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Abstract:  
In this study, we presented and analysed a deterministic compartmental model 
for transmission and control of measles incorporating vaccination and 
treatment. We obtained the positive invariant region for the model and the 
positivity of the solutions. We also established the existence of the equilibrium 
states and carried out the stability analysis of the equilibrium states. The result 
shows that both equilibrium states are stable. 
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Introduction 
Measles virus is a paramyxovirus, genus morbillivirus, measles (also called 
rubella) is a viral infectious disease highly contageneous through person-to-
person transmission mode, with > 90% secondary attack rates among 

childhood. It produces also a characteristics fever, cough, runny nose red rash, 
and can lead to serious and fatal complications including pneumonia, diarrhea 
and encephalitis. Many infected children subsequently su er blindness, 
deafness or impaired vision. Measles is now vaccine preventable, however in 
the pre-vaccine era, most people got infected by age 20 (Anderson and May, 
1978), and the mean age of infection was much younger, approximately 4 5 
years. After infection, there is a latent stage of the disease which lasts for 
approximately 10 12 days (Andrus, 2011). After, this stage individuals are 
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usually infectious for approximately 8 days (Centers for Disease Control and 
Prevention, 2015).  
There is no vertical transmission which means that newborns may not get the 
infection from their mothers. However a mother that has had the disease in the 
past passes temporary immunity to her offspring. This immunity wanes and 
lasts for approximately four months. 
Although measles can be contracted by persons of any age, it is prevalent among 
children aged 5 years and below. Unvaccinated pregnant women are at high risk 
of complications if they contract the disease. The virus is spread when an 
infected person coughs, sneezes or breaths, it remains active in the air or an 
infected surface for up to two hours. There is no specific treatment for measles; 
however, people who recovered naturally from the disease confer lifelong 
immunity from further attacks. 
One of the earliest written descriptions of measles as a disease was provided by 
an Arab physician in the 9th century who described differences between 
measles and smallpox in his medical notes. A Scottish physician, Francis Home, 
demonstrated in 1757 that measles was caused by an infectious agent present in 
the blood of patients. In 1954 the virus that causes measles was isolated in 
Boston, Massachusetts, by John F. Enders and Thomas C. Peebles. Before 
measles vaccine, nearly all children got measles by the time they were 15 years 
of age.  
Worldwide, measles vaccination has been very e ective, preventing an 
estimated 80 million cases and 4.5 million deaths annually and global incidence 

important public health problem since vaccination coverage is not uniformly 
high worldwide, it is disheartening to mention that measles remains one of the 
leading causes of death among the children under-fives, especially in the Sub-
Saharan African continent. The laboratory confirms measles when a blood 
sample taken from a suspected case within 30 days of onset of rash shows 
measles IgM antibodies. The caveat here with regards to IgM antibodies from 
suspected blood sample is that measles vaccination as well as measles infection 
both results in raised IgM antibodies; thus, presence of measles IgM in those 
vaccinated with the measles antigen 30 days before the sample is collected does 
not imply disease but rather vaccination against measles. Furthermore, an 
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outbreak of measles is said to occur when there are at least 3 measles IgM 
positive as confirmed by the laboratory in a health facility or district within 1-
month. 

model for the dynamics of measles with multidimensional diffusion process. In 
developing their model, they considered and partitioned the population into; 
susceptible, latent (exposed), infected and removed classes, they assumed, 
among other things that stochastic effects arise in the process of infection of 
susceptible individuals. The results of their simulation seemed to agree with the 
historical pattern of measles in Nigeria.  
Momoh et al. (2013). developed a model that divides the total population (N) 
into four classes: Susceptible (S), Exposed (E), infected (I) and Recovered (R) 
classes, they incorporated testing and measles therapy into the dynamics at the 
latent (exposed) period to investigate the control of measles epidemiology at 
latent period. They assumed that both recovered individuals from exposed class 
as a result of testing and measles therapy and naturally recovered infected 
individuals becomes permanently immune, and developed a non-linear first 
order ordinary differential Equation. The result of their stability analysis 
showed that the system is asymptotically stable 
(Bolarin, 2014). developed a mathematical model on the dynamical analysis of 
a new model for measles infection. His study used SEIR model modified by 
adding vaccinated compartment. His model determined the required 
vaccination coverage and dosage that will guarantee eradication of measles 
disease within a population 
(Bakare et al., 2012). Studied modeling and simulation of the dynamics of the 
transmission of measles disease. They used SEIR model to discuss dynamics of 
measles infection and address the stability of disease free and endemic 
equilibrium states. The impact of vaccination in the control and elimination of 
measles was not considered in the work. 
Ejima, (2012). developed a deterministic compartmental model to describe the 
transmission dynamics of measles. They divided the human population into 
susceptible, Exposed, infectious and Recover compartment. Stability Analysis 
and basic reproduction number RO were calculated and the results reveals that 
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the disease will die out if RO is less than one and the disease will persist if the 
RO 

