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Abstract

The statistical power of the likelihood ratio (LR) test for testing the
parameter (7) of the exponential distribution under different puameter

, considerations and sample sizes was- inuestigated. Up tiil now,
, considerations hud only been on the effect and sample sizeswhile

determining the power of statistical hypothesis tests, especially those that
involve the parameters of exponential distribations of the form Hq: 7 = 7o
vs, Hr: A = 7r Thus, literature is apparently silent on the impact of the
siies of the parameterpair (7s,7) being tested on the power of the test.
This was investigated in this stady in addition to some other situqtions
considered for determining power of LR test for exponential distribations
through detail Monte Carlo studies. Part of the novel resultsobtainedfrom
this study showed that the power of the test is highly sensitive to the sizes of
parameter pair (7s,\) being tested irrespective the effict sizeA:

lls - 71l.In other words, at any given sample size, small values of the
parameter pair (7s,7) yielded appreciable power than the large values of
the parameter pair (70,71 of the bxponential distibutions being tested
even under equal effect sizes. Therefore, increasing the sample size at any
point may only be desirsble as a corrective me&sure to increase the power
of the LR test whenever the power provided by the test is considered small,
the situation that can possibly occur when the parameter pair (As,A) of
tlte exponential distributions being tested is relatively large. The
implication oJ' these results is thut fewer samples would be reqaired to
attain an appreciuble power with small vulues of the parameter pair
(7o,7) while large samples would be needed to attsin u similar feat of
power size under large values of the parameter pair (7s,7) even if the
effect size is the same under the tw,o test problems. Further results from
this study indicated that fewer samples would be required by the LR test to
ach,ieve appreciable power as the chosen size a level of the test increases.
Empirical illustrations are provided to validate the results from Monte
Carlo experiments. It is therefore recommended tlrat more attention should
be given to the size of the parameters being tested in any statisticul
tig"fr
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1.0 ' Introduction
The concept of power in statistical hypothesis testing has received prominent discussion in the literature. Statistical
hypothesis testing is a scientific process to examine if a proposition is plausible or not. Tire power of a statistical test
tl.rerefore is the probability that the test will correctly lead to the rejection of a false proposition. A statistical power is the
ability ofa test to detect an effect, ifthe effect actually exists [1,2]. A statistical power analysis may be retrospective (post
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hoc) or prospective (a priori). A prospective analysis is often used to determine the required sample size to achieve target
statistical power prior to analysis, while'a retrospective analysis computes the statistical power of a test given a sample size
and effect size [3].
Power can be determined for a number of statistical test procedureswhich include the significance testsf4]and the likelihood
ratio tests[5,6]among others. This has been very useful in many practical life applications[7-10].
The likelihood ratio (LR) is the ratio of two likelihood functions by varying the parameters over two different sets in the
numerator and denominator. A likelihood ratio testtherefore is a statistical test that compares the maximum value of the
likelihood of the null hypothesis against the maximum value of the likelihood of the alternative hypothesisin order to rnake a
decision between the two hypotheses. The procedure of this test has been widely discussed in the literature [5,11,12]and its
use has been demonstratedon many statistical hypothesis testing problems [3-15].
Despite manybenefits of the LRtest over some of its counterparts[3,16],the determinationof the sampling distribution of the
LR statistic in any given test hypothesis problem and its associated rigorous computational tasks constitute major constraints
on the flexibility and usage of the LR tests. As a result of these challenges, few discussions on power analysis of the LR tests
have been reported in the literature especially forstatistical test problems on data that emanated from population with
underlining exponential distribution(s) [ 7].
Not only this, up till the present moment to the best of our knowledge, researchers had only focused on the effect sizes and
sample sizes while discussing issues relating to the power of statistical hypothesis tests, especially those that involve the
parameters of exponential distributions. Thus, literature is apparently silent on the impact of the sizes of the parameter pair,
for instance(,1s,21) being tested on the power of the test for tlre hypothesis Ho: 2 = 2o vs. Hr: A = 7t.
The work here is therefore intended to exainine the behaviour of power of the likelihood ratio test on data sets with
underlining exponential distributions. Various conditions under which appreciable power of the likelihood ratio test can be
achieved given this distribution function shall be investigated. More importantly, the impact of the size of the parameters
being tested under the null and alternative hypotheses forrns on (he power of the LR test shall be investigated. However, our
choice of exponential dislribution in this study is prernised on the irnportance of this distribution as the distribution of
survival time of some events with constant rate of occurrencef I 8-2 I l.

2.0 Theoretical Formulations
Suppose a random variable Xfollows an exponential process with parameter,l. Then, the density function of Xis given by

(2 .1 )

withlbeing the rate parameter that indexes the average rate of occurrence of an event overXduration of time[l4]. In this
context, random variable X may represent the duration of time that a given biological or mechanical system manages to

survive before it fails. Hence, E(X) =]would represent the expected duration of survival per unit with a corresponding
1

varlance oIV.

Conversely, the exponential probability density function (pdf) in (2.1) can be re-parameterized as

r r-.\ (Ae- "' , x > 0,,1. > 0.
f  I Y I :  {'  \ '-) (0, if otherwise

( r  - L x

f  ( x )  = l ; '  ^ * '  x>  o '  m> o '
(0, if otherwise

(2.2)

wlrere m is the scale parameter with ,tr = l establishing tlie link between the two density functions(2.1) and (Z.2).Here also,

E (X) = mis the expected durationof time to failure with a varian ce, V ar(X) = m2 .In density function (2.D, ! represents the

constant failure rate per unit time.
For simplicity, the representationof exponential density in (2. l) shall be employed for our subsequent discussions in this
study since tfre representations(2.1) and (2.2) would essentially lead to similar conclusions.
Consider a set of n random samples x1,...,xndrawn from the population having an underline exponential distribution of the
type in (2.1) with an unknown parameter 1. If it is desirable to test the hypothesis that thesensamples are drawn from an
exponential population with parameter 26in the pararneter space 7, the hypothesis of interest would bea simple null
hypothesis versus acomposite alternative of the forrn
Ho: 7 :.lsversus H1: )" * 76 (2.3)
More specifically, if the alternative side of this hypothesis set is true, it simply shows that the true value of parameter 2 of the
exponential population where the data come actually from is another value, say .tr1 in the parameter space .l"with 11 + )o.
Therefore, the working hypothesis from (2.3) then becomes
H6. I = 2o versus Hi ), : 1r,1o + 11,10,1r e I
which can be simply expressed in term of the density function in (2.1) as
Ho:f (xlL:.7.6) versus Ht f (xlL: 7t),7, + ).t

(2.4)

(2.s)
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given that x-exp(l).
' To test the hypothesis set (2.5) through the procedure of the likelihood ratio (LR) test, the test statistic is of the formf5,22],

,  max)eHn Ll^ lx)  _ l f l=r lo 
"-Ao* i  (2.6)": ^o;4;rrC;= ny=1;;t*

Clearly, A > 0. In many instances, it is much convenient to work with the log of the likelihood ratio statistic in (2.6). This is

. given by-

,r.:rn(A)=^(ffi)
which simply becomes
A. : LT=tIn(to e-to,i) - ZT=rtn(A, e-t,,t)

representatlon

Ac _ max*nouurL(Llx)  _ l1?=r1,  e-At ' t

" 
- -;;;;i^d - 

rf.-..l;;rt t

(2.7)

(2.8)
Tlre value of26is known but that of21 is not and can be obtained from the sample data through its maximum likelihood

estimator (MLE),11 = 1 given that the alternative hypothesis set Hr is true.

