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INTRODUCTION

Malaria is caused by
protozoan parasite of
the genus plasmodium.
The parasite is spread
from person to person
by a mosquito, of the
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evaluated. The model
equations were solved

analytically using
Homotopy
Perturbation  Method

(HPM) and graphical

generated from the
results using maple
mathematical software.
The results shows that
Vaccination is likely to
reduce the number of

vaccination parameter (

0) leads to high
infection and its
increase leads to low
infection.

Infected individuals as
reduction in

profiles of each
compartment was

onger be valid when dealing with endemic disease such as malaria. In such
diseases, the effect of changes in population size and disease include morality are
far from insignificant and in fact can have a crucial influence on the dynamics of
the disease. Some malaria endemic population in, say, tropical Africa, have a
human population growth rate of about two percent. Also the continuous contact
between mosquito and human populations necessarily introduces a high variability
on the mosquito population for which an assumption of constant population may not
be valid. For the sake of mathematical obedience in the analysis of mathematical
models for malaria transmission with variable population densities, information
about the infested mosquitoes is often traded for information about all the
mosquitoes and infected people through the pseudo equilibrium hypothesis
The term malaria is resulting from the Italian ‘malaria’, which means ‘bad air’, from
the early connotation of the disease with swampy areas. Towards the end of the 19th
century, Charles Louis Alphonse Laveran, a French army specialist, noticed parasites
in the blood of a patient misery from malaria, and Dr. Ronald Ross, a British medical
general in Hyderabad, India, revealed that mosquitoes conveyed malaria. The Italian
professor Giovanni Battista Grassi afterward showed that human malaria could only
be conveyed by Anopheles mosquitoes. Malaria affects a large number of countries
and it has been described that the occurrence of the disease in 2004 was between
350 and 500 million cases. Over two billion people, signifying more than 40% of the
world's population, are at risk of constricting malaria, and the number of malaria
deaths worldwide has been estimated at 1.1-1.3 million per annum in World Health
Organization (WHO) reports 1999-2004. Malaria has a broad spreading in both the
subtropics and tropics, with many areas of the tropics endemic for the disease. The
countries of sub-Saharan Africa account for the popular of all malaria cases, with the
remainder mostly gathered in India, Brazil, Afghanistan, Sri Lanka, Thailand,
Indonesia, Vietham, Cambodia, and China . Malaria is estimated to cost Africa more
than $12 billion annually and it accounts for about 25% of all deaths in children
under the age of five on that continent. In many temperate areas, such as Western
Europe and the USA, public health measures and economic development have been
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successful in achieving near- or complete removal of the disease, other than cases
introduced via worldwide travel. (World Health Organisation, 2013)

According to Chitins (2010), the mathematical modeling of malaria began in
1911with Ross, who was awarded with Nobel Prize for his work. HIS model was very
simple and has been greatly prolonged during the years.

Kermack and McKendric (1997) came up with amended SIR model of epidemics.
MacDonald (1957) improved the model of two dimensional model with one variable
representing humans and one representing mosquitoes. An important delay of the
model was proposed by Dietz, Molineux and Thomas who added the inclusion of
immunity. Other extension that has been made is for example environmental
dependence and drugs resistance. This phenomenal of incomplete immunity
permitting transmission is known to exist for malaria and confuses disease control
strategies as the reservoir of infection now include symptomatic infected individuals
In an effort to model malaria infection, Okosun and Makinde (2011) developed and
formulate a malaria model. The result of their study show that the model subdivided
human population in to sub population of susceptible individuals and also those
exposed to malaria parasite, also individual with drug resistance symptoms(Id;, ) .
We noticed in their model that the individual with drugs resistance symptoms can
be avoided in the model of malaria because the resistance might be as a result of
another infection not necessarily malaria, and we are after malaria.

Francis et-al (2012) formulate a mathematical model of malaria In their work, they
included exposed human (E;) class and exposed mosquito (E,,) class which by
definition and medically, exposed and susceptible means the same thing which one
of them need to be removed to have standard model equations.