treatment. 
Ochoche and Gweryina (2014). developed a mathematical models of measles 
incorporating vaccination as a control strategy and capturing two phase of 
infectiousness ((i.e. asymptomatic infectives and symptomatic infectives). The 
basic reproduction Number RO was calculated using next generation matrix 
approach and proved that the system of Equations is locally asymptotically 
stable if RO is less than one.  From their study they concluded that the disease 
will certainly be eliminated if all susceptible individual are vaccinated. But in 

 the measles 
disease. 
Peter et-al (2018). Developed mathematical model of measles dynamics with 
vaccination by considering the total number of recovered individuals either 
from natural recovery or recovery due to vaccination. The population was 
divided into five compartments (Susceptible, Exposed, Infectious, Recover and 
Vaccination). The existence and uniqueness of solution for the model were 
tested using Lipchitz condition to ascertain the efficacy of the model and also 
the disease free equilibrium (DFE) and the endemic equilibrium (EE) for the 
Equation of the system were obtained and the basic reproduction Number RO 

were calculated   which shows that is asymptotically stable. The numerical 
simulation of the model shows that vaccination is capable of reducing the 

include screening and treatment.  
In this study we present a mathematical recipe for transmission and control of 
measles incorporating vaccination and treatment. 
 
MATERIAL AND METHODS 
Formulation of the Model 
A mathematical model of transmission and control of measles is proposed by 
incorporating vaccination and treatment. We divided the population into six 
mutually-exclusive compartments namely; Susceptible Class (S), Vaccinated 
Class (V), Exposed Class (E), Exposed Receiving treatment Class (ET), Infected 
and infectious Class (I) and Recovered Class (R). 
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Figure 3.1: Schematic presentation of the model 
 
Assumptions of the model 

i. The population is homogenous (population that shared similar 
characteristics and traits) 

ii. The natural death rate is constant 
iii. There is permanent immunity after recovery  
iv. The susceptible individuals enter the Exposed compartment at the 

rate  which is a force of infection. 
v. The per capita recruitment rate  A is constant, 
vi. Individuals can be infected through direct contact c, with an 

infectious individual. 
 
This this can be represented by the following system of ordinary differential 
Equations; 
 
Model Equations 

dS
A S

dt                                               (3.1) 
dV

S V
dt                                                     (3.2) 
dE

S E
dt                                            (3.3) 

T
T

dE
E E

dt                                                      (3.4) 
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1 2
dI

E I
dt                                        (3.5) 

2 T

dR
I E R

dt                     (3.6) 

Where 
cI

N  
 
Definition of variables and parameters 
N       total population 
S        number of susceptible (that is no infection but can be infected) 
V number of vaccinated individual (those who received vaccine) 
E number of exposed individual (infected individual but not yet infectious) 
ET   number of exposed individual receiving treatment 
I          number of persons with active measles 
R         number of persons recovered from measles 
A         constant recruitment rate 
c          per capita contact rate for measles 

Rate at which exposed individual move to exposed treated class 
µ          Natural death rate 

  Rate at which exposed individuals becomes infectious 
  Recovery rate for the exposed treated individual 

 vaccine 
  Probability of infectious individual infecting others 

2         Recovery rate for the infectious individuals 
µI          death due to measles infection 
  force infection 

 
The Positive Invariant Region 
The entire population size N can be determined from Equation (3.1) to (3.6) 

The total population size is TN S V E E I R
                                  

  (3.7) 

TdEdN dS dV dE dI dR

dt dt dt dt dt dt dt                                                                  
    (3.8) 
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Adding Equation (3.1) to Equation (3.6) gives 

T I
dN

A S V E E I I R
dt                      (3.9) 

The positive invariant region can be obtained using the following theorem. 
 
Theorem 3.1 
The solutions of the system Equation (3.1) to Equation (3.6) are feasible for 

0t  provided they enter the invariant region D. 
 
Proof 

Let 
, , , , ,TD S V E E I R

R6
+ 

Be any solution of the system of Equations (3.1) to (3.6) with non-zero initial 
conditions. 
 Assuming there is no disease-induced deaths, Equation (3.9) now becomes 
dN

A N
dt                                                                                           (3.10) 
dN

N A
dt                                                                                                

 (3.11) 
The integrating factor for (3.11) is  

Multiply both sides of (3.11) by   gives 

 d (N ) A                                                                                          
 (3.12) 
Integrating both sides we have 

N (t)

 tAe

                                                                                         (3.13)    

N(t)=                                                                                   (3.14) 

Applying the initial condition ;0t  0)0( NNh  (3.15) 

0

A
N D

 
0

A
N D

                                                               (3.16) 

 N(t) 
0 )

A
N

                                                                               (3.17) 
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Therefore, as t  in (3.17) the human population N approaches  

A
K

 (That 

is, N
)

A
K

 the parameter

A
K

  is called the carrying capacity. Hence all 
feasible solution set of the human population of the model Equations (3.1) to 
(3.6) enter the region 

6, , , , , : 0, 0, 0, 0, 0, 0,T T
A

D S V E E I R R S V E E I R N
  

Therefore, in this region it is appropriate to consider the dynamics of flow 
generated by the model Equations (3.1) to (3.6). 
 
