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Abstract: With the exponential growth of the Internet of Things (IoT) devices connected to the internet, resource provisioning 
for such the heterogeneous network is a challenging task for the traditional network architecture. In this context, the Software-
Defined Networking (SDN) introduces many opportunities and provides the potential to overcome challenges associated with 
traditional network architecture. This work presents a Software-Defined IoT (SDIoT) architecture. The main focus of this 
research is to design a control plane (CP) for the SDIoT. The scope of this work is limited to the introduction of an overlay 
SDN CP in the traditional IoT network architecture. The proposed architecture focuses on resource provisioning while ensuring 
the quality of service (QoS) satisfaction for the network. A comparative analysis between the traditional and the SDN network 
approach was done in terms of Jitter, Latency and Throughput. From the latency, delay and throughput performance results, 
the SDN-based IoT network improves network efficiency by reducing network overheads generated from frequent 
communication between the nodes and the controllers. Precisely, the average latency and average jitter percentile improvement 
from the traditional IoT network to the SDIoT for all the nodes is 574% and 600% respectively. Also, an overall throughput 
improvement is recorded for the SDIoT when compared to traditional IoT network for all the nodes. 
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1. INTRODUCTION	
The introduction of the IoT and SDN technologies refines 
every precedent and preconceived notion of networking. 
The IEEE defined IoT as a system that deals with the 
interconnection of "Things." The word "Things" refers to 
any physical object that is relevant from a user or 
application perspective [1]. IoT envisions a self-

configuring, adaptive, complex network that interconnects 
'things' to the internet through the use of standard 
communication protocols. The things offer services which 
are made available anywhere, anytime, and for anything, 
with or without human intervention [2, 3]. The evolution 
of IoT, as shown in Figure 1, dates back to the pre-internet 
era when there is only human to human communication. 
 

 
Figure 1 Evolution to IoT [4] 

The era of the internet of content with the evolution of 
the worldwide web (www) followed afterwards. After that, 
we had the era of the internet of services with the evolution 

of "web 2.0", the first game-changer of the modern 
internet. In this era, we started using the internet more 
frequently for communication and other purposes. Then 
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came in the era of the internet of people where humans are 
connected in various ways and in real-time not only via 
phone and computers. The IoT is the result of many 
different enabling technologies such as embedded systems, 
wireless sensor networks, cloud computing, and big-data 
used to gather, process, and transmit data [5]. It is expected 
in the coming era, IoT devices will be part of the 
environment around us which will generate an enormous 
amount of data. Processing is required on the generated 
data, which is then presented in an understandable form to 
the requester. There are many different application 
domains where IoT plays a crucial role like manufacturing, 
health-care, transport, administration, insurance, public 
safety, local community, metering, road safety, traffic 
management and tracking. These application scenarios 
typically require a geographical distribution of sensors and 
actuators that aid in fine-grained data collection and 
actuation. Also, in these scenarios, resource provisioning 
is critical to ensure network users are serviced adequately. 
One of the fundamental challenges in supporting such 
distributed application scenarios is the need for high 
bandwidth, low latency wireless backplane that can 
seamlessly interconnect all these sensors and actuators 
especially when the sensors and actuators could have high 
mobility. These application scenarios continuously 
generate large volumes of "tiny data", and the existing 
network infrastructure provides minimal functionality for 
empowering such applications, primarily due to the low 
latency, Throughput, high Jitter and other QoS 
requirements. 

Moreover, existing networks infrastructure are 
vertically integrated. Vertical integration is the process of 
integrating a network's subsystems according to their 
functionality, usually by creating information silos. 
Usually, networking infrastructure consists of different 
networking devices such as switches, routers, and 
intermediate devices, in which application-specific 
integrated circuits are installed to perform dedicated tasks 
[6]. Therefore, the devices are vertically integrated and 
pre-programmed with different complex rules which 
cannot be modified in real-time, to perform the dedicated 
tasks. The vertical integration makes it incredibly difficult 
for operators to specify high-level network-wide policies 
using new technologies. Also, proprietary software and 
closed development in traditional network devices by a 
handful of vendors make it extremely difficult to introduce 
and deploy new protocol. Likewise, a clean-slate approach 
to change the internet architecture (for example, replacing 
routing table), is regarded as a daunting task in practice [7, 
8]. 

Furthermore, in the traditional network, the CP and the 
data plane (DP) are bundled inside the same networking 
devices, as illustrated in Figure 2. The CP decides how to 
handle the network traffic while the DP forwards traffic 
according to the decisions made by the CP. As a result, the 
flexibility of the network is reduced, and the innovation 
and evolution of the networking infrastructure are also 
hindered [6]. 