Folashade et-a/(2012) developed a mathematical model of the impact of bed-net use
on malaria prevalence. In their model, they concluded that models must include
human behavior in order to provide realistic estimates of malaria dynamics. Where
they also analyzed their model by considering transition dynamics of malaria
infection in mosquito and human population and also investigate the impact of bed
net. However, in their work, they only considered the susceptible classes for human
and mosquito and also infected classes for both human and mosquito. The recovered
classes were not considered which is very important because human being can
recovered from an infection and become susceptible again.

Momoh et-a/(2012) formulate a Mathematical Modeling of Malaria Transmission in
North Senatorial Zone of Taraba State Nigeria . They used the SIR proposed by
Kermack and McKendrick and data obtained from Essential Programme on
Immunization (EPI) unit, F.M.C,, Jalingo, Taraba state were used to analyze the rate
of infection of malaria in the zone. From our analysis, we found out that the
reproduction ratio. Based on the reproduction ratio, which is greater than 0, implies
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that the force of malaria infection in Taraba North Senatorial Zone is high. The
researchers also make recommendations for the reduction of malaria in the zone.
However, in their model, they only considered SIR Model of the human segment
without considering the vector (mosquito) class. Also the recovered class of the
human segment was not also considered.

Ndanusa et-a/(2013) also developed and analysed a mathematical model on malaria
dynamics using Ordinary differential equations. They follow the idea of Roberts and
Heesterbeek and analysed the simple malaria model. Due to the nature of their
model, they were not be able to put it in the form of SIR Model. In that case, they were
not be able to section the models base on human and Vector Population techniques.
Furthermore, Abubakar et a/(2013) proposes model for general infectious diseases
dynamics which malaria cannot be left out and the analytical solution was obtained
using Homotopy perturbation method. In their work, they only considered the
human Population of a general infectious diseases without restricting to a particular
infectious disease. Also the vector population was not considered

In this study, we present a mathematical model for the spread and control of malaria

using therapy/vaccines

MATERIALS AND METHODS

Model Development

A mathematical model for transmission dynamics and qualitative analysis of malaria
epidemiology was developed, improving on the existing models as explained in the
literature review. The model is extended to include preventive therapy. The therapy
is assumed to be given to human population only. The reason for this decision lies in
the fact that malaria prevention is always administered to human being not
mosquito.

Model Description

The model contains six (6) variables namely: susceptible human ( S ), infected

human (1” ), recovered human (Rh ), susceptible vector (SV ) (infected vector (IV )

and therapy class (vh ). Other parameters also includes death rate (i), recruitment

rate (), transmission rate between (Sh ) and (1" ) (/1’7) transmission rate between
I

("")and (Rh) (6), transmission rate between (SV ) and (]V ) (/1V ), transmission rate

from (vh) to (Sh) (0), transmission rate from (Sh) to (vh) (¢) and natural death

(Mo)-

Assumptions

122



INTERNATIONAL JOURNAL OF AFRICAN SUSTAINABLE DEVELOPMENT

(VOL. 12 NO.2) JUNE, 2020 EDITIONS
|

The population of the Human susceptible class (S )increases by the recruitment of
individuals into the population at the rate( anP), coming of Vaccinated individuals

from class( Vi ) at the rate (9) and the coming in of individuals from the Malaria
recovered class (Rn ) at the rate r and the population decreases as susceptible

A
human (Sk ) moves in to infected human class (I ) at the rate (") via interaction
between infected vector and susceptible human, as susceptible human moves in to

vaccinated class (Vi ) at the rate (¢) and natural death ('u n.
The population of infected Human (I) increases as individuals moves from ( Sy) to

A
infected human (Is) via interaction (" ). It decreases as infected individuals moves
to recovered class via treatment rate (6) and also decreases as individuals dies due

to infection as well as naturally (,u hH ).

