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Abstract

In Nigeria, the National Tuberculosis and Leprosy Control Pro-
gram concentrates only on Infectious Tuberculosis treatment leaving
the Latently infected ones on the waiting list at the mercy of their
immune system. In this research we modelled the effect of combining
Immunization with Latent Tuberculosis treatment in controlling the
spread of Tuberculosis. We established the existence of equilibrium
states and analyzed the Disease free equilibrium state for stability us-
ing Routh-Hurwitz Theorem. The disease free equilibrium state (i.e.,
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the state of total eradication of Tuberculosis) will be stable if effort is
intensified in bringing down both the contraction rate β and the rate
of break down to Infectious Tuberculosis τ.

1 Introduction

Tuberculosis (TB) is a contagious bacterial infection caused by Mycobac-
terium tuberculosis. It usually affects the lungs (pulmonary tuberculosis). It
can also affect the central nervous system, the lymphatic system, the brain,
spine and the kidneys. Only people who have pulmonary TB are infectious.
One-third of the world’s population is currently infected with the TB bacillus
and new infections are occurring at a rate of one per second [5].

Tuberculosis was among the top 10 causes of death worldwide in 2015 when
10.4 million people became ill from TB of which 1.8 million people died from
TB including 400,000 with HIV + TB. Sixty percent of TB cases worldwide
were concentrated in just six countries: China, India, Indonesia, Nigeria,
Pakistan and South Africa [6].

Vaccination with Bacillus Calmatte-Guerine (BCG) at birth protects children
from early infection of the disease, but the effect of these vaccines expires with
time [2]. Hence detection and treatment of Latent Tuberculosis infections
by administering Isoniazid Preventive Therapy prevents the breakdown of
Latent Infections into Infectious cases; this, however, greatly reduces the
rate of spread of the disease since only members of the Infectious class can
spread the disease to others.

Dye [3] stated that the global leading causes of death from infectious diseases
among adults are TB and HIV and the number of TB cases has risen sig-
nificantly since the start of the HIV epidemic, particularly in Sub-Saharan
Africa where the HIV epidemic is most severe.
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2 Methodology

2.1 Model Equations

The population is partitioned into five Compartments namely, Immunized
M(t), Susceptible S(t), Latently Infected L(t), Infectious I(t) and Recovered
R(t) Compartments. The model parameters are: Recruitment constant ρ,
Proportion immunized at birth θ, Rate of weaning off of the vaccine α, Natu-
ral death rate µ, Tuberculosis contraction rate β, Successful cure of infectious
Latent σ, Rate of Breakdown of Latent TB into Infectious TB τ , Successful
cure of infectious TB patients γ and Death resulting from TB infection δ.

The model is represented by the following system of ordinary Differential
Equations:

dM

dt
= θρ− (α + µ)M (2.1)

dS

dt
= (1− θ)ρ+ αM − βSI − µS (2.2)

dL

dt
= βSI − (σ + τ + µ)L (2.3)

dI

dt
= τL− (γ + µ+ δ)I (2.4)

dR

dt
= σL+ γI − µR (2.5)
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2.2 Model Diagram
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3 Equilibrium Solutions

We now solve the model equations to obtain the equilibrium states.
At the equilibrium state dM

dt
=dS

dt
=dL

dt
=dI

dt
= dR

dt
=0.

Let M (t) =v, S (t) = w, L (t) = x, I (t) = y and R (t) = z.
Then the system of equations becomes

θρ− (α + µ)v = 0 (3.6)

(1− θ)ρ+ αv − w(βy + µ) = 0 (3.7)

βwy − (σ + τ + µ)x = 0 (3.8)

τx− (γ + µ+ δ)y = 0 (3.9)

σx+ γy − µz = 0 (3.10)

Solving equations (3.6) to (3.10) simultaneously, we obtain:

(v, w, x, y, z) =
(

θρ

(α+µ)
,
(α+µ)(1−θ)ρ+αθρ

µ(α+µ)
0, 0, 0

)

.

as the disease free equilibrium state and

v =
θρ

(α + µ)

w =
(σ + τ + µ)(γ + µ+ δ)

βτ

x =
[ρβτ(α + µ)− βτµθρ− µ(α+ µ)(σ + τ + µ)(γ + µ+ δ)] (γ + µ+ δ)

βτ(α + µ) [µ(γ + µ+ δ) + τ(µ+ δ) + [σ(γ + µ+ δ) + τγ]]
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y =
[ρβτ(α + µ)− βτµθρ− µ(α + µ)(σ + τ + µ)(γ + µ+ δ)] τ

βτ(α+ µ) [µ(γ + µ+ δ) + τ(µ+ δ) + [σ(γ + µ+ δ) + τγ]]

z =
[ρβτ(α + µ)− βτµθρ− µ(α + µ)(σ + τ + µ)(γ + µ+ δ)] [σ(γ + µ+ δ) + τγ]

µβτ(α+ µ) [µ(γ + µ+ δ) + τ(µ+ δ) + [σ(γ + µ+ δ) + τγ]]

as the endemic equilibrium state.

4 Stability Analysis of Disease Free

Equilibrium State

We now investigate the stability of the Disease free equilibrium state. To do
this, we examine the behavior of the model population near the equilibrium

state [6].

4.1 The Characteristic Equation

Recall that the system of equations in this model at equilibrium state is
θρ− (α+ µ)v = 0

(1− θ)ρ+ αv − w(βy + µ) = 0

βwy − (σ + τ + µ)x = 0

τx− (γ + µ+ δ)y = 0

σx+ γy − µz = 0.
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The Jacobian matrix of this system of equations is given by

J3 =













−(α + µ) 0 0 0 0
α −(βy + µ) 0 −βw 0
0 βy −(σ + τ + µ) βw 0
0 0 τ −(γ + µ+ δ) 0
0 0 σ γ −µ













.