For any value zi.of tlie log-likelihood ratio (LLR) statistic zl*estimated from the sample data, the null hypothesis set in (2.5)
would be rejected if the value ofzi-is very small at any given Type I errora.Explicitly, the LR test would reject the null
thatl =.troin favour of the alternative that I = lif
A. <,ko e.9)
where the value of ko depends on the sampling distribution of f-.
The same results and conclusions would be obtained if the ratio in the LR statistic (2.6) is interchanged to give another

(2 .10)

of the LR statistic. Under this representation, the null hypothesis would be rejected in favour of the alternative set if
A , > k o (2 .  r  l )
where l" is the point estimate of zlc frornthe data.

2.1 The Power of the Likelihood Ratio Test
Ifthe probability that the LR test (2.6) or (2.10)accepts falsely, the null hypothesis set (2.5) is p (the Type II error), then,the
power of the test, which is the probability that the test would reject a false null hypothesis[9,23]in (2.5)is definedby P*:
p(A.rejectsHslHJstrue) = 1-p.This is theprobability that the LR test would reject the null hypothesisHcf (xp.= 7o)
given that the alternative set Hr: f (xll:21) is true. This statement can be expressed in term of the LLR test statistic
2l.(using (2.8) and (2.9)) as
P.  = p(4.  1 kolHr:  f  (x0.  :  1))  = 1 -  F
where the value of P, depends on the sarnpling distribution of LLR statistic z1- in (2.8).

2.2 The Sampling Distribution of the LLR Test statistic A-
As a review, the sampling distribution of the log-likelihood ratio statistic of the type in (2.7) is determined through the
following derivations.

Suppose the parameter.lrof the exponential distribution in the likelihood ratio statistic (2.6) is replaced by its MLE i, :*,

then, the LR statistic (2.6) becornes
11 = (AoI)ne-nLo'+n (2 13)
If tlre log of u1 in (2.13) is taken,an equivalent of the log-likeliliood ratio statistic zl*given in(2.7) shall be obtained as
A.  :  Iog A = n log(7o?) -  nAoI  *  n
Hence, we have the log-likelihood ratio test statistic
r t .  =n { l og (7o r ) - (  o I -1 ) }  ( 2 . r4 )
Suppose we define a function

s(y)  = Ios(Ary)  -  (Loy -  1)  (2.15)
fronr (2.1 l) with ! = I,then(2.14) reduces to

(2.16)

3t;Jif l l ;re f irst and second derivatives of s(y)in(2.15) are s'(y) :1- ).o and s"(y) : -;respectively.

Now, expansion of the function g(y) about the mean X = Ea(X) =l under the assumption that the null hypothesis

holdsusing the Taylor's series expansion up to second degree yield

s(y) = s0) + s'U)O - yo) + os"UiT 
- !),

1  . ,  .  ,
Wrln Y0 : - tllls OeCOmeS'
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s(y) =, (*) . t (+)(, - ;) * is'(;) (, -;)'
Direct substitution of 

f 
for y in SU),d'(y) and g"(y) in

Therefore, the series expansiong ( y) in (2. 17 )t educes to

s(y)=_)nrr_*t,
If (2.18) is substituted back into (2.16) we have

1 - t-)t
A.(y) = -in1!o0 -L

which can be expressed further as

-2A.(y) * nl?o@ -;)'

Since y = f, from our representations in (2.14) and (2.15), equation (2.19) becomes
1

-zA.(N) x nL?o(r -;)'
All

with a final form
'  

/  - ( " - rL) \ '  2_zA.(x)_\fifr) _rl
This implies that statistic -2A.(X)or simply -2A.has the chi-square
' (*-l)
statistic .,ln# in Q.20) is distributed N(0,1), hence the result'

/Ao

2.3 Parameterization of the LR Test Statistic

(2.17)

(2.:S)yietds 
G) 

= 0,,e'(;) = 0and t (+) = -lzorespectivelv

(2 .18)

(2.1e)

(2.20)

distribution with I degree of freedom. Obviously, the

It is important to note that the log-likelihood ratio statistic A.in (2.7) can be re-parameterized

7o and the ratio R = 
fof 

the parameters ,le and 21of the exponential population being tested

hypotheses as stated in (2'5)'

Let the LR test statistic A in (2.6) be re-expressed as

,  (1o1n /e-ronx\
" 

= \T) \;:ffi)
Taken the logarithm of (2.21) to have

/  , r ^ , ,  -  \
Ios(A) = n\too (f) * X(11 - 1o) 

)
Since the MLE of 2t is 1/f under Hr, a direct

likelihood ratio test statistic A"in (2.7) given by

in terms of the effect size 71 -

under the null and altemative

(2.21)

(2.22)

substitution of 1,/7jor x in (z.zz) yields an equivalent form of the log-

A* = n("n (+).b#) Q.23)
Similarly, the LR test statistic Ac in (2.10)can be re-expressed in terms of '16 and i, as in (2'23)to yield

A*, = n("n(*)."#) (2'24)

Thus, under the power consideration of the LR test on the parameter of an exponential population, the form of the log-

likelihood ratio test statistic in (2.23) or (2.24) shows that the power of the LR test is related to both the effect size and the

ratio of the parameters of the exponential population being tested as stated under.the null and alternative hypotheses set (2'5)'

Therefore, apart from the effect size, the effects of the parameter ratios,R = I on the power of the LR tests areequally

examined in this work.

3.0 Simulation Studies
To compute the power of the LR test for the hlpothesis set (2.5), considerations were given to the choice of different possible

values of the parameters of a classical exponential distributionon which statistical hypothesis test may be required, the

various sample sizes and the desirable number of iterations for Monte-Carlo studies'

Random samples of sizes betirreen I and250 were drawn from exponential distributions of the type given by (2.1) at different

values of pararneter 2. For a given sample sizen, the LR statistic (2.8)was computed for each hypothesis set (2.4) or (2'5)at

specifiedisvalues'under Ho and,lrvaluisunder Hrand atr-- 50,100,250,500, and 1000 iterations.At each sample size n

considered, the power of thelR test was computed forsomeType I error rarca e (0,1).