The population of the recovered class increases as individuals moves from infected
class torecovered class via treatment rate (§).the population decreases as recovered
individuals move back to susceptible due to lack of permanent immunity at rate ( r)

and also reduces as individuals can also dies naturally ('u D)
The population of the Vaccinated class (Vi ) increases by the recruitment of
individuals into the population at the rate ( an (1-P)) and also increases as

susceptible individuals moves in to vaccinated class at the rate (¢). It also decreases
as vaccinate individuals also moves back to the susceptible class at after receiving

therapy at the rate (9 ) and also decreases due to natural death ('u D)
The pupation of the vector Susceptible class (Sy) increases with mosquitoes

: A : : . .
recruitmentas (* ') and reduces as population leaves to infected class via interaction
A
with infected human at the rate (" ). It also reduces as mosquitoes can also dies

without infection as (/t ).
The population of infected vector (I,) increases as population moves from

A
susceptible vector class to infected via interaction () and decreases due to natural

death (’u "). These lead us to the following system of Ordinary Differential Equations

%:/\hp-l-el/h +7"Rh _(ﬂh +¢+1uh)Sh

t (3.1)
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dl
_h:ﬂ‘hSh_(/uh-I_/uO-I_é‘)lh
dt
dR,
—=0l, —(u, +r)R

7 » — ()R,
4
Tth:/\h(l_p)+¢gh_(‘9+1uh)l/h
ds, _
dt _/\v (/Iv+ll’lv)Sv
dl

“=AS —ul
dt v v Ile v
Equilibrium State

At equilibrium we have that
ds, di, dR_ 4V, dS, dI

vV

dt=z—dt=dt—dt=dt=()

S)
x =8, x, =l, x;=R, x, =V, x5=8, x,=1, 1, = fe x, A, = G
Let N N
Substituting equation (3.7) in to equations (3.1) to (3.6) gives

A, D6+, —(

fe x;
+o+u,)x, =0
N ¢+ 1,)x,

fe x
N6 X, =y + o +0)x, =0

ax, = (pt +7)x; =0
Ay (L= p)+ ¢, = (0 + p,)x, =0

op X,
A, — +u)x. =0
v ( N Iuv) 5
0,
pxzxs_luvxszo

N

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

Solving (3.8) to (3.13) simultaneously gives as the disease free equilibrium state.

124



INTERNATIONAL JOURNAL OF AFRICAN SUSTAINABLE DEVELOPMENT

(VOL. 12 NO.2) JUNE, 2020 EDITIONS
|

On, p=O0n, =0+ 1,1, p,O, 0, (3.14)
Op— (0 + 11, )0+ 1)
(A P=O N, =N, P) Ay 0
0 T,

(x, s Xy, X3 5 Xy s X5 5 Xg ) =

Basic Reproduction Number
In obtaining the basic reproduction number, we only consider the infected classes of
the model equation. They are as follows
dl,

dr Sy = + gy 0

(3.15)
dlv = AVSV - ﬂ\/IV
dt (3.16)
From (3.15) and (3.16) we obtained the following
0 2,8,
F= LAS 0 (3.17)
(), + 41y +6) 0
v=1L0 H (3.18)
The determinants of V is obtained as
U 0
1
V—l — ,U(]J«h +:u0 +5) 0 (/uh + Hy +§) (320)

125



INTERNATIONAL JOURNAL OF AFRICAN SUSTAINABLE DEVELOPMENT
(VOL. 12 NO.2) JUNE, 2020 EDITIONS

0
1
My + g + 6
O _
V1= H (3.21)
_ 25 ]
0 2
AVSV
Fyi= Lt t#e+6 0] (3.22)
i 2,5, ]
-1 U
=0
AVSV
| My T Hy +0 -4 i (3.23)
Simplifying equation (3.23) we have
ﬂ,z — /IhShﬁ’vSv
My, + ty +6) (3.24)
+ j’hSh}“vSv
A= —8— (3.25)

+U,+0
W THTO
Therefore, basic reproduction number is the largest of the Eigen value which is the
positive.

