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ABSTRACT 
 
In 1989 National Tuberculosis and Leprosy 
Control Programme was established to provide 
framework for the control of Tuberculosis and 
Leprosy in Nigeria. This was followed by the 
official launching in 1991 and adoption of Directly 
Observed Treatment Strategy for the control of 
Tuberculosis in Nigeria in 1993. In 2006 
Tuberculosis was declared an emergency in 
Nigeria and the Stop Tuberculosis strategy for the 
control of Tuberculosis in Nigeria was adopted to 
reduce the prevalence of Tuberculosis to a level 
at which the disease will no longer constitute 
public health problems in the country.   
 
In this work we present a deterministic model 
interpretation of method of control adopted by 
National Tuberculosis and Leprosy Control 
Program. We established the Disease free and 
the endemic equilibrium states and carried out the 
stability analysis of the disease free equilibrium 
state. We also carried out numerical simulations 
of the model using maple mathematical software 
to have an insight into the dynamics of the model.  
We found out that the disease free equilibrium 
state is stable. The numerical simulations showed 
that it will be very difficult to completely eradicate 
Tuberculosis from Nigeria using this method. 

 
(Keywords: equilibrium state, disease free, stability and 

numerical simulations) 
 
 
INTRODUCTION 
 
Despite the fact that Tuberculosis (TB) is currently 
well-controlled in most countries, recent data 
indicate that the overall global incidence of TB is 
rising as a result of resurgence of disease in 
Africa and parts of Eastern Europe and Asia (Dye, 
2006). In these regions, the emergence of drug-
resistant TB and the convergence of the HIV 
(human immunodeficiency virus) and TB 

epidemics have created substantial new 
challenges for disease control. 
 
Nigeria, a country with population of about 
140,000,000 people, has an estimated incidence 
of 311 cases per 100,000 population. The 
estimated incidence for SM+ cases is 137 per 
100,000 population and estimated prevalence of 
MDR-TB among new TB cases is 1.9% TB 
burden is further compounded by high National 
HIV prevalence of 4.4%. (National Tuberculosis 
and Leprosy Control Programme, Abuja, 2008). 
 
In 1989 National Tuberculosis and Leprosy 
Control Program was established to provide 
framework for the control of TB and Leprosy in 
Nigeria. This was followed by the official 
launching in 1991 and adoption of DOTS strategy 
for the control of TB in Nigeria in1993. In 2006 
TB was declared an emergency in Nigeria and 
the Stop TB strategy for the control of TB in 
Nigeria was adopted to reduce the prevalence of 
Tuberculosis to a level at which the disease will 
no longer constitute public health problems in the 
country. 
 
The goal of the National TB programme is to 
reduce, significantly, the burden of TB by 2015 in 
line with the Millennium Development Goals 
(MDGs) and the STOP TB Partnership targets. 
(National Tuberculosis and Leprosy Control 
Programme, Abuja, 2008). 
 
Mathematical models can be defined as the 
process of creating a mathematical 
representation of some phenomena in order to 
gain a better understanding of then. It is 
therefore, an abstraction of reality in to the world 
of mathematics. Any phenomena which have the 
ability to grow or decay over time can be 
represented by a mathematical model and then 
solved analytically where feasible or in several 
cases tools of advanced calculus and Functional 
Analysis are employed to study and interpret the 
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dynamics.  Sowumi (1997) described this as 
experimenting on paper which is safer than using 
human or animal lives. Also, numerical or 
computer simulations of such models can be 
carried out. The analysis of such models will then 
give an insight into the dynamics of the real life 
situation. Mathematical knowledge such as the 
existence of equilibrium states and their stability 
analysis are of great interest in the mathematical 
models of population dynamics.  
 
