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Abstract 
Effective forecasting is an inevitable tool for managers and administrators who are always 
occupied with strategic decision making under uncertainty. Electric power load forecasting is 
a vital process in the planning of electricity industry and the operation of electric power 
systems. It facilitates electric power-generation strategies, by pre-informing power providers 
to take appropriate mitigating actions to minimize risks and manage demand. In this paper, 
monthly electric power load data collected from hydro-electric power generating station, 
Kainji, for seven years (2008 – 2014), were analyzed and used to forecast future power 
values. The patterns of distribution of previous power generation data over a period of time 
(i.e., in form of Time series), which include trend, seasonality, cyclicality, and randomness, 
were identified using Decomposition approach. The choice of an appropriate forecasting 
method was then determined, future values were projected and power forecasts were made 
for the next few periods. For reasons of clarity and uniformity, points of significance and 
mathematical procedures were discussed and shown in the context of a business case 
typical of most industries.  
 
Keywords: Forecasting, Hydro-electric power generation, Time series, Decomposition  
       approach 
 
Introduction 
Electricity as a product has very different characteristics compared to a material product. For 
instance, electricity energy cannot be stored as it should be generated as soon as it is 
demanded. One of the objectives of any commercial electric power company is to provide 
end users (market demands) with safe and stable electricity. Therefore, Electric Power Load 
Forecasting is a vital process in the planning of electricity industry and the operation of 
electric power systems. Accurate forecasts lead to substantial savings in operating and 
maintenance costs, increased reliability of power supply and delivery system, and correct 
decisions for future development. Electricity demand is assessed by accumulating the 
consumption periodically; it is almost considered for hourly, daily, weekly, monthly, and 
yearly periods. 

 
The literature on electricity load forecasting extends as far back as the mid-1960s 
(Heinemann et al. 1966; Hahn et al. 2009). While Kalman filter and state space methods 
dominated the literature early on, artificial and computational intelligence methods and 
econometric techniques have largely dominated literature that is more recent. Time series 
techniques have been extensively used in load forecasting for decades and are among the 
oldest methods applied in forecasting (Hahn et al., 2009; Bunn & Farmer, 1985a, 1985b; 
Weron, 2006; Kyriakides & Polycarpou, 2007). Two overarching classes of time series 
regression models have emerged to address the time-scale issues in different ways. Amaral 
et al. (2008) contend the two broad classes of conceptual models include: (1) single-
equation models and (2) multi-equation (vector) models. This distinction between single-
equation models and multi-equation (vector) models is important because we utilize the 
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multi-equation approach in our estimation. Irrespective of which approach is adopted, when 
constructing a time series model there are four components that must be taken into 
consideration: trend, cyclicality, seasonality, and a random white noise error. Consequently, 
the time series literature can be envisioned in terms of how it has addressed each of these 
components. In general, accounting for both cyclicality and seasonality has been extensively 
covered in the literature whereas trend, while addressed, is typically not the focus of the 
analysis. 
 
Within the literature, load data has occasionally been found nonstationary. Some, Darbellay 
and Slama (2000) for example, first difference the data to account for nonstationarity. Other 
studies, however, find that fitting a deterministic trend is more appropriate. Soares and 
Medeiros are highly critical of authors’ tendency to first difference without first testing for a 
unit root or even considering a linear trend (2008). Soares and Medeiros (2008) point out 
that when the trend is in fact deterministic, taking the first difference will introduce a non-
invertible moving average component, which in turn, will cause serious estimation problems. 
Upon examining hourly load data for Rio de Janeiro, Soares and Medeiros (2008) find that 
the data display a positive linear trend. 

Time series is a collection of data points on a quantitative characteristic of a phenomenon 
that are typically measured at successive and uniformly- spaced time intervals (Shumway & 
Stoffer, 2006). It plays an important role in many forecasting approaches, and has been 
extensively used in subject areas as climate science, finance and econometrics. Thus, time 
series provides statistical setting for describing seemingly random fluctuating data and 
projecting the data series into the future.  
 