However, for each hypothesis set of the form (2.5) tested in ihis context, the power of the LR test is simply determined by

estimating the proportion of cases, out of the rLR tests constructed (iterations),in which the LR tests rejected the
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nullhypothesis (Ho: 2 : 2o) given that the true value of the parameter of the distribution is 2r(i.e. Ht: ). = 21is true) at some
significancelevelsa € (0,1).We later examined the behaviours of the power of the LR test at some reasonable values of a
within the interval (0,1) in this study.
Basically, two different hypotheses schemes were employedto examine the behaviour of the power of the LR test under
dif1brent parameter considerations of the exponential density. The two schemes areas follows:
a.) In the first scheme, wedetermine the power of the LR test at a fixed,l' = O.2under Hobut at different values 0.3,0.4,
0.5 and 0.6 of/, under Hr. Thus, the following four hypothesis sets

i .  H o :  7 = 0 . Z v e r s u s H r :  A =  0 . 3 , e f f e c t s i z e  A  = l l o -  7 r l = 0 . 1 , r a t i o  *  = * = i

i i .  Ho :  ) "=0 .2ve rsus  Hr :  A :0 .4 ,  e f f ec t  s i ze  A  =  l 7o -  l t l :  0 .2 . ra t i o  *  =+ : :

i i i .  Ho : l=0 .2ve rsus  H t :7=0 .5 ,  e f f ec t  s i zeA= lAo -A r l  =  0 .3 , ra t i o  * :+ : :

i v .  H o ; 2 =  0 . 2 v e r s u s  H t : A =  0 . 6 ,  e f f e c t  s i z e A = l 7 o - 7 r l =  0 . 4 , r a t i o  * = * : :

were considered under different effect sizes a : lAo - ll and ratios R = & of the two parameters ,l"o and A1. Here, only the

values of ilunderHtwere varied and the parameter ratios R were mqnotonicilly decreasing.
b.) In the second scheme, we consider the power of the LR tests at different,Lsvalues 0.1,0.2,0.3, 0.4under Hoand at
different,Ltvalues 0.3, 0.4,0.5, 0.6, under Hr but with equal effect sizesl : l lo- Arl = 0.2. Thus, the following four
hypothesis sets

i .  H o :  t r = 0 . 7 v e r s u s H 1 :  ) . = 0 . 3 ,  e f f e c t s i z e  A = l 7 o - A r l = 0 . 2 , r a t i o  ^ = * = :

i i .  Ho :2  =  0 .2ve rsusHt :  7=0 .4 ,  e f f ec t  s i ze  A  =  l l o -  l l =  O .2 , ra t i o  *  : i = ;

i i i .  Ho:  7=0.3 versusHr:  2 = 0.5,  ef fect  s ize A = l7o-  7r l  = O.2,rat io  R =+ =:

i v .  H o :  i = 0 . 4 v e r s u s H r : , 1  = 0 . 6 ,  e f f e c t  s i z e A = l A o - A t l = O . 2 , r a t i o  R  = * = ' ,

were considered. Here, the values of bothi-6andi-7 were increased sirnultaneously in the four hypotheses casesbut with equal
effect size of 0.2.
All tlre Monte-Carlo experiurentswere perforrned using R statistical package (www.cran.ordpa].

4.0 Results
This section presents the results frotn our Monte Carlo experiments as well as the results ofsome eurpirical applications to
validate the Monte Carlo results.

4.1 Monte Carlo Results
This section presents the results obtained from the Monte-Carlo studies to examine the behaviour of the power of LR test for
exponential populations under different chosen levels of iterations, parameterizations and sample sizes.
Table 3.1 presents the estimated powers of the LR tests under the five chosen iteration levels for the first lrypothesis set
Ho: )"= 0.2 vs. Hr: A:0.3 under the first Monte Carloscheme a.) in section 3. The effect sizel of the test is 0. 1 with

parameter ratio R = 3. This is intended to evaluate the quality of the Monte Carlo experiment as engaged here.

Beginning from 50 to I 000 iterations, the estimated powers of the LR tests constructed at various sample sizes are very stable
and consistent. The standard deviations of the estimated powers across the samples are almost zero while those across the
levels of iteration are all below l. This is an indication that the simulation experiment and its results are very stable.
Consequently, the results in Table 3.1 indicated that the various LR tests across the five chosen iteration levels attained about
the sarne level of power at each sarnple size irrespective of the number of iterations employed. For instance, the LR tests
attained about95%o power at around 80 sarnple size across all tlie levels of iterations as indicated in Table 3.1. Although,
results of tho LR tests at higher levels of iterations appeared more stable than those obtained at lower levels of iteration going
by the estirnated standard deviations of the powers of the tests across all the chosen sample sizes. However, these apparent
differences in tl're estimated standard deviations are not actually significant (p:0.215). These results are clearly shown in
Fig 3.1 by the plots of the powers of the LR tests against the various sample sizes between 1 and250 and at 50, 100, 250 and
1000 iterations.
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Table 3.1: Table of the estimated powers of the likelihood ratio (LR) tests on the parameters of the exponential distribution

, for the hypothesis set Hs:/(xl 7: 0.2) vs. H1: f (xl7 = 0.3), x-exp(2), (parameter ratio = 213) at various sample slzes over

50, 100, t50, 500 and tObO tittea models (iterations). (*) indicates the sample size at which the LR test yielded about95o/o

under each iteration

Sample size (n) power of The LR Test Ho:f  k lT: 0.2) vs. Hr:  f  Ql :  0.3) Standard Deviation

Number of lterations (r)

50 100 250 500 1000

0.040 0.040 0.052 0.078 0.120 0.034
6 0.1  80 0.120 0.124 0.164 0.1  40 0.026

l l 0.280 0.240 0.220 0.266 0 . 1  9 0 0.034

t 6 0.320 0.260 0.348 0.324 0.340 0.035

2 l 0.320 0.460 0.392 0.446 0.400 0.05s
26 0.560 0.550 0.556 0 . 5 1 0 0 . 5 1 0 0.025

3 l 0.620 0.600 0.596 0.578 0.560 0.023

36 0.620 0.610 0.648 0.654 0 . 6 1 0 0.025

4 1 0.700 0.780 0.696 0.724 0.670 0.042

46 0.780 0.820 0.760 0.774 0.770 0.023

5 l 0.860 0 . 8 1 0 0.828 0.830 0.800 0.023

56 0.880 0.820 0.844 0.8s2 0.840 0.022

6 l 0.920 0.850 0.876 0.888 0.860 0.027
66 0.940 0.880 0.896 0.9 t2 0.930 0.024

7 l 0.900 0.880 0.904 0.944 0.930 0.025

76 0.940 0 . 9 1 0 0.944 0.949 0.941 0 . 0 1 5

8 t *0.960 *0.945 *0.948 *0.956 *0.955 0.006

86 1.000 0.950 0.968 0.968 0.980 0.0 8

9 1 0.960 1.000 0.968 0.972 0.9&0 0.0 5

96 1.000 0.970 0.988 0.978 0.980 0.0 I

0 1 0.960 L000 0.988 0.988 0.990 0.0 5

06 0.980 0.980 0.988 0.988 0.990 0.005

l l 0.980 0.990 1.000 0.972 0.980 0 . 0 1  l

t 6 1.000 1.000 0.996 0.994 0.980 0.008

2 l 0.980 0.990 0.996 0.996 0.990 0.007

26 1.000 1.000 0.992 0.990 0.980 0.008

3 l 1.000 1.000 0.992 0.998 0.980 0.008

36 1.000 1.000 1.000 0.998 1.000 0.001

4 l 1.000 1.000 1.000 0.998 1.000 0.001

46 1.000 1.000 1.000 1.000 1.000 0.000

5 l 1 .000 1.000 0.996 1.000 1.000 0.002

56 1.000 1.000 1.000 1.000 1.000 0.000

6 l 0.980 r.000 1.000 0.998 1.000 0.009
>160 1.000 r .000 1.000 1.000 1.000 0.000