 
MATERIALS AND METHODS 
 
Model Formulation 
 
Consider the Susceptible-Infected (SI) model. Let 
S(t) and I(t) be the number of Susceptibles (i.e.,  
those who can get the disease) and Infected 
Persons (i.e.,  those who have already gotten the 
disease), respectively. The number of the infected 
persons grows at a rate proportional to the 
product of Susceptibles and Infected Persons and 
the number of Susceptible persons decreases at 
the same rate so that we get the system of 
differential equations: 
 

,SI
dt

dS
     (1) 

 

 SI
dt

dI
                            (2) 

 
Modifying the above model given by (1) and (2) to 
allow recovery of infected person lead us to 
Susceptible-Infected-Susceptible (SIS) model.  
Here a susceptible person can become infected at 
a rate proportional to SI and an infected person 
can recover and become susceptible again at a 

rate I , so that:  

 

,ISI
dt

dS
        (3) 

 

.ISI
dt

dI
      (4) 

 
We modify this model to allow for increase of the 
susceptible compartment through births and 
immigrations at the rate   and also split the 

Infected class into Latent and Infectious class. 
The latent class consists of individuals that have 

been infected by Mycobacterium Tuberculosis 
but have intact cell mediated immune system 
which attracts the bacteria towards the alveolar 
macrophages which ingested the bacteria 
thereby preventing them from replicating and 
spreading to other parts of the body. Members of 
this class show no symptom of Tuberculosis and 
cannot infect others but can progress to 
Infectious class whenever their immune system 
got broken down. 
 
The infectious compartment consists of those 
individuals whose immune system got 
compromised by any immunosuppressive 
condition. The bacteria overcome the immune 
system replicates and spreads through the blood 
streams and the lymphatic system to other parts 
of the body. Members of this class show 
symptoms of tuberculosis and can spread it to 
others. The last compartment is the recovered 
class individuals that were treated and declared 
cure of tuberculosis. 
    
The Susceptible population changes due to the 
coming in of new Susceptible into the population 
where we assumed that people come into the 
location of interest at a constant rate   (Through 

birth or immigration). The Susceptible population 
also diminishes due to natural death at 
rate  and infection with an incident rate of 

infection  . 

 
In the same way the population dynamic of the 
Latent class grows with the instantaneous 

incidence rate of infection  . The population of 

this class diminishes by natural death rate  , 

and occasional breakdown to the infectious class 
at the rate . 

 
The dynamics of the infectious class population is 
dependent on the Latent class degenerating to 
infectious class at the rate . This class also 

reduces by natural death rate  , successful cure 

of infectious TB patients at the rate  and death 

caused as a result of chronic TB infection at the 

rate .  

 
In our study, we assumed that there is 
homogeneous mixing of the population where all 
people are equally likely to be infected by 
infectious individuals in case of contact. We 
assumed equal natural death rate  for each 

compartment. We also assumed that successfully 
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treated individuals moved to recovered or 
removed class meaning there will be no 
reinfection (i.e., permanent immunity). Note that in 
this model we have no latent TB treatment and 
this is the model interpretation of the TB control 
programme we have in Nigeria today. 
 
 
Model Diagram 
 

 

S L I R 

  

  
  

    

      

  

 
 
Figure 1:  Showing Schematic Presentation of the 

Model. 
 
 
Model Equations 
 

SSI
dt

dS
                   (5) 

 

LSI
dt

dL
)(         (6) 

 

IL
dt

dI
)(        (7) 

 

RI
dt

dR
        (8) 

 
 
Equilibrium Solutions 
 
We now solve the model equations to obtain the 
equilibrium states as in Enagi (2011). 
 

At the equilibrium state 
dt

dS
=

dt

dL
=

dt

dI
= 

dt

dR
=0.  

 
Let S(t)=w, L(t) = x, I(t) = y and R(t) = z. 
 
Then the system of equations becomes, 
 

0 wwy     (9) 

 

0)(  xwy     (10) 

 

0)(  yx     (11) 

 

0 zy      (12) 

 
We now solve this system of equations 
simultaneously to obtain:  
 

(w,x,y,z) = (



,0,0,0) as the disease free 

equilibrium state and, 
 



 ))(( 
w  , 

 





)(

)])(([




x ,  

 

))((

)])(([








y  , 

 

))((

)])(([








z ,  

 
as the endemic equilibrium state. 
 
 
Stability Analysis  
 
Having established the equilibrium states. We 
now investigate the stability of the disease free  
equilibrium states. To obtain this, we examine the 
behaviour of the model population near the 
equilibrium state (Yusuf, 2008). 
 