_ [asas
R, =T (3.26)

Mt Ho +5)

Analytical solution of the Model using Homotopy Perturbation Method (HPM)
Consider the system of the equations

ds
—L=pA,p+ OV, +1R, — (A, ++1,)S,
dt (3.27)
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dl
— =,8, — (e, + o +0)1,

di (3.28)
dR
—= =0, ~(u, +1)R,

dt (3.29)
4
_h:/\h(l_]?)+¢gh -@+uw,)V,

dt (3.30)
ds, _

dt - /\v (ﬂ'v +/’lv)Sv (3.31)
da, _ AS —ul

dt v A4 Vv (3.32)

Using Homotopy Perturbation Method (HPM) With initial conditions
S, (0)= 8,5, 1,(0)=1,,, R,(0)=R,,, S, (0)=S,,, [, (0)= 1,

v

we obtained the general analytical solutions to the model as

00 0, . 0p0y _ 0,0 2
5,(6) =5, + (A, prRY =0V, + 1, + 4, s,?)t+[Ahp(5[hR: +'uh1§h HS”R”)O o po)tgs”v”:o ]t_ (333)
A (A, prR) =60V, + w4 2,8,) + 2, (<481 — i, s} | 2
0 5 (OO, (10 0N (n_ N0 )
L= () + Gl (0, O)L,O {i"“’l) N Y AL }t— (334
,Llh ‘th(sv )(IV)_(,uh +:uo +5)(ﬂ71(sh )(]‘,-)_(luh +,ug +5)Ih0 2
R,(6)=(RY) +(SURY)+ 1, (R + r(s) )R 1
+[5(12’)(5(12)(R2’)+ﬂh (RD) + P(SDRY) + (A, (9~ 1, + 1t +5)(R;3)} s B39
1, (BUDRY) + 1, (R + (RO + F(SUDR) + 4, (R + F(R) | 2
6(s} 1-p)—p(W’))+6 R |4
B0 = (1= p)+ PO +[ =PI =0 )+, pr ”)}’— (3.36)
=, + b, + 24,((1,)(s,))(v,) 2

2

~

0 0 0 0 /\v luv (/\v + luv (Sl(] ) + j’v (sh[] )(Slg )) + /Iv (Sh[] )(/\v + luv (/\v + luv (S\()) ) +

S,(6)= (8,4 = (A, 1,(5,)+ 4 (s, (s, )t + o ) 0 5
|:/1v(sh )(Sv)-l_iv(sv )(lh(sh )(Ih)_luh +’uo+5) - 2 (3.37)

=D =t + 1y +8) = (A, 1,5+ |2

— (3.38
AN s Aty |2 O

L(0)=1 +(—/1v(83)(1;?)—ﬂv(13))t+[

STABILITY ANALYSIS OF DISEASE FREE EQUILIBRIUM (DFE)
We recall that the system of equation of the model at equilibrium is:
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ds
7;:/\hp+(9Vh +rR, — (A, +d+u1,)S,

=0 (4.1)
dl
—L = 4,8, = (4, + pty +O)1,
dt =0 (4.2)
dR
—= =0, ~(w, +1)R,
dt =0 (4.3)
av,
—L=A(=p)+ 48, = (@ +p,)V, = 0
dt (4.4)
ds
== A, = (u, +4)s,
dt =0 (4.5)
dl
- = ﬂ(V‘S'V _ILlVIV

dt (4.6)
We obtained the characteristics equation from jacobian matrix as

R, +60v,—p,-4)-4 0 rs, ¢s, 0 —=pfs,

AL —(u, +p,+0)-4 0 0 0 Ags,

-rR, OR, oL, —(u, +rS,)—-4 0 0 0

=0

O-0), 0 0 (gs)-420 0

0 -5, 0 0 (u,+4)-10

0 ﬂ’vsv 0 0 ﬂ‘v]h (_luv) -A (4_ 7)

Evaluating this gives

(@, =, = L) = 2) (s + g +8) = A) (A, = (1, +718,) = 4) (s, = )

(u, +ely)=2) (=p,) = A) + 15, (BLrR )R ), )(= (1, +el;) = 4) =
(6,)(BL (= (p, + g +0) = A)OL, = py, = 1S,) = A= (p, +el)) = A)(-p,) = 4) =0