Positivity of Solutions 
Since Equations (3.1) - (3.6) represent the population in each compartment and 
all model parameters are all positive, then it lies in a region D. 
Theorem 3.2 Let the initial data for the model Equations be given as

DRIEEVS T )0)0(),0(),0(),0(),0((,0)0(  

Then the solution set 
, , , , , ( )TS V E E I R t

of the system of Equations (3.1) to 

(3.6) is positive for all 0t  
Proof 
 
From Equation (3.1), we have 
dS

A S S
dt                                                 (3.18) 
dS

S
dt                                                                                  (3.19)  

Separating the variables we have  

dt
S

dS

 
 
By integration we have  

2nS t C
                                                                                   (3.20) 
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2t CIne S e e                                                                                             (3.21) 

1( )
t

S t K e                                                                         (3.22) 

Where K1=e 2C  

Using the initial condition 0t  1(0)S K
 

Therefore, ( ) (0) 0tS t S e                                        (3.23) 
From Equation (3.2) 
dV

S V V
dt                                                      (3.24)  
dV

V
dt                                                                        (3.25) 
dV

dt
V                                                                   (3.26) 

3InV t C
                                                                            (3.27) 

2( ) tV t K e                                                                                (3.28) 

Applying the initial condition 0t  2(0)V K
 

Therefore, ( ) (0) tV t V e                                                         (3.29) 
Similarly, it can be verified that the rest of the Equations are positive for all t > 
0 since  

0e For all  R   
 
3.4 Equilibrium States of the Model  

At equilibrium, 
0TdEdS dV dE dE dR

dt dt dt dt dt dt       (3.30) 
From Equation (3.1) to (3.6)                      

Let 1 2 3 4, 5 6, , , TS x V x E x E x I x and R x                     (3.31)    

5
1 0

cx
A x

N                                                                   (3.32) 

1 2 0x x
                                                      (3.33) 
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5 1
3 0

cx x
x

N                                                                    (3.34) 

3 4 0x x
                                                                        (3.35) 

3 1 2 5 0x x
                                                                      (3.36) 

2 5 4 6 0x x x
                                                                                 (3.37) 

From Equation (3.36) 

1 2 5
3

x
x

                                                                            (3.38) 
Substituting Equation (3.38) into Equation (3.34) gives 

1 2 55 1 0
xcx x

N                                                (3.39) 

1 21
5 0

cx
x

N                                                    (3.40) 

             5 0x
        

211

N

cx

                                    (3.41) 
 

   If  5 0x       then from Equation (3.41) 

1 21cx

N                                                                (3.42) 

1 2
1

N
x

c                                                                (3.43) 
Substituting Equation (3.43) into Equation (3.33) gives 

1 2
2 0

N
x

c                                                       (3.44) 

1 2
2

N
x

c                                                              (3.45) 
Substituting Equation (3.43) into Equation (3.32) gives 

1 25 0
Ncx

A
N c                                      (3.46) 

Either
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Re-arranging Equation (3.46) 

A
c

N

N

cx ))(( 215

     (3.47) 

Multiplying both side by ))(( 21N

c

  gives   

))(( 21

5

N

cA

N

cx

      (3.49) 

))(( 21

5

N

cA

N

cx

      (3.50) 

Multiplying through by

N

c  gives 

5
1 2

( )A N
x

c                                                           (3.49) 
Substituting Equation (3.49) into Equation (3.36) and then simplifying we have; 

1 2
3

1 2

( )A N
x

c
                               (3.50) 

Substituting Equation (3.50) into Equation (3.35) and then simplifying we have; 

1 21 2
4

1 2

( ) ( )

( )

A N
x

c
             (3.51) 

 Substituting Equations (3.49) and (3.51) into Equation (3.37) and then 
simplifying we have; 

2
1 2

6

1 21 2

1 2

( )

1

( ) ( )

( )

A N

c
x

A N

c
       (3.52) 

 
Disease free equilibrium (DFE) 
The equilibrium state in the absence of infection is known as disease free 
equilibrium. 
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Therefore from Equation (3.41) If  
05x

    (3.53)  
Then substituting Equation (3.53) into Equations (3.32), (3.34) and (3.37) and 
then simplifying we have; 