 
The Characteristic Equation 
 
Recall that the system of equations in model one 
at equilibrium state is: 
  

0 wwy      

   

0)(  xwy      

   

0)(  yx      

   

0 zy   

 
We obtain the Jacobian matrix of this system of 
equations as presented by Benyah (2008). 
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The characteristic equation is obtained from the 

Jacobian determinant with the eigenvalues   and 

(w,x,y,z) = (



,0,0,0) as: 

  

0))(()( 2    

  

 1 ,  2 , )(3    

and )(4   . 

 
Since all the eigenvalues are negative, the 
disease free equilibrium state is stable.  
 
 
Numerical Simulations of the Models (Using 
Maple software) 
 
The numerical simulations are meant to study the 
profile of the population in respect of the distinct 
compartments in the model and to consider the 
effect of varying contraction and recovery rates on 
the population.  
 
From the available literature we adopted the 
following values for the parameters in the model. 
Birth rate   = 0.045 (National Population 

Commission, Abuja, 2008).  
 
Natural death rate μ= 0.014 (National Population 
Commission, Abuja, 2008). 
 
Movement rate from Latent class to infectious 
class τ = 0.03 (Sanchez and Blower 1997,WHO 
2006a, WHO 2006b). 
 
Initial recovery rate of I(t)  =0.23 (National 

Tuberculosis and Leprosy Control Programme,  
Abuja, 2008 ). 
 

Tuberculosis induced death rate   = 0.001 

(National Tuberculosis and Leprosy Control 
Programme,  Abuja, 2008 ). 
 

Tuberculosis contraction rate   (varied 

hypothetically). 
 
 

RESULTS AND DISCUSSION 
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Figure 2:  Graphical Profile of each 
Compartment for β=0.01 and γ=0.23. 
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Figure 3:  Graphical Profile of each 
Compartment for β=0.01 and γ=0.23. 
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Figure 4:  Closer View of L(t), l(t), and R(t) for 
β=0.01 and γ=0.23. 
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Figure 5.4 Showing graphical profiles of 

 each compartment for 01.0  and 9.0  

 

Figure 5:  Graphical Profile of each Compartment 
for β=0.01 and γ=0.9. 
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Figure 5.5 Showing a closer view of   

L(t), I(t) and R(t) for 01.0  and 9.0  

 

Figure 6:  Closer View of L(t), l(t), and R(t) for 
β=0.01 and γ=0.9. 
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 Figure 5.6 Showing graphical profile for  

each compartment for 001.0  and 23.0  

  
 

Figure 7:  Graphical Profile of each Compartment 
for β=0.001 and γ=0.23. 
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Figure 8:  Closer View of L(t), l(t), and R(t) for 
β=0.001 and γ=0.23. 
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 Figure 5.8 Showing graphical profile for  

each compartment for 001.0  and 5.0  

 

Figure 9:  Graphical Profile of each 
Compartment for β=0.001 and γ=0.5. 
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Figure 10:  Closer View of L(t), l(t), and R(t) for 
β=0.001 and γ=0.5. 
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Figure 11:  Graphical Profile of each 
Compartment for β=0.001 and γ=0.9. 

 

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Time

P
o

p
u

la
ti

o
n

L(t)

I(t)

R(t)

 Figure 5.11 Showing a closer view of L(t), I(t) 

and R(t) for 001.0  and 9.0  

 

Figure 12:  Closer View of L(t), l(t), and R(t) for 
β=0.001 and γ=0.9. 

 
 
CONCLUSION  
 
The existence of the Disease Free Equilibrium 
state implies that there is possibility of complete 
total eradication of Tuberculosis from Nigeria. The 
negativity of all the eigenvalues arising from the 
stability analysis carried out in section four shows 
that there will be no return to the Tuberculosis 
endemic state after eradication of Tuberculosis 
from Nigeria. The existence of the endemic 
equilibrium state in section three signifies the 
possibility of Nigeria remaining a Tuberculosis 
endemic Nation. The numerical simulations show 
that total eradication of tuberculosis using this 
method of control is achievable within three years 
if the rate of infection is reduced to 0.1% 
alongside of a 90% recovery rate shown in Figure 
12.  However, achieving this will be very difficult in 
reality.  A better alternative method of control will 
be to introduce Latent Tuberculosis treatment 
alongside of the current method. 
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