet well developed (Okyere, 2007).

TB and HIV are the leading causes of death from
infectious diseases among adults globally and the number
of TB cases has risen significantly since, the start of the
HIV epidemic, particularly in sub-Saharan Africa where
the HIV epidemic is most severe (Dye, 2006).

Bacillus Calmette-Guerin {or Bacille Calmette-Guérin,
BCG) 18 a vaccine aganst tuberculosis that 1s prepared
from a strain of the attenuated (weakened) live bovine
tuberculosis bacillus, Mycobacterium bovis that has lost
its virulence in humans by being specially cultured in an
artificial medium for years. The bacilli have retamned
enough strong antigenicity to become a somewhat
effective vaccine for the prevention of human
tuberculosis. At best, the BCG vaccine 1s 80% effective in

preventing tuberculosis for duration of 15 years however,
it 15 protective effect appears to vary according to
geography (Colditz et al., 1994).

Mathematical models have played a key role in the
formulation of TB control strategies and the establishment
of interim goals for mtervention programs. Most of these
models are of the SEIR class in which the host population
is categorized by infection status as susceptible, exposed
{(infected but not yet infectious), infectious and recovered.
One of the principle attributes of these models 1s that the
force of infection (the rate at which susceptibles leave the
susceptible class and move into an infected category, 1.e.,
become infected) 1s a function of the number of infectious
hosts i the population at any tume t and is thus, a
nonlinear term. Other transitions such as the recovery of
infectious individuals and death are modelled as linear
terms with constant coefficients.

The co-pandemic nature of TB-HIV calls for more
quantitative research on TB particularly because it has
cure unlike HIV. Tt should then be no surprise that
mathematical models and data mimng techniques are now
been deployed m the study of the disease epidemiology
and the evaluation of some of the world TB control
measures and strategy. Thus, if we are able to reduce (to
barest mimmum) the spread of TB via all the control
measures and strategies, we will have succeeded in
reducing the alarming TB death tools and increase the life
expectancy of HIV patients by reducing their chances of
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contacting TB which may lead them to early grave.
Tuberculosis (TB) and HIV are the leading causes of
death from ifectious diseases among adults
(Corbett et al, 2003). Estimates for 2003 put the
mumber of incident TB cases at 8.8 million up from an
estimated 8.3 million in 2000 with HIV being the main
driving force (WHO, 2003).

MATERIALS AND MEHODS

Model description: The population is partitioned nto 5
compartments, immunized, susceptible, latent, infectious
and recovered compartments. The immunized
compartment changes due to the coming in of the
mmmunized children into the population where we
assumed that a proportion 8p of the mcoming individuals
are immunized against infection. This compartment
reduces due to expiration of duration of vaccine efficacy
at the rate ¢ and also by natural death at the rate .

The susceptible population increases due to the
coming of new births not immunized against infection into
the population at the rate (1 - 8)p and the expiration of the
efficacy of the vaccine at the rate «. The susceptible
population also dimmishes due to natural death at rate p
and infection with an incident rate of infection p. The
population dynamic of the Latent class grows with the
mnstantaneous incidence rate of infection B. This class
also reduces by natural death rate p, successful cure of
infectious Latent TB patients at the rate o and occasional
break down of latent TB into infectious TB.

In the same way, the population dynamic of the
mfectious class grows with the occasional break down of
latent TB into infectious TB. This class also reduces by
natural death rate p and successful cure of infectious TB
patients at the rate vy and death caused as result of
chronic TB infection at the rate 8. Lastly, the dynamics of
the recovered class increases with successful cure of
latent TB patients at the rate o and that of infectious
TB patients at the rate y and decreases by natural
death rate .