(4.8)
But we recall from (3.46) that the DFE is given as
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ON, D=0, O+~ P

b 09 09
Op— (0 + 1,)(0 + 1)
(XX, X3, X, ,X5,X ) =
(A=~ =~y P) A, 0
o¢ A, (4.9)
Substitute (4.9) in to (4.8) and simplify
-n (- py, ) \ A, 2+/\11— ) Ay 2+/\1(1— \
Py -0 - D })-W[—’ PAED) )
9/\11 p+/\h(l_p) Iu}l luh
(~#)-4)(-,)-7) =0 (4.10)
Simplifying (4.10) and find the different values of A, we have
-~ =-pu
A = : : — 1)
Ay P+ (1= p) (4.11)
A == (1 + 1y +9) (4.12)
P _,{Ah p+/\h(1—p)}
M (4.13)
a - Q[Ah p+A,,<1—p>}_¢[Ah p+A,,<1—p>}
o o (4.14)
A5 ==n, (4.15)
A ==A, (4.16)
Therefore, A2, Ay, s and A are all less than zero (0), but
Q[Ah P+l —p)} ¢[Ah p +A,,(1—p)}
A4 Is also less than zero iff o < a
G[Ah p+ A,,(l—m}
Hence Disease Free Equilibrium State will be stable if o <
¢[Ah pta,Q —p)}
al , and unstable if
Q[Ah P+ Ah(l—m} ¢[Ah P +A,,(1—p>}
A > al ieif 0>

NUMERICAL SIMULATIONS OF THE MODEL.

In this section, we use maple software to plot the graph of the analytical solutions of
our model.

Table 4.1: parameters and state variables showing their descriptions, values and

sources
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Parameters/state Description Values Sources
variables
) Susceptible human 12000 Assumed
]h Infected Human 7000 Assumed
R, Recovered Human 2000 Assumed
Vh Vaccinated Human 2000 Assumed
S Susceptible Vector 1500 Assumed
v
I Infected Vector 1500 Assumed
v
Ah p Human recruitment rate 100 Kbenesh et
al.(2009)
A Human recruitment in 100 Kbenesh et
' vaccinated class al.(2009)
A, Force of Infection in human  0.8333 Kbenesh et
al.(2009)
U Death by infection in human  0.00004 Kbenesh et
al.(2009)
I Natural death in human 0.00004 Kbenesh et
’ al.(2009)
0 Treatment rate in human 0.20 Kbenesh et
al.(2009)
r Probability of human being 1/730 Kbenesh et
recovered al.(2009)
0 Vaccinated parameter 0.2 Assumed
¢ Probability of human being 0.1 Assumed

vaccinated
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DISCUSSION OF RESULTS

Figure 4.1 shows the graphs of Human population against time. When the treatment
rate is low (5=0.20) it was observed that the infected individuals are high and
recovered individuals decreases

Figure 4.2 shows the graph of human population against time. When the treatment

rate is moderate (5 =0.55), we discovered that the infected individual decreases and
recovered individuals increases with time.
Figure 4.3 is a graph of Human population against time. When the treatment rate is

high (5 = 0.98), the infected individuals decreases towards zero as recovered
individuals increases

In figure 4.4, when the vaccination was low (9 = 0.05), the vaccinated class remain
stable while infected class increases rapidly.

In figure 4.5, when the vaccination was moderate (9 = 0.15), the vaccinated class
increases and infected classes decreases.

In figure 4.6, when the vaccination was high (9 =0.55), the vaccinated class increases
and infected individuals decreases more than that of figure 4.5.

CONCLUSION

In this study, we investigated how malaria as a disease spreads in the population and
possibility of its prevention and controls. We presented a mathematical model for
transmission dynamics and qualitative analysis of malaria incorporating
Therapy/Vaccination. The Disease Free Equilibrium States of the model was
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obtained, analyzed for stability and was asymptotically stable. The Basic
reproduction number was also evaluated and graphical profiles of each
compartment was generated using maple mathematical software. The result shows

that Vaccination plays crucial role in the eradication of the disease.
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