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ABSTRACT 

We present a work in progress towards building a framework 

for holistic analysis of Healthcare Systems (HSs) through a 

disciplined stratification of concerns and a systematic 

integration of simulation processes in different layers. A lot 

of simulation-based research efforts can be found in the 

literature where HSs are studied with focus on perspectives 

such as the allocation of scarce health care human and 

infrastructural facilities to meet the needs of patients, disease 

spreading within an hypothetical community, and so on. The 

different perspectives are often studied in isolation with 

constant parameters as abstractions of the influences of other 

phenomena on the system under study. We propose a 

methodology for a "loosely" integrated simulation where 

independent simulation processes of disparate concerns in 

HS exchange live updates of their influences on one another. 

We think this approach will take the results obtained closer 

to the reality of the interactions between health phenomena 

and help stakeholders take more realistic decisions. 

 

INTRODUCTION 

HSs are complex systems of distributed subcomponents 

governed by complex health processes, inter-organizational 

workflow, and various services (Barjis 2011). Applications 

of Modeling and Simulation (M&S) to HSs usually target 

specific aspects of healthcare problems. Some of these 

studies include minimizing patients' waiting times in 

outpatient clinics (Mustafee et al. 2012; Topaloglu 2006), 

monitoring the flow of patients for efficient utilization of 

healthcare facilities (Mes and Bruens 2012; Morrice et al. 

2013) and epidemiology researches to institute required 

policies in HSs (Kasaie et al. 2013; Worth et al. 2010). Other 

areas include studies of human population and healthcare 

delivery (Charfeddine and Montreuil 2010) and HS 

management efficient use of scarce human and 

infrastructural resources for healthcare services delivery (Ma 

and Demeulemeester 2013; Harper 2002; Persson and 

Persson 2009).  

Discrete Events Simulation (DES) methods have been used 

recently to study problems related to the performances of 

HSs (Gunal and Pidd 2010; Mes and Bruens 2012). Other 

methods combine simulation with optimization techniques, 

Data Envelopment Analysis (DEA), and goal programming, 

to study different aspects of healthcare problems (Ahmed 

and Alkhamis 2009; Topaloglu 2006). 

Interestingly, simulation processes to address different 

healthcare problems are often done in isolation. Since in 

reality, the system under study exists amidst other systems 

and phenomena that may influence its internal processes, a 

common approach to model such influences is to represent 

them as parameters in the model under study to experiment 

with different hypothetical values of the parameters in 

separate simulation runs. For instance, in a simulation of the 

allocation of healthcare resources to tackle the spread of a 

disease in an environment, the model may include some 

parameters as abstractions of the coefficients of the levels of 

infections, awareness, migration, etc. in the community. 

Then some hypothetical sets of values of the parameters are 

used for separate simulation runs to investigate the 

performance of the resource allocation. In reality, however, 

some (or all) of these coefficients could change within the 

periods of each simulation runs examined thereby making 

the modeler's assumption about them obsolete. Conversely, a 

simulation model of the epidemic itself may contain 

abstractions of coefficients mentioned previously including a 

parameter representing the level of healthcare resource 

allocations which are all maintained constant for different 

simulation runs of the epidemic model. 

We argue that there is need to explore more pragmatic 

approaches to make situations, and hence, the results 

obtained as close as possible to reality. Therefore, we 

propose the parallel simulation of independent disparate 

simulation models of different problems whose outputs may 

influence one another and systematically transmit live 

updates and feedbacks between them. For instance, if we 

may simulate the epidemic model described previously 

concurrently with models that are sources of its parameters 

(i.e., levels of resource allocation, awareness, migration, etc.) 

and allow them to communicate new values of the 

parameters to one another. This approach will result in more 

accurate forecasts of the effects of the interactions between 

the different components of HSs and their responses to 

issues. We provide more details on the proposal in the next 

section, followed by a simple example as illustration; then 

we provide concluding remarks and directions for future 

work. 

 

HEALTHCARE SYSTEM MODELING 

Considering the complexity of the HSs and the diversity and 

requirements of simulation objectives in the domain, we 

propose a four-layered stratification of common M&S 

objectives for better placement of problems and selection of 

suitable formalisms to model the problems in a framework. 

Figure 1 shows the formulated layers in dashed boxes with 

double arrows representing the mutual interactions between 

them.  