Model diagram: Schematic presentation of model three is
shown in Fig. 1.

o

Fig. 1: Schematic presentation of model 3
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Model equation:
d—M:Bp—(a+u)M (1)
dt
%z(lfe)p+othBSIqu (2)
d—L:BSIf(G+r+u)L (3
dt
QZ’CLf(Y+LL+8)I (4
dt
dR
— =oL+yl- (3)
it Y1 -uR

Equilibrium solutions: We now solve the model
equations to obtain the equilibrium states as by Sirajo
(2009). At the equilibrium state:

dM _ds _dL _dl_dR

dt dt dt dt dt

Let:
Mt)=v.3t)=w,Lt)=x,IT(t)=vandR(t)==z

Then the system of equations become:

Bp —(ax+uv=>0 (&)
(1-6)p + v~ w(By + ) =0 )
Pwy —{(c+T+wx=0 (8)
wm-(y+u+dy=0 (9
oxX+yy—uz=0 10)
The disease free equilibrium state. From Eq. &:
Op—(a+uw=0
11
v 8p (1)
(ot )
From Eq. &
™ (y+u+8y=0
o lrept By 12)
T

Substituting Eq. 12 for x in Eq. 8 gives:
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Bwy — (G+ T+ M){M} =0
T
Either:

y=0 (13)

or
i (CHTHWy+tu+d)
T

0 (14)

Substituting Eq. 11 and Eq. 13 for v and y in Eq. 7
gives:

(1B)p+o{ Op }wu—o
(ot )

(15)
o 2 Pt =B
uier+ u)
Substituting Eq. 13 for y in Eq. 9 gives:
™=0
Hence:
x=0 (1 6)

Substituting Fg. 16 and 13 for x andy in Eq. 10 gives:
—Uz=0=z=0
Hence, the disease free equilibrium state is:

Bp
o+ 1y

(o+ uX1-0)p+obp
e+ 1)

(v, w,X,y,7) —{

o,o,oJ

The endemic equilibrium state: From Eq. 14:

Bw_(c+r+u)(y+u+ 8 _

= 0
T
Hence:
w:(c+r+p.)(y+p.+8) a7
Bt
Substituting Eq. 17 for w in Eq. 8 gives:
B|:(G+ T+ WY+ U+ 8)}/(CT+T+ W = 0
pt (18)
L lrtp+dy

T

Substituting Eq. 18 for x in Eq. 10 gives:
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i (19)
,_lotr+p=8)-mly
Vi
Next, we add Eq. 6 and 7:
Op—(a+plv+(1-0p+av-—wPy+u)=0 (20)
p— v —wly —pw =0
Adding Eq. 20 m 8 give:
p-uv—{c+Tt+uwx-—uw=0 (21)

Adding Eq. 21 m 9 give:

p-uv—(C+T+ux—uw+ ™ —(y+ U+ 3y =0 (22)
Py —(CHWX—puw —(y+u+8)y=0

Adding Eq. 22 m 10 give:
P—Uv —(0+ L)X — W —

(v+u+8y+ox+yy—puz=0
P MY — MW — X — (U +8)y —uz=0

(23)

Next, we substitute Eq. 11,17 18and 19 for v, w, x and
vy in Eq. 23:

_ Bp | (c+1:+u)(y+u+8)}
g “qu)} { i
!_{(wTS)y}(!_H5)y_u[[0(v+u;8)+w]y}=0 24)

_[pPalor+ ) —Pubp —pio + wi(o +T+p)y+ p+ )<
ﬁfc(oc+u)[p(y+p,+ &)+ +8) +[oly+u+ S)+r\(]]

Substituting Eq. 24 for y in Eq. 18 and Eq. 19 give:

}(H u+8)

WY+ u+ 8+ 1(u+ 8)+}
[oty+ 1+ 8)+ ]

{pﬁr(m W)~ Brudp - u
_ (ot p)o T+ pt 8)

(25)

(o + M){

and:

{pﬁr(a + W)~ BTubp —uo+ W)

IS }[G(Y+M+8)+W]

Wy+u+d)+u+d)+
UpT(o+ M)
[oCy +u+ 8)+ 7]

(26)
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Hence, the endemic equilibrium state is given by:

Bp

v : W:(G+’C+M)('\(+M+8)
(o)

Bt

}(YHHS)

Ly + W+ &) + Tl + }
8)+[otr+ ut 8+

{p (ot u) — Brubp — o+
_ Mo+ T+ Ut 8)

Bl + !—L){

{pﬁr(a + ) — BTubp - wo +}
WE+ T+ U+ H+3)

BT(G+M){M(Y+ M+ 3)+ T+ }

8)+[a(y+p+ &)+ 1]

{DBT(G + W) — Btubp — uio+

WO+ T+ Wy + ot B) }[G(”“SHW]

MBT(MM{M(H b+ 8)+ T+ }

&) +[oty+u+ &)+ 1]

Having established the equilibrium states. We now
mvestigate the stability of the equilibrium states. To
obtamn this, we examine the behaviour of the model
population near the equilibrium states.