Forecasting is about predicting future events based on a foreknowledge acquired through a 
systematic process or intuition (Armstrong, 2001), (Lewis & McGrath, 2011). The birth of 
forecasting as a science, however, is associated with weather forecasting and, is credited to 
Francis Beaufort, who developed the popularly known scale for measuring wind force (the 
Beaufort scale) and Robert Fitzroy, who developed the Fitzroy barometer for measuring 
atmospheric pressure (Ireneous and Daniel, 2013). Forecasting has advanced over time and 
has increased in sophistication in many specialized areas, including the fields of health, 
economics and commerce, sports, environment (including meteorology), technology and 
politics. The prediction of future events is a critical input into many types of planning and 
decision making processes. Many decision-making applications depend on a forecast of 
some quantity. For example, when a company plans its ordering or production schedule for 
a product it sells to the public, it must forecast the customer demand for this product so that 
it can stock appropriate quantities-neither too much nor too little.  
 
Almost all managerial decisions are based on forecasts. Every decision becomes operational 
at some point in the future, so it should be based on forecasts of future conditions. 
Forecasts are needed continually throughout an organization, and as time moves on, their 
impact on actual performance is measured; original forecasts are updated; and decisions 
are modified, and so on. Forecasts of the future values of critical quality characteristics of a 
production process can help determine when important controllable variables in the process 
should be changed, or if the process should be shut down and overhauled.  
 
The selection and implementation of the proper forecast methodology has always been an 
important planning and control issue for most profit maximizing firms and agencies. Often, 
the financial well-being of the entire business operation may rely on the accuracy of the 
forecast since such information will likely be used to make interrelated budgetary and 
operative decisions in areas of personnel management, purchasing, marketing, advertising 
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and capital financing. Any significant over-or-under power forecast error may cause the 
industry to be overly burdened with excess inventory carrying costs or else create lost sales 
revenue through unanticipated item shortages.   
 
The classical decomposition of time series is often based on the four components: trend, 
cyclic, seasonal, and random components, where:  
(i) Trend is the long-term variation in a time series that is not influenced by irregular 

effects or seasonally related components in the data. In this case, Growth or Decay 
Trends are tendencies for power to increase or decrease fairly steadily over time. For 
instance, in power-generation data, an overall record of a progressively increasing 
generation over a specified period would show an increasing trend, irrespective of 
any random or systematic fluctuations.  

(ii) Cyclicality results when the pattern of a time series data (e.g. containing the 
incidence of power events/situations) is influenced by some periodic (long-
term/short-term) fluctuations that are associated with other characteristics (Ireneous 
& Daniel, 2013). Cyclic Oscillations are general up-and-down power changes due to 
changes in the overall economic environment (not caused by seasonal effects). 

(iii) Seasonality is also a cyclic phenomenon, but is related to annual events, and is 
described as the predictable and repetitive positions of data points around the trend 
line within a year. Seasonalities are regular power fluctuations which are repeated 
from year to year with about the same timing and level of intensity; these effects are 
usually associated with calendar or climatic changes. 

(iv) Randomness or Irregularity is also a common feature of time series data, and refers 
to unexpected distortions of existing or anticipated trends. Irregularities are any 
power fluctuations not classified as one of the above. 
 

A reliable power forecast is important for quality and sufficient electric-power service 
delivery. Thus in this work, monthly electric power load data collected from hydro-electric 
power generating station, Kainji, for seven years (2008 – 2014), were analyzed and used to 
forecast future power values.by means of decomposition approach.  
 
Methodology 
The data for the analysis are on total monthly generated electric power for seven years 
(2008 – 2014) collected from Kainji hydro-electric power generating station, Niger state. The 
data are therefore secondary in nature. There are many forecasting methods available, 
these methods can generally be divided into three groups: 
(i) Judgmental methods 
(ii) Extrapolation (or Time Series) methods, and 
(iii) Econometric (or causal) methods. 
 