 



 

 
Figure 1: Layers of concerns in Healthcare Systems 

 

At layer A, the Spatial Allocation of Healthcare Resources 

represents resources (human and infrastructural) allocated to 

meet demands for healthcare services. Problems in this layer 

can usually be described as discrete events systems as it 

often involves scheduling of resources for specific services 

delivery and responses to service requests. A suitable 

formalism to model problems in this layer is the Discrete 

Events System Specification (DEVS) (Zeigler et al. 

2000).  

The Health Phenomenon Dynamics layer (layer B) 

represents the group of investigations of health-related 

phenomena in a community that may lead to a change in the 

demands for healthcare services. Examples of such 

phenomena include the disease spreading due to epidemics, 

seasonal occurrences, person-person contact, etc. Cellular 

Automata is usually used to model problems in this domain. 

Layers C represents the category of problems to study how 

the dynamics in the population of a community may 

influence or be influenced by other health issues or the 

allocation of healthcare resources in the environment. Such 

dynamics in population may include birth, death, 

immigration and emigration rates. Such problems may be 

modeled with formalisms like Differential Equations.  

The individual behavior at level D describes the category of 

problems involving the investigations of human behaviors 

and personal habits such as educational level, physical state, 

emotion, cognition and social status in relation to other 

healthcare concerns and allocations of resources. Problems 

in this category may be modeled with Petri nets. 

 

INTEGRATION OF HS SIMULATION LAYERS 

In this section we describe the notion of "loose" integration 

between models in the different layers described in the 

previous section. Let us assume that Figure 2 represents the 

loose integration of simulation models, one in layer A and 

the other in layer C. We use the term "loose" integration to 

describe our notion of parameter integration here to indicate 

that the simulations models involved are not tightly coupled 

together as is usually the case in the couplings between the 

ports of models in the same layer; Rather, each model runs 

independently in its own experimental frame. Each model 

provides an input and an output interface similar to the 

update and notifier methods of the Observer for each of its 

input and output parameters. Therefore, when the 

simulations run concurrently, each output parameter notifies 

all its observers whenever there is a change in its value. 

 

 
Figure 2: Loose integration of models in different HS layers 

 

CASE STUDY 

In this section, we report our experiment with the model by 

White (White et al. 2009) for simulating disease spreads 

during epidemics. This study falls within layer B in our 

classification presented in Figure 1 and it is modeled with 

the two-dimensional Cellular Automata (CA).  

Each cell of the CA is considered to represent a square area 

of the land in which the epidemic is propagating in a 

population and the state, 𝑠𝑎 ,𝑏
𝑡 ∈ [0,1], of any cell  𝑎, 𝑏  at 

any time, 𝑡, represents the ratio of infected population to the 

total population of the cell. Also, it is considered that the 

state of any cell,  𝑎, 𝑏 , at any time 𝑡 depends on the states of 

its eight neighboring cells, 𝑉∗ =   𝛼, 𝛽 |𝑎 − 1 ≤ 𝛼 ≤ 𝑎 + 1,
𝑏 − 1 ≤ 𝛽 ≤ 𝑏 + 1 − { 𝑎, 𝑏 } and that of the cell itself in 

the previous time step. They proposed a local transition 

function for each cell  𝑎, 𝑏  at a time step  𝑡 + 1   as: 

𝑠𝑎 ,𝑏
 𝑡+1 

= 𝑔  1 − 𝑃 𝑡  𝑠𝑎 ,𝑏
𝑡 +  1 − 𝑠𝑎 ,𝑏

𝑡   𝜀𝑠𝑎 ,𝑏
𝑡 +  𝜇𝛼𝛽

 𝑎 ,𝑏 
𝑠𝑎+𝛼 ,𝑏+𝛽
𝑡

𝛼 ,𝛽∈𝑉∗

   

Where: 𝑃 𝑡 = 0.2𝑡 + 0.2 is a measure of the infected 

population that has recovered from the disease within the last 

time step, 𝑔 is a discretization function that returns a value in 

[0,1], (see White et al. 2009) for more details. The real 

parameters 𝜀 and 𝜇𝛼𝛽
(𝑎 ,𝑏)

 are characteristics of the epidemic 

and the environment with 𝜇𝛼𝛽
(𝑎 ,𝑏)

=  𝑐𝛼𝛽
(𝑎 ,𝑏)

× 𝑚𝛼𝛽
(𝑎 ,𝑏)

× 𝑣 where 

𝑐𝛼𝛽
(𝑎 ,𝑏)

 and 𝑚𝛼𝛽
(𝑎 ,𝑏)

 are abstractions of connections/links and 

movement of infected people respectively between cell 

 𝑎, 𝑏  and its neighboring cells 𝑉∗ and 𝑣 is the virulence of 

the epidemic. The authors presented a simulation of the 

model with the following constant assumptions of the 

parameters: 𝜖 = 0.4, 𝑐𝛼𝛽
(𝑎 ,𝑏)

= 1 indicating that there exist 

connections/transportation links between every cell and its 

neighbors; 𝑚𝛼𝛽
(𝑎 ,𝑏)

= 0.4 representing the movement of 

infected people between the different cells and 𝑣 = 0.4. 