1

A
x

                                                                                                                  (3.54) 

3 0x
                                                                                                                         (3.55) 

4 6 0x x
                                                                                                            (3.56) 

Substituting Equation (3.55) into Equation (3.35) 

4 0x
                                                                                        (3.57) 

Substitute Equation (3.57) into Equation (3.56) gives 

6 0x
                                                                                                           (3.58) 

Substituting Equation (3.54) into Equation (3.33) and then simplifying we have; 

2

A
x

                                                                                           (3.59) 

1 2 3 4 5, 6, , , , , ,0,0,0,0
A A

x x x x x x
                                                  (3.60) 

 
The endemic equilibrium state 
Equations (3.43), (3.45), (3.49), (3.50), (3.51) and (3.52) give the endemic 
equilibrium state. That is;   
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1 2 1 2

1 2

1 2

1 21 2
1 2 3 4 5, 6

1 2

1 2

2
1 2

, ,

( )
,

( ) ( )
, , , , ,

( )

( )
,

1

N N

c c

A N

c

A N
x x x x x x

c

A N

c

A

1 21 2

1 2

( )

( ) ( )

( )

N

c

A N

c
  

 
Stability Analysis of Disease Free Equilibrium State (DFES) 
The Jacobean matrix of the system of Equations at disease-free equilibrium is: 

, ,0,0,0,0
A A

J
2

21

000

0)(000

00)(00

0
)(

0)(00

0000

0
)(

000)(

N

cA

N

cA

 (3.61) 

The characteristic Equation is given by    
0J I

 

1 2

2

( ) 0 0 0 0
( )

0 0 0 0

0 0 ( ) 0 0 0
( )

0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0

cA

N

cA

N

  (3.62) 
 
This gives: 

1 2( ( ) )( )( )( )( )( ) 0    (3.63) 
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Which further simplifies to; 

 

1 2 3 4

1 2 5 5

( ( ) ) 0 ( ) 0 ( ) 0 ( ) 0

( ) 0 ( ) 0

or or or

or or    (3.64) 
 
Therefore,  

1 2 3 4 5 1 2 6( ), , , , and (3.65)      
Hence, DFE is stable since all the Eigen-values are less than zero. 
 
Stability Analysis of Endemic Equilibrium State (EES) 
An important criterion by Routh-Hurwitz gives the necessary and sufficient 
conditions for all roots of the characteristics (with real coefficients) to lie in the 
left half of the complex plane. In other words, all the roots of the polynomial 
are negative or have negative real roots if and only if the determinant of all 
Routh-Hurwitz matrices is positive.  
 
Theorem 3.2 (Routh-Hurwitz Conditions) 

Let 

* * * *

* * * *

( , ) ( , )

( , ) ( , )
x y

x y

f x y f x y
J

g x y g x y
 be the Jacobian matrix of the non-linear system 

( , )
dx

f x y
dt                                                                                                              (3.66) 

( , )
dy

g x y
dt                                                                                                               (3.67) 

Evaluated at the critical point * *( , )x y
, then the critical point * *( , )x y

; 
1. Is locally asymptotically stable if trace (J)<0 and determinant (j)>0 
2. Is stable but not asymptotically stable if trace (J)=0 and determinant 

(J)>0 
3. Is unstable if either, trace (J)>0 or determinant (J)<0 

Jacobean matrix of the system of Equations at endemic equilibrium state is: 
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* * * * * *
1 2 3 4 5 6, , , , ,J x x x x x x

2

21

**

**

000

0)(000

00)(00

0
1

0)(0
5

0000

0
1

000)
5

(

N

cx

N

cx

N

cx

N

cx

  
 (3.68) 
The determinant gives: 

* *
1 2 5 5

* * * * 2 * *
5 1 5 2 1 5 5 1

* * * *
5 2 1 1 5 2 1 5 2 1

* 2
5 2 1

1
((( )( )( ) (2

( ) ( )) (( )

( )) ( ( )) ( ))

( )( )( ) )

N cx cx
N

cx cx cx cx cx cx

cx cx cx cx

cx                    
(3.69) 

The trace

*
1

1 2( )( ) ( )
cx

N                    
(3.70) 

Since the trace ( ) 0J  and the determinant > 0, the Endemic Equilibrium State 
is locally asymptotically stable. 
 
Conclusion:  
In this study we developed and analysed a deterministic compartmental model 
for transmission and control of measles incorporating vaccination and 

treatment. The model has feasible solutions in the region 
, , , , ,TD S V E E I R

R6
+

. The solution set 
, , , , , ( )TS V E E I R t

of the system of Equations (3.1) to (3.6) 

is positive for all 0t . The model has stable Disease Free and Endemic 
Equilibrium States signifying the possibility of complete eradication of the 
disease if necessary measures are put in place. 
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