StandardDev. 0.244 0.246 0.246 0.239 0.241
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Fig 3.1: The graphs of the estimated powers of the l ikelihood ratio tests for the hypothesis set Ho:/(xlL=0.2) vs. Hr:

f (xlL = 0.3),x-exp(,1),at various sample sizes and at 50, 100, 250and 1000 iterations. The vertical line in all the graphs
indicates the sample size (n : 80) at which the LR test achieves the same 95%o power across the four levels of iterations.
In the four graphs in Fig 3.1, the LR tests attained an appreciable power of 95o/o at 80 samples across all the chosen levels of
iterations. Although, the power curves of the test at higher iteration levels (250 and 1000) are relatively smoother than those
at the lower iteration levels (50 and 100) which simply justify the differences noticed in the estimated standard deviations of
powers of the test in Table 3.1 as earlier remarked. The smoothness of these power curves notwithstanding, the same
inforrnation is provided by the four curves as shown in Fig 3.1. Therefore, one can conclude that the number of iterations
adopted for the construction of the LR test has no significant impact on the power of the test generally. Nonetheless, further
results on the I,R tests based on the hypothesis set (2.5) in this work shall be reported only for 1000 iterations.
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Table 3.2: Table of the estimated powers of the likelihood ratio (LR) tests on the pararneters of an exponential distribution at

di f ferent sample sizes tbr LR Test |  (Ho:f  (x lA=0.2)vs. Hr:  f  (x lr= 0.3),  ef fect s izeA = 0.L, parameterrat io R=213),

LRTest Z (Ho:f  (x lA= 0.2)vs. Hr:  f  (x12,:0.4),  ef fect s izeA: 0.2,parameterrat io n l t l ) 'LRTest 
3 (Ho:f  (x lA= 0'2)

vs. Hr: f (xl| = 0.5), effect sizeA = 0.3, pararneter ratio R: 215) und t'R Test 4 (Ho:f (xl| = 0'2) vs' Ht: f (xll: 0'6)'
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v D .  I r l .  I  \ L I ' L  
-  v . r t t  v

effect sizeA = 0.4, parameter ratio R: l/3) over 1000 flttecl models (iterations), x-exp(A). (*) indicates the sample size at

h' ich the'T.R test ielded about 95%o power undereach h resls set.

Sample size (n) LR Test I LR Test 2 LR Test 3 LR Test 4

A  =  0 . 1 ,  R : 2 1 3 L : 0 . 2 , R =  l / l A = 0 .3 .  R= 215 A = 0 . 4 , R = l / 3

0.086 0.122 0 . 1  6 0 0 . 1  6 8

6 0.162 0.338 Q._s  l 6 0.698

l t 0.260 0.600 0.rJ40 *0.955

1 6 0.333 0.774 *0.950 0.989

21 0 . 4 1 8 0 . 8 8 1 0.987 1.000

26 0.521 0.941 0.999 1.000

28 0.536 *0.950 0.999 1.000

3 1 0.580 0 . 9 8 1 0.999 1.000

36 0.662 0.990 1.000 L000

4 l 0.704 0.996 1.000 1.000

46 0.789 0.996 r .000 1.000

5 l 0.804 0.999 1 . 0 0 0 L000

56 0.852 1.000 | .(xx) L000

6 l 0.886 L000 1 . 0 0 0 1.000

66 0.910 1.000 1.000 1.000

7 1 0.934 1.000 1.000 r.000

76 0.948 1.000 L000 1.000

8 1 *0.949, 1.000 1.000 1.000

86 0.96s r.000 1.000 1.000

9 1 0.976 1.000 1.000 000

96 0.981 l.000 r .000 000

1 0 1 0.981 1.000 .000 1.000

106 0.980 1.000 000 .000

l l l 0.993 000 000 000

1 1 6 0.988 000 000 000

2 l 0.995 1.000 000 000

26 0.995 .000 .000 000

J I 1.000 000 000 000

36 0.999 .000 000 .000

4 1 0.996 000 000 .000

46 0.998 1.000 .000 .000

l 5 l 0.998 000 .000 .000

56 0.999 1.000 .000 1.000

60 1.000 000 .000 r.000
>160 1.000 .000 1.000 r.000

esesi . to iv .underthef i rs ts imulat ionscheme

ffi;;6'ffi1"'"s..tr"" l. ih; i;t[ fresented thepowersof the Ln tests, for^each "1j|" ]1ry11:':: ",^]:':".":#ff1' 
''"'

! r  r - - . - ^ . 1 - ^ ^ : ^  U  ^ , , +  ^ f  I  n n n  T  P  f a c f c

over l00oiterations. The number of cases in which the tests rejected the false null hypothesis Ho out of 1000 LR tests

constructed are equally determined (results not shown). Thus, at each sample size, the power of the LR test for each

hypothesis set was determined by the proportion of cases, out of 1000 LR testsconstructed, in which the testscorrectly

rejected the null hYPothesis Ho.
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Fig 3.2: The graphs of the estimated-power of the likelihood ratio tests at various sample sizes underdifferent effect sizes / =

l7o - 7l and parameter ratios R = 9over 1000 iterations (tests). The sample size required (indicated by vertical line in each

graph) by the LR test to achieve 95o/o power decreases i.) as the value of the parameter ratio Rdecreases and ii.) as the effect
size lincreases.
It can be generally observed from the results in Table 3 .2 that the power of the LR test increases as the sample size increases.
However, the effect size A = llo - Atl also plays prominent roles on the behaviour of the power of the LR tests. It can be
observed from Table 3.2 that very few samples are required to attain a reasonable power at large effect sizes while relatively
large samples are needed to attain a similar level of power at smaller effect sizes. For instance, from Table 3.2, while about
80 samples are required by the LR test to attain 95o/o power when the effect size A of the test is 0.1 (LR Test l), only 28, 16
and 11 samples are required to attain the same fit of power when the effect size of the test increases to 0.2,0.3 and 0.4
respectively.