The characteristic equation is obtained from the Jacobian determinant with
the eigenvalues λ

det(J3 − λI) =

det













−(α + µ+ λ) 0 0 0 0
α −(βy + µ+ λ) 0 −βw 0
0 βy −(σ + τ + µ+ λ) βw 0
0 0 τ −(γ + µ+ δ + λ) 0
0 0 σ γ −(µ+ λ)













(4.11)
= 0.

At the disease free equilibrium state

(v, w, x, y, z) =
(

θρ

(α+µ)
,
(α+µ)(1−θ)ρ+αθρ

µ(α+µ)
0, 0, 0

)

.

Hence, evaluating the determinant and substituting 0 for y in (4.11) give:
(α+µ+λ)(µ+λ){−(σ+ τ +µ+λ)(γ+µ+ δ+λ)(µ+λ)+βwτ(µ+λ)} = 0.

=⇒ (α+ µ+ λ)(µ+ λ)2{−(σ + τ + µ+ λ)(γ + µ+ δ + λ) + βwτ} = 0.

=⇒ (α + µ+ λ)(µ+ λ)2{(σ + τ + µ+ λ)(γ + µ+ δ + λ)− βwτ} = 0.

=⇒ (α + µ+ λ)(µ+ λ)2 det

(

−(σ + τ + µ+ λ) βw

τ −(γ + µ+ δ + λ)

)

= 0.

(4.12)



104 A. I. Enagi, M. O. Ibrahim, N. I. Akinwande, M. Bawa, A. A. Wachin

From (4.12) either

(α + µ+ λ)(µ+ λ)2 = 0, (4.13)

or

det

(

−(σ + τ + µ+ λ) βw

τ −(γ + µ+ δ + λ)

)

= 0. (4.14)

From (4.13), λ1 = λ2 = −µ and λ3 = −(α + µ).
To determine the nature of eigenvalues in (4.14), we present the

Routh-Hurwitz necessary and sufficient conditions for all roots of the
characteristic polynomial to have negative parts, thus implying asymptotic

stability as applied by Sematimba [4] and Benya [1].

Lemma 4.3.1 (Routh-Hurwitz Conditions)

Let J =

(

fx(x∗, y∗) fy(x∗, y∗)
gx(x∗, y∗ gy(x∗, y∗

)

(4.15)

be the Jacobian matrix of the non-linear system
dx
dt

= f(x, y)
dy

dt
= g(x, y)

}

(4.16)

evaluated at the critical point (x∗, y∗).
Then the critical point (x∗, y∗) :

1. is asymptotically stable if trace(J) < 0 and det(J) > 0,
2. is stable but not asymptotically stable if trace(J) = 0 and det(J) > 0,

3. is unstable if either, trace(J) > 0 or det(J) < 0.

Since (v,w, x, y, z) =
[

θρ

(α+µ)
,
(α+µ)(1−θ)ρ+αθρ

µ(α+µ)
, 0, 0, 0

]

at the disease free

equilibrium state, we now substitute (α+µ)(1−θ)ρ+αθρ

µ(α+µ)
for w in (4.14) to obtain

det

(

−(σ + τ + µ+ λ) β[(α+µ)(1−θ)ρ+αθρ]
µ(α+µ)

τ −(γ + µ+ δ + λ)

)

= 0. (4.17)

Let A =

(

−(σ + τ + µ) β[(α+µ)(1−θ)ρ+αθρ]
µ(α+µ)

τ −(γ + µ+ δ)

)

.

Then from matrix A we have
det(A) = (σ + τ + µ)(γ + µ+ δ)− τβ

[

[(α+µ)(1−θ)ρ+αθρ]
µ(α+µ)

]
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and trace(A) = −(σ + τ + µ)− (γ + µ+ δ). Clearly trace(A) < 0 since all
the parameters are positive.

For the determinant of A to be > 0 we should have,

(σ + τ + µ)(γ + µ+ δ)− τβ

[

[(α + µ)(1− θ)ρ+ αθρ]

µ(α+ µ)

]

> 0

(σ + τ + µ)(γ + µ+ δ) > τβ

[

[(α + µ)(1− θ)ρ+ αθρ]

µ(α+ µ)

]

4.2 Discussion of Result

From the stability analysis carried out in section four, the first three
eigenvalues are all negative. We then established the necessary and

sufficient conditions for all the roots of (4.14) to be negative using the
Routh-Hurwitz theorem. The condition for the Disease Free Equilibrium

State to be stable is that (σ + τ + µ)(γ + µ+ δ) > τβ
[

[(α+µ)(1−θ)ρ+αθρ]
µ(α+µ)

]

which implies that the product of total contraction and total breakdown of
Latent class should be less than the total removal rate from both Latent

and Infectious classes.

4.3 Conclusion

In this study, we modeled the effect of combining Immunization with
Latent Tuberculosis treatment in controlling the spread of Tuberculosis.
The administration of BCG vaccines at birth protects children from early
infection of the disease, but the effect of these vaccines expires with time.
Hence detection and treatment of Latent Tuberculosis infections using

Isoniazid Preventive Therapy prevents the breakdown of Latent Infections
into Infectious cases, this however reduces greatly the rate of spread of the
disease since only members of the Infectious class can spread the disease to

others.
The disease free equilibrium state (i.e. the state of total eradication of

Tuberculosis) will be stable if effort is intensified in bringing down both the
contraction rate β and the rate of break down to Infectious Tuberculosis τ.
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