The extrapolation methods are quantitative methods that use past data of a time series 
variable to forecast future values of the variable. In this work, trend-based regression 
approach, which is one of the extrapolation methods of forecasting, is adopted. This 
approach searches for patterns in the historical series and then extrapolates these patterns 
into the future. The prediction is based on an inferred study of past general electric-power 
data behavior over time.  This forecasting methodology is generally applicable to situations 
where useful future data estimates are desired. For reasons of clarity and uniformity, points 
of significance and mathematical procedures are discussed and shown in the context of a 
business case typical of most industries.  
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Mathematically, a time series is defined by the values  of a variable  at times 

. Thus,  

      (2.1) 

Forecasting as one of the main goals of time series analysis is an uncertain process and 
because of the uncertainty, the accuracy of a forecast is as important as the outcome 
predicted by the forecast. The information provided by the forecasting process can be used 
in many ways. An important concern in forecasting is the problem of evaluating the nature 
of the forecast error by using the appropriate statistical tests. We define the best forecast as 
the one which yields the forecast error with the minimum variance. The multiplicative 
modeling approach is used in this work to examine the four types of components that 
influence the power data. That is  

                                                                                                                                                                 
        (2.2) 

Where S,T,C, and I denotes, respectively, seasonal, trend, cyclical and irregular 
components. 
 
It is always a good idea to have a feel for the nature of the data before building a model, 
time series plots can reveal ‘patterns’ such as random, trends, level shifts, periods or cycles, 
unusual observations, or a combination of patterns. Excel 2013 and MINITAB 17 were used 
as aids for analysis.  
 
Results and Discussion 
A time series plot of the generated electric power data for the period under review is given 
in figure 3.1 below. 
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Fig. 3.1: Time Series Plot of generated power  
 
 From figure 3.1 above, we observe the following characteristics of the data: 
(i) Within each year, there seems to be an initial period of electric power decline 

followed in turn by an interval of growth with some minor up-and –down power 
movement. 
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(ii) The series exhibits a number of peaks, but they do not appear to be equally spaced. 
This output suggests that if the series has a periodic component, it also has 
fluctuations that are not periodic--the typical case for real-time series. 

(iii) Aside from the small-scale fluctuations, the significant peaks appear to be separated 
by more than a few months. The series exhibits typical highs during the first and last 
quarter of every year which is an indication that the time series probably has an 
annual periodicity.  

(iv) The seasonal variations appear to grow with the upward series trend, suggesting 
that the seasonal variations may be proportional to the level of the series, which 
implies a multiplicative model rather than an additive model. 

 
Decomposing the Power Data 
From the above analysis of the figure 3.1time series plot, it is easily seen that the series 
consists of all the four components – Seasonal, Trend, Cyclical and Irregular components - 
so it is very important that these components be separated out of the ‘raw’ power levels. To 
be able to make a proper power forecast, we must know to what extent each of these 
components is present in the power data. Hence to understand and measure these 
components, the forecast procedure involves initially removing the component effects from 
the power data (decomposition). After the effects are measured, making a power forecast 
involves putting back the components on new power estimates (recomposition).  
 
Deseasonalizing the Power Data 
We now take the first step in time series decomposition by removing the recurrent and 
periodic variations (seasonal effects) from the power data over a short time frames (months 
in this case). To measure seasonal effects, seasonal index for every period, which represent 
the extent of seasonal influence for that period, is estimated. Seasonal indexes are 
estimated by   

    (3.1) 
where: 
Si = the seasonal index for ith period, 
Di = the average values of ith period, 
D = grand average, 
i = the ith seasonal period of the cycle. 

 
The estimated seasonal indexes for the generated power data are given in Table 3.1 below, 
with the monthly seasonal indexes in the last row of the table. 
 
Table 3.1: Seasonal indexes 
  Jan  Feb Mar  Apr  May  June  July  Aug  Sept  Oct  Nov  Dec  

2008 238559 281151 154037 237202 230473 138702 105380 175326 118839 169765 46433 99481 

2009 190058 112081 109623 171026 164583 106477 95726 127170 119200 102065 106065 183215 

2010 235095 200034 198736 225929 197781 138869 96317 119969 117511 127565 185220 261296 

2011 304358 258973 240065 193389 158631 131406 139042 187617 231329 213893 293193 290899 

2012 298679 294858 302202 283719 251910 221446 137205 197076 235181 244778 190844 220876 

2013 215582 222935 264874 190416 124203 115838 185517 229133 247886 274342 248103 268097 

2014 178086 224865 248107 231246 174846 137481 135438 108225 146876 226036 211417 244090 
IIN
DEX 1.24 1.192 1.134 1.145 0.973 0.739 0.668 0.855 0.909 1.015 0.957 1.171 

 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 13(1), March, 2017 

133 
 

From these indexes, we may quantitatively measure how far above or below a given month 
stands in comparison to the expected power period (the expected power is represented by a 
seasonal index of 100%, or 1). 
 