In terms of the ratio of the two parameters 2o under Ho and 2runder H1 being tested, that is R = & with 7o I 7r, the above

results equally showed that more samples would be needed to attain a reasonable power at higher value of parameter ratio R
(i.e. as R -+"1) while relatively fewer samples would be required to attain a similar fit as the value of R gets smaller (i.e. as
R ---> 0) as evident from the results in Table 3.2.
The results above are clearly presented in Fig 3 .2 by the plots of the estimated power of the LR test at different sample sizes
for the four test hypotheses i. to iv. under the first Monte Carlo scheme a.). The behaviours of the powers of the LR tests at
different sample sizes, effect sizes and parameter ratios are clearly shown on the four graphs over 1000 iterations.
It is evident from the graphs in Fig 3.2 that, with l, 1lr, the sample size required by the LR test to attain an appreciable
power of about 95%o reduces from 80 to 11 as the parameter ratio reduces from 2/3 to 113 or as the effect size of the test
increases from 0.1 to 0.4. Another impofiant consideration that is crucial to this work is on the effects of the magnitude of
both 26(under Ho) and 2r(under Hr) on the behaviour of power of the LR tests as captured by the second simulation scheme
b . ) .
Interestingly, the results in Table 3.3 showed that the size of the parameters ).oand2, of the exponential distributions being
tested play significant role on the power of the test. For instance, the LR test with small values of exponential parameters 2o
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and i1 attains reasonable power faster (with fewer santples) thnn the oneswith relatively large values of both To and

2lirrespective of the effect sizesas shown in Table 3.3.ln other words, fewer sarnples are needed by the LR test to achieve

.*ronubt" power in anhypothesis test thil involves small values of 2o and 2rrelative to the ones that involve relatively large

values of both 2e and,tr"uen under equal effect sizes. These results are clearly presented in Fig 3.3 by plotting the estimated

powers of the four LR tests all with equal effect size of 0.2 against the various sample sizes. The performance of the LR tests

at different sizes of .10 and,trrshowed clearly that more samples would be required by the test to attain a reasonable powel' as

the sizes of both.ls and.11 become larger, even with eqLral effect size'

More specifically, the results from Table 3.3 anci Fig 3.3showed that only about l0 samples are needed by the LR test to

afiarn;5o/o power for the hypothesis test when 2o = 0.1 zrncl 2r = 0.3(LR Test 1) with the effect size 0.2whereas, up to 30,

50 and 80 samples u."..qui."d by the LR tests toaltainthe satnefit <tf 95o/o powerwheh 7o = 0.2 and 21 : 0.4(LR Test 2),

l o = 0 . 3  a n d i r : g . S ( L R T e s t 3 ) a n d , t r n : 0 . 4 a n t l  1 r  = 0 . 6 ( l - R l ' e s t 4 ) r e s p e c t i v e l y , w i t h a l l  o f  t h e m h a v i n g e q u a l  e f f e c t

size A : 0.2.
Table 3.3: Table of the estimated powers of the l ikelihoocl latio (LR) tests on the parameters of an exponential distribution at

different sample sizes for LR Test l(Ho:f (xll = 0.1) vs. H1: f (xll = 0.3), effect sizeA = 0.2, parameter ratio R: l/3), LR

Tes t2  (Ho : f ( x l ; =0 .2 )vs .H r :  f ( x l ; =0 .4 ) ,  e f f ec t s i zeA=0 .2 ,pa rame te r ra t i oR : l l 2 ) , LRTes t3 (Ho : f ( x l L  =0 '3 )vs .

H r : f ( x l ; = i l .S ) ,e f f ec t s i zeA  =0 .2 ,pa rame te r ra t i oR=3 /5 )an< l l ,RTes t4 (Ho : / ( x l l =0 '4 )vs .H r :  f ( x l l =  0 .6 ) ,e f f ec t

sizeA = 0.2, parameter ratio R = 213)over 1000 fitted rnodels (iterations). (*) indicates the sample size at which the LR test

ielded95o/o Power under each h rs set

Sample size (n) ,R Test 1
.^  = 0.1.  l .  =  0.3

LR Test2
l n = 0 . 2 , L = 0 . 4

LR Test3
) , n = 0 . 3 , L : 0 . 5

LR Test4
7n = 0.4. )q = 0.6

L = 0.2.  R:  l /3 L , = 0 . 2 .  R =  l / l A = 0 , 2 . R = - r / 5 L  =  0 . 2 , R = 2 1 3

I 0.145 0 .108 0 0l l7 0.076

6 731 0.336 0.222 0 . 1 3 8

1 l r0.955 0.597 0.364 0.241

t 6 991 0.750 0.474 0.362

21 0.999 0.866 0.603 0.431

26 000 0.929 0.709 0.521

30 000 *0i950 0.768 0.557

J I .000 0.972 0.79s 0.5 86

J O .000 0.989 0.872 0.685

4 l .000 0.993 0.914 0 .71  8

46 000 0.997 0.939 0.776

5 1 .000 1.000 r0.954 0.828

56 .000 0.999 0.964 0.844

o l .000 .000 0.985 0.873

66 000 000 0.990 0.904

7 l 000 .000 0.99'7 0.9r2
76 000 000 0.997 0.936

80 000 000 0.997 *0.950

8 1 000 .000 0.997 0.959

86 000 .000 0.999 0.958

9 1 000 000 1.000 0.964

96 .000 000 1.000 0.98

0 l 000 .000 0.998 0.98

06 .000 000 .000 0.991

il 000 .000 000 0.993

r 1 6 .000 000 .000 0.989
) l 000 .000 000 0.996

26 000 .000 .000 0.998

3 1 000 000 000 0.999

-ro .000 .000 000 0.994

4 l 000 000 000 0.999

4t) 000 r .000 000 1.000

50 000 1.000 000 1.000
> 1 5 0 000 1.000 000 1.000
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Fig 3.3: The graphs of estimated power of the likelihood ratio tests at different sample sizes for four hypothesesset with equal

effect size A: l7o - 7rl:0.2but at varying parameter ratios R : &over 1000 iterations (LR tests). The vertical l ine in

each graph indicates the sample size at which the LR test achieves aboutg5% power.The sample size required (indicated by
vertical golden line in each graph) by the LR test to achieve 95o/o power increases as the value of the parameter ratio
Rdecreases even with equal effect size of 0.2 across the various tests.

ln terrn of the parameter ratios * = 
fwith 

,te < .1r, the results above showed that more samples would be needed by the LR

tests to attain a reasonable power as the parameter ratio R increases (R -+ 1) while relatively fewer samples would be needed
to attain a similar fit as R gets smaller (R -r 0), thus, confirming the earlier results inTable 3.2.
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Table 3.4: The powers oitt 
" 

lit 
"lihood 

ratio (LR) tests on the parameters of the exponential distribution for the hypothesis

setHo:f (xl7 = 0?) vs. Hr: f (xll: 0.3), x-exp(2),at selected Type I error rates in the interval a e (0,0.2] and at various

sizes over1O00 itel trons. indicates the samnle size at w. ich the LR test

Sample size (n) Tvne I Error rate (Sienificance Level) a

0.01 0.03 0.05 0.07 0.10 0.15 0.2
I 0.020 0.054 0.081 0.1  05 0.137 0 . 1 9 1 0.245
6 0.043 0 . 1 0 6 0 . 1 4 8 0.1  99 0.249 0.335 0.403
l l 0.093 0.1  84 0.251 0.302 0.367 0.456 0.532
t 6 0 . 1  3 6 0.266 0.348 0.432 0.s07 0.60s 0.67
2 l 0 . 1 9 8 0.326 0.404 0.469 0.550 0.638 0.699