RESULTS AND DUSCUSSION

Stability analysis of disease free equilibrium state
The characteristic equation: Recall that the system of
equations in this model at equilibrium state 1s:

Op—(a+uw=0
(1-8p+oav-wBy+u=0
Pwy —(o+t+ux =0
™—(y+u+d)y=0
OX+Yy—Hz=0

The Tacobian matrix of this system of equations 1s
given by:

—(o+ M) 0 0 0 0

o Byt 0 —Bw 0

I, = 0 By —(C+T+W) [Pw ]
0 0 T —(y+u+8d 0

0 0 o v U

The characteristic equation is obtained from the
Jacobian determinant with the eigenvalue A:
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det(T, — AT} = det

—(ct+Hpu+A) 0 0 0 0
o Py +u+A) 0 —Pw 0
0 By —o+T+U+A) pw 0 =0
0 0 T —(y+u+8+1) 0
0 0 o ¥ —W+A)
— Py + 1L+ 1) 0 —wr 0
By —{G+T+U+A) P 0
latpth) 0 T —{y+u+8+A) 0 -0
0 G ¥ =L+ A)

(27)
At the disease free equilibrium state:

Gp
(o)

Vowxy.2) _( {0+ W1 -6+ otep’ 0.0, 0}

Mo+ 1)

Hence, substituting O for y in Eq. 27 give:

—(L+ A 0 —Pw 0

(@i 0 —T+Tru+A) Bw 0 o
T —{y+p+8+1) 0

0 g ¥ —(u+A)
—([T+T+U+A) Bw 0
=0+ U +A)u+A) T —(y+u+8+h) 0 |=0
G ¥ —+A)
Hence:

O+ U+ AU+ AT+ T+ U+ AN Y+ U+
S+ AU+ 2+ Pwt(L+ AN =0
{0+ W+ AU+ A {—(C+ T+ U+ Ay + u+
S+ +pPwti=0
(O U AR+ A G+ TR A+ )+
S+ —Bwt =0

(004 o+ A+ A) det

—{G+T+U+A)
T

(28)

Bw o
“(y+u+8+A) |
From Egq. 28 either:

(o+ U+ AN+ AP =0 (29)
Or:

—(C+T+U+A
det[(oru- )
T

Bw

J_o (30)
Y+ u+B+A)

From Eq. 2%

And:
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To determine the nature of eigen values in Eq. 30, we
present the Routh-Hurwitz necessary and sufficient
conditions for all roots of the characteristic polynomial to
have negative parts thus, implying asymptotic stability as
applied by Ssematimba et al. (2005) and Benyah (2008).
Since:

(v, W,X,y.7) —( &

(o)’

{(o+uX1-8)p+ abp 0.0.0
Mo+ )

At the disease free equilibrium state, we now
substitute:

o+ u)l-6)p+obp
uion+ )

For w in Eq. 30 to obtain:

Bllow+ W) - 8)p + abp]

. —{T+T+HU+A)

o+ =0
T —(y+u+8+2)
(31)
o+t Bl{oe+ ui1-6)p + abp]
Let A= wio+ 1)
T {7+ u+8)

Then from matrix A, we have:

dotA ={C+T+ W7+ u+8) -

rB{[(a FuX1-O)p+ aep]}
uCo+ )

And trace:
A=—Hc+T+W—-(vy+u+d
Clearly trace (A)<0 since, all the parameters are

positive. For the determinant of A to be >0, we should
have:

(G+T+UIY+U+5) rB{KOH W= Op + Otep]} >0

ulo+ )

[0+ W1 - O)p + aep]}

(o+T+uXy+u+8> ’EB{
Mo+ W

From the stability analysis, the first 3 eigen values are
all negative. We then established the necessary and

20

sufficient conditions for all the roots of Hq. 30 to be
negative using the Routh-Hurwitz theorem. The condition
for the disease free equilibrium state to be stable 1s that:

[(o+ )1 -6)p + wbp]
uoe+ )

(G+T+ Wi+ U+ 8) >rB{

which implies that the product of total contraction and
total break down of Latent class should be less than the
total removal rate from both Latent and Infectious classes.
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