The original power data are then deseasonalized by dividing every observation in the data 
by the seasonal index of the corresponding month. These are given in table 3.2 below. 
 
The strength of the seasonal effect on the original power data can be seen in column (3) of 
table 3.2 below, which depicts a plus(+) or minus(-) sign for each period’s seasonal index 
which is above or below expected power level (seasonal index of 100%), respectively. This 
column clearly shows an annual seasonal pattern of above average power in the beginning 
periods followed by an interim time interval of below average power, and ending each year 
alternating ‘above’ average power with ‘below’ average power. These uninterrupted ‘highs’ 
and ‘lows’ in the seasonal index set represent a very strong seasonal effect in the data. We 
then remove this influence so as to further study the power data for other component 
effects. The remaining columns of table 3.2 give the original and the corresponding 
deseasonalized power.  
 
Table 3.2: The deseasonalized power  

Month  
Seasonal 
index 
(%) 

Seasonal 
strength 

Original 
2008 gen. 
power 

2008 
deseason-
alized power 

Original 
2009 gen. 
power 

2009 
deseason-
alized power 

Original 
2010 gen. 
power 

2010 
deseason-   
alized power 

 
J 
 

124 + 238559 192386.29 190058 153272.581 235095 189592.742 

F 119.2 + 281151 235864.933 112081 94027.6846 200034 167813.758 
M 113.4 + 154037 135835.1 109623 96669.31 198736 175252.2 
A 114.5 + 237202 207163.3 171026 149367.7 225929 197317.9 
M 
 

97.3 - 230473 236868.4 164583 169150.1 197781 203269.3 
J 73.9 - 138702 187688.8 106477 144082.5 138869 187914.7 
J 66.8 - 

 

105380 157754.5 95726 143302.4 96317 144187.1 
A 85.5 - 175326 205059.6 127170 148736.8 119969 140314.6 
S 90.9 - 118839 130736 119200 131133.1 117511 129275 
O 101.5 + 169765 167256.2 102065 100556.7 127565 125679.8 
N 
 

95.7 - 46433 48519.33 106065 110830.7 185220 193542.3 
D 117.1 + 99481 84953.89 183215 156460.3 261296 223139.2 
 
 Table 3.2: cont’d 

month  Seasonal 
index(%) 

Original 
2011 
gen. 
power  

2011   
deseason-
alized 
power  

Original 
2012 
gen. 
power  

2012 
deseason- 
alized 
power 

Original 
2013 
gen. 
power 

2013    
deseason-
alized 
power 

Original 
2014 
gen. 
power 

2014 
deseason-   
alized 
power 

J 124 304358 245450 298679 240870.2 215582 173856.452 178086 143617.742 
F 119.2 258973 217259.228 294858 247364.1 222935 187026.007 224865 188645.134 
M 113.4 240065 211697.5 302202 266492.1 264874 233575 248107 218789.2 
A 114.5 193389 168898.7 283719 247789.5 190416 166302.2 231246 201961.6 
M 97.3 158631 163032.9 251910 258900.3 124203 127649.5 174846 179697.8 
J 73.9 131406 177816 221446 299656.3 115838 156749.7 137481 186036.5 
J 66.8 139042 208146.7 137205 205396.7 185517 277720.1 135438 202751.5 
A 85.5 187617 219435.1 197076 230498.2 229133 267991.8 108225 126578.9 
S 90.9 231329 254487.3 235181 258725 247886 272701.9 146876 161579.8 
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O 101.5 213893 210732 244778 241160.6 274342 270287.7 226036 222695.6 
N 95.7 293193 306366.8 190844 199419 248103 259250.8 211417 220916.4 
D 117.1 290899 248419.3 220876 188621.7 268097 228947.1 244090 208445.8 
 