26 0.280 0.428 0 . 5 1 0 0.516 0.649 0.137 0.792
31 0.322 0.498 0.589 0.644 0 . 7  t 3 0 .801 0.855
36 0.385 0.s94 0.67 5 0.735 0.798 0.852 0.888
4 l 0.450 0.617 0.713 0.761 0.821 0.880 0.912
46 0.521 0.71 0.778 0.821 0.870 0.924 0.949
5 l 0 .585 0.768 0.825 0.867 0.905 0.934 *0.952

56 0.643 0.198 0.863 0.895 0.923 *0.955 0.969
6 l 0.667 0.817 0.899 0.908 0.936 0.954 0.965
66 0.725 0.853 0.904 0.927 *0.951 0.912 0.980
7 l 0.769 0.889 0.932 *0.950 0.972 0.982 0.989
76 0.799 0.903 0.938 0.953 0.972 0.983 0.989
8 1 0.826 0.923 "0.954 0.962 0.974 0.992 0.99s
86 0.864 0.934 0.956 0.967 0.979 0.989 0.990
9 1 0.898 *0.964 0.984 0.990 0.992 0.995 0.997
96 0.923 0.969 0.980 0.986 0.992 0.997 0.998
0 1 0.923 0.972 , 0.986 0.990 0"994 liO'99'5 0,996
06 *0.950 0.986 0 . 9 9 1 0.996 0.997 0.999 1.000
l l 0.943 0.981 0.989 0.993 0.993 0.993 0.998
1 6 0.913 0.989 0.993 0.99s 0.996 0.998 0.998
21 0.968 0.988 0.996 0.996 0.997 0.999 1.000
26 0.980 0.993 0.996 0.996 0.998 0.999 0.999
3 l 0.980 0.998 0.999 l .000 1.000 .000 .000
36 0.977 0.992 0.994 0.996 0.999 .000 000
4 1 0.985 0.998 1.000 l .000 L000 000 000
46 0.990 0.996 0.998 0.999 1.000 000 .000
5 l 0.994 0.999 0.999 l .000 1.000 .000 .000
56 0.990 0.996 1.000 1.000 1.000 000 000
61 0.992 0.998 0.999 0.999 1.000 000 .000
66 0.995 0.999 0.999 1.000 1.000 .000 000
7 l 0.998 0.999 0.999 1.000 1.000 000 .000
76 0.996 0.999 0.999 0.999 0.999 .000 .000
8 l 0.995 0.998 0.999 1.000 1.000 .000 000

> 1 8 1 1.000 1.000 1.000 1.000 1.000 000 000
The power pnalyses of the LR tests presented so far are based on 5Yo level of significance. In order to have a broader view of

the behaviour of the power of the LR test under various values of awithin the interval (0,1), we present in Table 3.4 the

estimated powers of the LR tests for the hypothesis set H6:/(x11 = 0.2) vs. Hr: f (xV,:0.3)at various values of a e (0,1)

over 1000 iterations. However, only the results for selected values of a within the interval (0, 0.2] are presented in Table 3.4

due to space.
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Fig 3.4: The plots of the estimated powers of the likelihood ratio tests at varioui sample sizes and at some selected Type I

e r ro r ra tesaw i th in the in te rva l  ( 0 ,1 ) fo r tes t i ng thehypo thes i sse tHo : / ( x l 1  : 0 .2 )vs .H r :  f ( x l 7=  O '3 )ove r l 000 i t e ra t i ons

wherex-exp(,l). The vertical line in each graph indicates the sample size at which the LR test achieves 95olo power- The

four graphs showed that fewer samples are required by the LR test to achieve 95oA power as the chosen significance level

aincreases (from 0.01 to 0.2).
It can be easily observed from Table3.4 that the sample size required by the LR test to achieve a particular level opower

differs depending on the size a of the test. For instance, to attain aboui gSo power by the LR test for the hypothesiilot 
---1

Ho:f (xly = 0.2) vs. Hr: f (xl7 = 0.3), more samples are employed by the test at small values of d (i.e. as a - 0) t lran at

large values of a (i.e. as c -+ L). This is so because, the strength of pvidence required for the rejection of Ho given that the Hr

is correct is relatively less at small values of a than at its higher values. Therefore, before a small shift in the hypothesized

parameter values could be detected by the LR test, more samples would be required at lower values of a than at higher values

ff o. th. various sample sizes.at which the I R tests attained 95olo power at some selected values of a within the interval (0,

0.2f are clearly presenied in Fig 3.4 in which it can be observed that the sample size required to attain 95"/o powet reduces as

the value ofsize a ofthe LR test increases.
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Fig 3.5: The plots of the estimated powers of the likclihood ratio tests at various sample sizes for some selected Type I error
rates a= 0.01, 0.05, 0.1, 0.2 for testing the hypothesis set Ho:/(x l7 = 0.2) vs. Hr: f (xlA = 0.3)over 1000 iterations where
x-exp(7). The various graphs showed that the morethe size aof the LR test increases, the fewer the samples required by the
test to achieve appreciable power.
Also, in order to have a quick overview of the influence of different values of a on the power and sample size of the LR test,
we present in Fig 3.5 the plots of the power of the LR tests at four selected values of a (0.01, 0.05, 0.1 and 0.2) against the
sample sizes between 1 and 250. The yellow and purple dashed horizontal lines passed through 80o/o and 95o/o power of each
ofthe LR tests at the four chosen a values. It is again clear from the power graphs in Fig 3.5 that at higher values ofa (a =

0.L,0.2), the LR test requires fewer samples to attain reasonable power (80% or 95%) as indicated by dashed horizontal lines
while at lower values of a(a = 0.01,0.05), more samples are needed by the test to attain the same fit of power. A11 these
results revealed the impact of Type I error rates on the power and sample size requirements by the LR test on the parameter
of an exponential distribution.
Consequently, it can be established based on the results in Table 3.4 that atany given sample size n, the power of the LR test
increases as the value of size a of the test increases. For instance , dt n= 1 00, the estimated power of the LR test is about 92o/o
at smaller value of a (a = 0.01) while at this same sample size, the power of the test increases to about 99o/o at higher values
of a (a > 0.05) as shown in Table 3.4.
Finally, we present in Table 3.5, the estimated powers of the LR tests for different (increasing) values of parameter2lfor
some selected sample sizes. This is intended to show how sensitive the power of the LR test is to changes in the values
ofoarameter.ltunder the alternative hypothesis Hr for a fixed value of parameter,l (26)under the null hypothesis Ho. It can be
observed from the table thatat each selected sample size, the power of the LR test increases as the value of parameter
2rincreases (from 0.3 to 0.6) with 2o fixed at 0.2.This' increment approaches I faster with further little increment in the value
of  Ar .
Table 3.5: Table of the powers of the LR tests at increasing values of parameter 2t under the alternative hypothesis Hr for a
ixed value of parameter ,i"6 under the null hypothesis Ho for fI-erent samole sizes (r) ra from 10 to 100.