 

Our Proposal 

We claim that instead of constant parameters as abstractions 

of other healthcare concerns in the present simulation, it 

would be reasonable to have real models of the situations 

running concurrently and exchanging feedbacks with the 

disease spread simulation. We believe that the results 

obtained from this approach will give more accurate 

representation of reality. For instance, in reality, an outbreak 



 

within a cell can lead to change in the pattern of movements 

between the cell and its neighboring cells; a model of this 

situation can find its place in layer B of Figure 1. It is also 

noteworthy to mention that this model of the movement 

pattern may be influenced by other factors such as the 

activities of healthcare facilities in the cell under study and 

its neighboring cells (models in layer A of Figure 1) and 

individual habits and characteristics such as awareness, 

immunity or vaccinations (layer D models). 

We cannot provide elaborate models of all factors in this 

short paper due to space limitations; we have, however, 

repeated the same simulation twice for the same number of 

time steps. In the first simulations, we maintained the 

constant values proposed by the authors (i.e., White et al. 

2009) and in the second, we used randomly generated 

numbers between 0 and 1 as the values of 𝑚𝛼𝛽
(𝑎 ,𝑏)

 (the 

movement of people between the cells) which were assumed 

to be coming from an independent simulation running 

concurrently. We present the results in the next subsection. 

 

Simulation Results 

Recall that the state of any cell (𝑎, 𝑏) represents the ratio of 

the infected population to the total population which is a real 

number within the range [0.0, 1.0]. For simplicity, the values 

are rounded to one place of decimal to have a finite state set, 

𝑆 = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The 

color code chosen to represent the states of the cells in 

successive time steps are given in Table 1: 
 

Table 1: Color code for states of cells 

States .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Colors 
           

 

The simulation was done with an hypothetical space divided 

into 200 by 200 cells. Figure 3 and Figure 4 show the spread 

of the disease within the same group of cells when all 

parameters are fixed and when the parameter representing 

population dynamics was varied respectively. Each of the 

two figures shows the levels of spread in nine successive 

time steps. We see from Figure 3 that with fixed parameters, 

the disease spread appears to subside in successive time 

steps from step 3 with most cells having infection rates of 

below 30% at the ninth time step. However, with a varied 

population dynamic parameter in Figure 4, the rate of 

disappearance of the disease is slower and the infection rates 

within most cells are still above 50%.  

For further comparison of our results, we observed the 

evolution of the epidemic within a selected cell at the centre 

of the space under study. The graphs of the infection rates 

against time steps for fixed and varied population dynamics 

parameter are provided in Figure 5 and Figure 6 respectively. 

The graphs also show significant difference in the evolution 

of the disease within this cell. 

 
Figure 3: Disease spread with fixed environmental 

parameters 

 

 

 
Figure 4: Disease spread with varied population dynamics 

parameter 

 



 

 
 

Figure 5: Infection rates against time steps within cell (100, 

100) with fixed population dynamics parameter 

 

 

 

Figure 6: Infection rates against time steps within cell (100, 

100) with varied population dynamics parameter 

 

CONCLUSIONS 

In this short paper, we have presented an ongoing research 

towards a framework for integrated simulation of different 

aspects of healthcare systems with exchange of live updates 

as influences between independent simulation processes.  

We proposed disciplined stratification of healthcare concerns 

that are often investigated with simulation into four 

categories and a systematic integration of the simulation 

processes in the four categories by mutual exchange of live 

parameter updates. Our approach is different from the state-

of-the-art in that different healthcare concerns are usually 

studied in isolation while other health phenomena that may 

affect them are represented by some fixed-valued 

parameters. We believe that such influences are often not 

fixed in reality as the different components of Healthcare 

systems are expected to respond to other concerns and adjust 

some internal activities. In future research, we intend to 

develop the proposed loose integration mechanism into a 

framework to coordinate the exchange of influences among 

the studies such that every simulation process publishes 

changes in its variables that may be required by other 

processes in real time without disrupting their activities. 

Such framework can be used to establish a liaison between 

existing healthcare simulation environments for holistic 

analysis of healthcare systems. 
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