The time series plot of the deseasonalized power data from this table are given in figure 3.2 
below.  
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Fig. 3.2: Time Series Plot of deseasonalized power data
 
We can see from this figure that the deseasonalized power data do not oscillate as widely as 
the original power levels. Any remaining up-and –down movement must therefore be due to 
trend, cyclic, or irregular effects. Next we fit a trend equation to the original power data 
using the least squares method. This is given as  

 
    (3.2) 

 
Where  = predicted power level (due to the trend effect) occurring in period t, 
                = intercept of the trend line equation,  
              = power growth rate per period (i.e., slope of the trend line equation). 
 
By the least squares method, the fitted trend line equation for the original power data was      

 
     (3.3) 

 
This line represents the overall linear trend of the power growth over time. Next we 
estimate the trend components and then remove the trend effect from the deseasonalized 
data. Figure 3.3 below shows a plot of the original, deseasonalized and estimated trend 
data. 
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Figure 3.3: Time series plot of the original, deseasonalized and estimated (trend)  
          power  
 
From figure 3.3, the effect of the seasonal component is apparent in the sense that the 
deseasonalized data oscillates less widely than the original data. The fitted trend line shows 
the direction of movement of the two series.     
 
Measuring the Cyclic Effects 
We now calculate a series of cyclic indexes to enable us measure the effect of the general 
hydro-generating cycle on the power levels. We do this by expressing each value in the 
deseasonalized power data as a percentage of the calculated trend for the same date using 
the above trend line equation. The resulting time series has no trend, but oscillates around a 
central value of 100. These are given in Table 3.3 below. 
 
Table 3.3: Cyclical Index 

month  
2008 
deseasonalized 
power 

Predicted 
(trend) 
power 

Cyclic 
index 
(%)  

2009 
deseasonali
zed power 

Predicted 
(trend) 
power 

Cyclic 
index(%) 

2010 
deseasonalized 
power 

Predicted 
(trend) 
power 

Cyclic 
index(%) 

J 192386.3 153364 125.4 153272.6 164759 93 189592.7 176153 107.6 
F 235864.9 154314 152.8 94027.68 165708 56.7 167813.8 177103 94.8 
M 135835.1 155263 87.5 96669.31 166658 58 175252.2 178052 98.4 
A 207163.3 156213 132.6 149367.7 167607 89.1 197317.9 179002 110.2 
M 236868.4 157162 150.7 169150.1 168557 100.4 203269.3 179951 112.9 
J 187688.8 158112 118.7 144082.5 169506 85 187914.7 180901 103.9 
J 157754.5 159061 99.2 143302.4 170456 84.1 144187.1 181850 79.3 
A 205059.6 160011 128.2 148736.8 171405 86.8 140314.6 182800 76.8 
S 130736 160960 81.2 131133.1 172355 76.1 129275 183749 70.4 
O 167256.2 161910 103.3 100556.7 173304 58 125679.8 184699 68 
N 48519.33 162859 29.8 110830.7 174254 63.6 193542.3 185648 104.3 
D 84953.89 163809 51.9 156460.3 175204 89.3 223139.2 186598 119.6 
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Table 3.3: Cont’d 

month   
2011 
deseasonalized 
power 

Predicted 
(trend) 
power 

Cyclic 
index 
(%)  

2012 
deseasonalized 
power 

Predicted 
(trend) 
power 

Cyclic 
index 
(%) 

2013 
deseasonalized 
power 

Predicted 
(trend) 
power 

Cyclic 
index 
(%) 