LR Test ), : lo (under H6) )" : 7r (under Hr)
R  = : :

A1

Samnle Sizes
1 0 20 30 50 80 100
Power

I 0.2 0 .3 0.6667 0.2590 0.4170 0.5789 0.8038 0.9490 0.9810
z 0.2 0.4 0.5000 0.5980 0.8804 0.9810 0.9989 1.0000 1.0000
J 0.2 0.5 0.4000 0.8390 0.9868 0.9989 r.0000 1.0000 1.0000
+ 0.2 0.6 U . J J J J 0.9s40 0.9990 1.0000 1.0000 1.0000 1.0000
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Plot of  powers of LR Tesl vs. lamda values fo.  selected sample sizes
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Fig 3.6: prot, oi"#;ffi;"#"iffiil iil:iH;lil.."uring values of parameter ,1"1 under the alternative hypothesis Hr for a
fixed value of parameter 26 under the null hypothesis Ho for different sample sizes (n) ranging frorn 10 to 100.
The sensitivity of the power of the LR test to changes in the size of parameter 2 under Hr for exponential population at
different sample sizes is clearly presented in Fig 3.6 based on the results in Table 3.5. From the various graphs, it can be
observed that the power of the LR test increases with increase in the size of parameter 2 under H1 at a fixed value of 2 under
Ho for all the selected sample sizes. Nonetheless, the power of each LR test approaches I as the sample sizes keep increasing.
4.2 Empirical Results
The section presents a few empirical results on the estimation of the asymptotic power of the LR test to validate the results
from the Monte Carlo studies.
Two cases are considered here. In the first case, we want to deterrnine the power of the LR test for testing the hypothesis set
Ho:f (x lL :  0.2) vs. Hr:  f  (x l [  :  0.3) (4 t)
with a sample size n = 6L and Type I error rate q. = 0.01,, where x-exp(2) as earlier defined.
In the second case, the power of the LR test for the same hypothesis set (4.1) is desired using the same sample sizen=
61but at an increased Type I error rate a = 0.05.
The test statistic of the LR test as given in (2.20) is

/  / -  r \ r 2
.  l - ( r - ; / \e=l" , ln# l  -x l

\ 
'/,rn 

I
This implies that statistic Z = ,,[rlt-N(0,1). Therefore, the decision rule for the hypothesis set (4.1), according to (2.9), is to

o.40 0.55

reject the null hypothesis Ho if
/ -  1 \

z = , l i } 1 - Z r _ o
/Ao

P(x<3 .s1 .07 f i " : 0 .3 )  
/  / _  1 \  t : : " ) "_  1 \ \

i . e .  n ( "161 \ . , , "= l  a  U61  
(3s 'u ' ' / - o : / )

1 
'/0.: ' /o.s 

/
-+ P(Z < 0.+1-56) : 0.66L1" "

(4 2)

where 26 = 0.2 where Zyo is the quantile of the standard normal distribr.rtion at Type I error rate a.
Power computations:
C a s e l : n = 6 1 , 4 : 0 . 0 1 .

The decision rule (4.2) simply irnplies that the null hypothesis Ho is rejected if , < + -:= That is, the LR test rejects H6
0.2 0.2467

when x < Z.SLOZ . The power of this test is therefore computed, using (2. 12),as

(4.4)

where Z : ,14Gr;#) in @.{.Hence, the power of the LR test for the hypothesis set (4.1) using 6l samples at Type I error'  -/o.z

rate of l% is about 66oh.This is a good agreement with66.TYopower of the LR testfor this same hypothesis set which was
obtained from our Monte Carlo experiment as presented in Table 3.4 withn : 6'J. and a : 0.0L.
C a s e 2 : n : 6 1 ,  q : 0 . 0 5 .
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Underthis second case, the value of awas increased from 0.01 to 0.05. Therefore, the value ofZpoat a = 0.05is 1..6448 and

by decision rule in (4.2),it implies that Ho is rejected only if x < 3.9470.
Here again, the power of the LR test for the hypothesis set (4.1) is computed as
P ( x  < 3 . 9 4 7 0 1 1 =  0 . 3 )
--+ P(Z < 1..4379) = 0.9248
This equally shows that the empirical power of the LR test for hlpothesis (4. 1) using 61 samples at 5%o Type I error rate is

about 90o/o. This value also agreed reasonably with Monte Carlo estimafe of 89.9o/o power of the LR test for this same

hypothesis at 5oh signiftcant level using 6l samples.
The above empirical results simply show that various Monte Carlo experiments performed in tliis study are quite efficient and

reliable.

5.0 Discussions and Conclusion
This paper presents power analysis of the likelihood ratio test to compare the parameters of exponential distributions. As

reported in some earlier works, it is equally established in this study that the number of samples employed in statistical

hypothesis testing has a crucial role at influencing the power of such a test. More importantly, the results of this work

indicated that the power of the likelihood ratio test for testing the parameters of exponential distributions is sensitive to effect

sizes 'and the ratios of the- p_arameferg _be_!ng jes!9-d.u;$_e; -th9 lult an-d aflerngfiv_g hyp_olhe_s-is -q-e,!s-,

The sample size required by the tikelihood Ratio Test to achieve 95% power as the
effect size (parameter ratio) increases (decreases)

(4.s)
(4.6)
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Fig 5.1: The graph showing the sample size requirements by the likelihood ratio test to achieve 95Yo power as the effect size

of the test (A = llo -,lt1) increases for tlie hypothesis set Ho:2 = 2o vS. Hr:7 =.tr1. In the four hypotheses considered, the
value of parameter2o of the exponential density under Ho was set at 0.2 while that of 2lunder Hrwere varied.Thus, the
parameter  pai rs  (2e,  1) :  (0.2,0.3) ,  (10,1) :  (0.2,0.4) ,  (  0 ,1) :  (0.2,0.5)  and (Ao,7t) :  (02,0.6)  wi th the respect ive
effect sizes 0. 1. 0.2. 0.3 and 0.4 were tested.
For a given value ofthe parameter ofthe exponential distribution 26 under the null hypothesis, any shift in the value of2e as

indexed by the effect stze A = l7o - 7rl can be detected faster with a small sample size when the effect size / is large while
relatively large samples would be required to detect such a shift when I is small (i.e. when .tr. under Hr is closer to2o under
Ho). For instance, at a value of 76 : 0.2 under Ho, the number of samples required to attain 95Yo power by the LR test as
shown in Fig 3.2 reduces from 80 to I I as the value of 2lunder Hr progressively increases from 0.3 to 0.6 with corresponding

---increase in their effect sizes from 0.1 to 0.4 respectively. The influence of the effect sizes on the power behaviour of the LR
tests at,different san.rple sizes is clearly apparent in Fig 5.1. It can be observed from the graph that the number of samples
required by the LR test to achieve 95% power decreases monotonically as the effect size ofthe tests increases.