J 245450 187548 130.9 240870.2 198942 121.1 173856.5 210337 82.7 
F 217259.2 188497 115.3 247364.1 199892 123.7 187026 211286 88.5 
M 211697.5 189447 111.7 266492.1 200841 132.7 233575 212236 110.1 
A 168898.7 190396 88.7 247789.5 201791 122.8 166302.2 213185 78 
M 163032.9 191346 85.2 258900.3 202740 127.7 127649.5 214135 59.6 
J 177816 192295 92.5 299656.3 203690 147.1 156749.7 215084 72.9 
J 208146.7 193245 107.7 205396.7 204639 100.4 277720.1 216034 128.6 
A 219435.1 194194 112.9 230498.2 205589 112.1 267991.8 216983 123.5 
S 254487.3 195144 130.4 258725 206538 125.3 272701.9 217933 125.1 
O 210732 196093 107.5 241160.6 207488 116.2 270287.7 218882 123.5 
N 306366.8 197043 155.5 199419 208438 95.7 259250.8 219832 117.9 
D 248419.3 197993 125.5 188621.7 209387 90.1 228947.1 220782 103.7 
 
Table 3.3: Cont’d 

Month 2014 deseasonalized power Predicted (trend) power Cyclic index (%) 
J 143617.7 221731 64.8 
F 188645.1 222681 84.7 
M 218789.2 223630 97.8 
A 201961.6 224580 89.9 
M 179697.8 225529 79.7 
J 186036.5 226479 82.1 
J 202751.5 227428 89.1 
A 126578.9 228378 55.4 
S 161579.8 229327 70.5 
O 222695.6 230277 96.7 
N 220916.4 231227 95.5 
D 208445.8 232176 89.8 

 
We now assign each period a plus(+) or minus(-) to signify whether the period is thought to 
be above or below the cyclic average (cyclic index = 100%) for power. Such assignments 
for all periods in all given years are shown in table 3.4 below using the above full cyclic 
index calculations. 
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Table 3.4: Plus/Minus Indicators of Cyclic Index Set 
M   2008 2009 2010 2011 2012 2013 2014 
J + - + + + - - 
F + - - + + - - 
M - - - + + + - 
A + - + - + - - 
M + + + - + - - 
J + - + - + - - 
J - - - + + + - 
A + - - + + + - 
S - - - + + + - 
O + - - + + + - 
N - - + + - + - 
D - - + + - + - 
 
On examination of the plus/minus assignments from the above table, beginning and ending 
periods for the first three years are difficult to discern. However, from June to December 
2009 is a time interval of economic downturn, and from July 2011 to October 2012, there is 
clearly an economic upturn shown by the long string of plus signs during this time interval.  
 
The whole 2014 is another economic downturn. To gain further insight, we plot the cyclic 
indexes for all periods in Figure 2.4.  

However, as the business cycle is usually longer than the seasonal cycle, cyclic analysis is 
not  expected to be as accurate as a seasonal analysis. Due to the tremendous complexity of 
general economic factors on long term behavior, a general approximation of the cyclic factor 
is the more realistic aim. Thus, in reference to the Figure 3.4 plot of cyclic indexes, the 
specific sharp upturns and downturns are not so much the primary interest as the general 
tendency of the cyclic effect to gradually move in either direction.                                                                                 

To study the general cyclic movement rather than precise cyclic changes (which may falsely 
indicate more accuracy than is present under this situation), we 'smooth' out the cyclic plot 
by replacing each index calculation with a centered 7-month moving average. This is to 
dampen out the many up-and-down minor actions of the cycle index plot so that only the 
major changes remain. These moving averages are given in Table 3.5 below. Plots of the 
cyclic index set and smoothed index set are shown in Figure 3.4.    

Table 3.5: 7-month index smoothing of the cyclic indexes 
M   2008 2009 2010 2011 2012 2013 2014 
J * 68.8 88.8 105.5 126.9 94.5 97.5 
F * 68.4 96.7 107.9 129.9 86.4 91.2 
M * 76.3 102.4 106.3 128.7 83.1 86.1 
A 123.8 80.9 101 104.6 125.1 88.6 84 
M 124.2 80 96.6 102 123.8 94.5 82.7 
J 114 82.8 93.1 104.2 124 99.7 80.6 
J 116.3 82.8 88.8 103.6 121.7 101.6 80.5 
A 101.6 79.1 87.9 113.1 117.8 107.3 81.3 
S 87.5 77.6 88.9 118.9 112.4 113.6 82.7 
O 83.8 80.8 92.8 122.9 103.2 112.4 * 
N 77.7 82.3 97.9 125.2 101.5 106.2 * 
D 67.7 83.9 102.9 128.1 101.2 102.5 * 
 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 13(1), March, 2017 

138 
 

 

8381797775737169676563615957555351494745434139373533312927252321191715131197531
Month (Period)

150
125
100

75
50
25

 
 
From the above Figure, note the following characteristics: 
(i) Cyclic peaks occurring in periods 2 (February 2008) & 47 (November 2011), and 5 

(May 2008) & 54 (June 2012) are approximately of the same magnitude and may 
thus be parts of different power generating cycles. 

(ii) Much of the index plot lies between 100-150%.  

Based on the above observations, we infer that the cyclic length (i.e., the amount of elapsed 
time before the cycle repeats itself) is about 70 months. The general behaviour of the cycle 
is a slightly sharp rise at the beginning followed by a reasonably stable period between 100 
and 150%, then a cyclic decline starting in about the 59th period of the cycle. In order to 
make power forecast, we project the approximate continuation of this cycle curve in to the 
next few periods of 2015. 
 
Making the Power Forecast 
At this point of the power analysis, we have completed the study of the power components. 
We now project the future values in making forecasts for the next few periods. The 
procedure is summarized below:                                                                                                                          
Step 1: We compute the future power trend levels using the trend equation.  
Step 2: We multiply the power trend levels from Step 1 by the period seasonal index to  
   include seasonal effects.                                                                                                  
 Step 3: Then we multiply the result of Step 2 by the projected cyclic index to include cyclic 
   effects and get the final forecast result. 
 
The Table 3.6 below gives sample calculations for a 5-period –ahead forecast (2015).  
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Figure 3.4: Cyclic index and smoothed cyclic index plot  
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Table 3.6: Power forecast calculations for 7 periods ahead  

Month (a)X 
(b)      

Predicted 
(trend) 
power 

(c)  
Seasonal 
index (%) 

(d) =(b).(c)     
estimated power 

with trend & 
seasonal effects 

(e)     
projected 

cyclic index 
(%) 

(f)           
power 

forecast 

 Jan 85 233126.07 124 289076.33 123.1 355852.96 
Feb 86 234075.61 119.2 279018.13 130.4 363839.64 

Mar ch 87 235025.15 113.4 266518.52 89.1 237468 
April 88 235974.69 114.5 270191.02 140.1 378537.62 
May 89 236924.24 97.3 230527.29 149.3 344177.24 
June 90 237873.78 73.9 175788.72 116.1 204090.7 

 
Conclusion  
Electricity demand forecasting represents the main task in the planning of electricity 
production because it determines the required resources to operate the electricity plants 
such as daily consumption of fuels. Furthermore, it is the corner stone of planning for 
electric plants and networks. Electric-Power forecasting is a dynamic process and requires 
frequent updates. This can be done with novel techniques and data, taking into 
consideration the principles involved. The methodologies currently used involve time series 
analyses with smoothing or moving average models, and less probabilistic forecasting 
models like Quantile regression models (QRMs), which are potential probabilistic techniques 
that could be adopted for predicting extreme power situations/conditions.  
 
The points of significance and mathematical procedures discussed and shown in this paper 
are in the context of a business case. Therefore, such procedure may be utilized by 
businesses that have some degree of regularity to sales, to study and decompose the 
relevant components of sales variation. Once these components are understood, sales 
forecasts can be made for future periods by recombining these component effects into 
projected sales estimates, as illustrated in Table 3.6. By illustrating the procedure in a real 
business case situation, we have shown that combining mathematical calculations with 
management’s firsthand knowledge of the situation can lead to logical and justified new 
power estimates. Finally, in view of the relative complexity of forecasting techniques, we 
recommend that management implements a simple forecasting method that is well 
understood. Power forecasting is a valuable resource for enhancing and promoting power 
services provision. This work is carried out to stimulate further discussions on standardizing 
electric-power forecasting approaches and methods, so that it can be used as a tool to 
facilitate power services delivery. 
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