Also, in term of the ratio 76/Ayof the two parameters being tested,7o17t, the Monte Carlo results in Tables 3.2 and3.3
generally showed that the LR test would require more samples to attain a reasonable power as the value of theratioT6/7t
becomes large.
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T
I

The sample size required by the LR Test to achieve 95%o power as the size of the
exponential parameters under H0 and H1 and their paramter ratios increases but at

equall effect size of 0.2

l"^^*
;-
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0 (4o,7) = (0,1, 0.3) Qo,1)  =  (o .2 ,o .41 (10,1) = (0.3, 0.s) (Ao,  7)  = (0.4,  0.6)
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*ff irP3;'smgter Ratio u3 t/2 ') l"

*t#;-*Sample Size 1 t0 30 5 L 80

Fig 5.2: The graph of sample size requirements by the likelihood ratio test to achieve 95o/o power as the values of the
parameter pair (7r,21) being tested increasesbut with equal effect size of 0.2.In the four hypothesesof the form H6:2 = 26 vs.
Ht :  7 = 2t  considered,  the parameter  pai rs  (Ao,7r) :  (0.1,  0.3) ,  (  0 ,1)  = (0.2,0.4) ,  (  o ,1) :  (0.3,  0.5)  and (7o,Ar) :  (0.4,
0.6) with equal effect size of 0.2in tlie four cases were tested. It is observed that the sample size required by the test to
achieve 95Yopower increases as the values of parameter pair (A0,21) being tested increase even with equal effect size of 0.2
in all cases.
A novel result obtained from this study isthat the power of a statistical test is not only determined by the effect and sample
sizes, but also by the sizes of the parameters of the distribution being tested under the null and the alternative hypotheses.
This is evident from the results of the Monte-Carlo study provided in Table 3.3. The results in Table 3.3showed the power of
tlre LR testsl, 2, 3, and 4 under different values of parameter pairs (26,21) : (0.1, 0.3), (0.2,0.4), (0.3, 0.5) and (0.4, 0.6)
respectively all of equal effect size of 0.2. The graphical representation of these results is provided by Fig 5.2.
It can be observed frorn the results in Table 3.3 that at sample size of 21, the LR Test I with the smallest values of the
parameters (7o, At) : (0.1 , 0.3) yielded 99.9% power while LR Tests 2 and 3 with relatively large parameter values (,16, 2r) :
(0.2,0.4) and (7s,7r): (0.3, 0.5) with the same effect size of 0.2 provided about 87% and 60% powers respectively at this
same sample size.Surprisingly, the LR Test 4 with the largest parameter values (.tr,, A): (0.4,0.6) but with the same effect
size of 0.2 like others only yielded about 40o/o power at 2 I sample size. This clearly showed the significant effect of the sizes
of the parameters of the distributions being tested on the power of the LR test. Therefore, it can be concluded from these
results that, the smaller the values of the parameters of the (exponential) distributions being tested under the null and
alternative hypothesis, the higher the power ofthe LR tests irrespective the effect sizes.
Hence, forlR tests with relatively large values of the parameters of the (exponential) distributions to achieve reasonable
power, more samples would be required. This is clearly evident from the results in Table 3.3. For instance, while only l1
samples are required by the LR Test I to achieve 95%o power for testing the parameter pair (Ao,1) : (0.1,0.3) with the least
parameter ratio of l/3, sarnple sizes 30, 50 and 80 were needed by LR Tests2, 3 and4 to achieve the same fitof 95o/o power
for testing tlre parameter pats (7o,7t): (0.2,0.4), ( o,1) : (0.3,0.5) and (7o,1) = (0.4,0.6) respectively all at equal effect
srze of 0.2 but with a monotonic increase in the sizes of both To and,l", as well as their parameter ratios 76f 7r.
As general conclusions, this present work re-affirms the general position in the literature that appreciable power of a
statistical test can be achieved much more faster (with fewer samples) if the effective size of the test is fairly large. More
importantly, results from this study established that, for test hypothesis.regarding the parameter of an exponential
distribution, the power of the lest is rnajorly affected by the size of the pararneter pair (lo, h) being tested.Therefore, small
values of parameter pair (7s,7) would yield appreciable power than the large values of the parameter paft (7s,2r) of the
exponential distributions. However, sample size.increase may only be desirable as a corrective measure to increase.the power
of the LR test whenever small power of the test is obtained at possibly large values of the parameters of the exponential
distributions being tested as can be observed from the results in Table 3.3.
The small and large values of parameter 2 of the exponential distribution are of practical irnportance in real life situations. As
a distribution of time to the occurrence of event[14], an exponential distribution of relatively small value of parameter
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,trrepresents the distribution of a fairly long period of time before the occurrence of an event of interest could be recorded

,u"h ur time to death of persons. The results of this work therefore shows that, among the populations of individuals or

objects with a known longer life span before death, fewernumber of samples would be needed before a shift in the death rate

from 26 to 21 could be detected as shown,for instance, by the results of the LR test for the hypothesis set Ho: )" = 0"J" vs. Hr:

), = 0.3in. Table 3.3. For this hypothesis, tire LR test employs only 10 samples to achieve 95o/o powet as shown by the graph

in Fig 5.i. Here, the value of the parameter ratio 16f 7, is l/3 which is relatively small compared to other parameter ratios in

Table 3.3.
On the other hand,an exponential distribution with moderately large value of parameter .ldescribes the distribution of short

time period before an event of interest could occur such as the life span of an electric component.Therefore, among the

populations of individuals or objects with a known short life span, it will require a fairly large number of samples from this

group before a small shift in the death rate frorn 1o to h could be reasonably detected (with appreciable power). This is the

scenario captured by the results of the LR test fbr the hypothesis set Ho: ) '= 0.4 vs. Ht: 7=0.6 in Table 3.3.For this

hypothesis set (with a relatively large parameter ratio )"0/)"t of 213) and in contrast to the earlier results, the LR test

requiresup to 80 samples to achieve the same 95o/opower as determined under hypothesis test (Hs: A= 0.7 vs. Hr:2 = 0.3)

shown in Fig4.3.
The simple conclusion from the above two resultsis that, whenevef the LR test is to be constructed around alarge values of

parameter,tr of the exponential distribution, alarge sample size might be desirable to achieve appreciable power. However, if

a relatively small values of 7 are involved, a small samplesize might be sufficient.

However, it is quite instructive to add that whenever the values of the parameters under the null and the alternative

hypotheses to be tested are specified, it is des,irable to determine the sample size requirement of the test that would yield a

reasonable power as desired by the investigator prior to the cotnmencement of the experiment and the hypothesis testing

proper.
lfrii stuay focused discussions on power considerations of the LR test for exponential distributions. In future works, the

behaviours of powers of the LR tests under some other fonns of probability distributions shall be investigated within the

framework of the current study.
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