 

 

 
Figure 2. Tradition network vs Software-defined network 

To mitigate the challenges associated with traditional 
networks, the SDN paradigm offers an attractive solution 
to manage IoT resources which have been lately under 
focus. The primary objective of the SDN is to separate the 
CP from the DP involving the forwarding devices, as 
shown in Figure 2. This separation of CP and DP in SDN 

can be achieved using a well-defined programming 
interface between the switches and the SDN controller. 
Experts predict that IoT could comprise a whopping 21 
billion devices by 2020, making SDN a critical technology 
for IoT  [9]. SDN will become important as IoT matures, 
and the expected result is that SDN will help drive the 
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expansion of IoT-enabled devices, enable a dynamic and 
more efficient network resource sharing and improve IoT 
network. SDN is significantly advantageous to IoT in 
several ways; (i) SDN simplifies the creation, deployment 
and ongoing management of the IoT devices and the 
applications that benefit from them. (ii) SDN solutions can 
help provide a more agile optimised user experience while 
allowing the agility increase across the entire network, 
decrease deployment time, and reduce costs. (iii) SDN 
ensures network admin can deal with varied bandwidth 
demands in a flexible manner, providing the bandwidth to 
the entity that needs it most at a specific moment. The IoT 
and SDN are two technologies that very much depend on 
each other. SDN technology can better prepare a network 
for a successful and robust IoT. It provides the agility and 
elasticity, which IoT demands. Moreover, it provides an 
open environment for application developers to develop 
innovative tools and software connecting the IoT more 
effectively. 

Both of these technologies (SDN and IoT) complement 
each other in bringing us a better   and vastly more 
connected world. The goal of this work is to design and 
evaluate the SDIoT network architecture in contrast with 
the traditional network architecture. We have presented 
results in terms of network latency, Jitter and Throughput 
to show the strength of the SDIoT architecture over the 
traditional network architecture. The remainder of this 
paper is organised as follows. Section 2 gives a brief 
introduction to the IoT paradigm and its challenges. 
Section 3 presents a review of the existing SDN based IoT 
solution. In Section 5, we present the measurement results 
and analysis and conclude the paper in Section 5. 

2. IOT NETWORK PARADIGM 
We are living in the era of connected objects where devices 
can communicate with the physical world and capable of 
taking decisions due to the data analytics. The IoT is 
simply the point in time when more things or objects are 
connected to the internet than people [10-13]. As the 
boundaries of connected objects are not limited to a 
specific technology, diverse ranges of objects connect and 
communicate with each other using a different 
communication protocol, resulting in the heterogeneous 
network. IoT devices are used to sense, collect, process, 
infer, transmit, notify, manage, and store data. IoT 
architecture follows layered architecture, and a layered 
architecture ensures flexibility and capability of invocation 
of new services in the network. Most IoT architecture 
models are modelled, as shown in Figure 3. 

 Sensing layer: Sensing layer is physical object layer 
consisting of sensors, actuator, RFIDs, mobile 
devices, motes, blue tooth etc. This layer collects the 
data from the environment and transmits on the edge 
of the network, i.e. gateway or sink. 

 Network layer: This layer is responsible for 
transmitting data from physical objects to the 
gateway/edge of the network for further processing 
on the collected information. Different transmission 
technologies contribute to the heterogeneity of IoT 
such as ZigBee, blue tooth, Wi-Fi etc. 

 Data Processing Layer: The data processing layer 
consists of the central data processing unit of IoT 
devices. The data processing layer takes data 
collected in the sensing layer and analyses the data to 
make decisions based on the result. In some IoT 
devices (e.g., smartwatch, smart home hub, etc.), the 
data processing layer also saves the result of the 
previous analysis to improve the user experience.  
This layer may share the result of data processing 
with other connected devices via the network layer. 

 Application layer: This layer deal with the 
application/services of the user demand by 
manipulating the information collected from the 
perception layer and processed in the processing 
system. The application layer is a user-centric layer 
which executes various tasks for the users. There 
exist diverse IoT applications, which include smart 
transportation, smart home, personal care, health-
care, etc. 

 
Figure 3. The layered IoT architecture [10] 

2.1 IoT Architectural Challenges 
Initially, the internet was distinctly established over 
TCP/IP suite and provided support for a large number of 
the connected computer. However, TCP/IP does not 
support heterogeneous network. Therefore, the TCP/IP is 
not suitable for IoTs. Hence, the heterogeneity of the 
connected device in the IoT environment is creating 
unprecedented complexity and functional diversity. 
Conventional network management techniques are 
inapplicable in IoT due to distinctive challenges. IoT 
devices are connected to the internet via a gateway. 
Usually, in the IoT network, high fault rates are 
experienced due to shortfall in energy and connectivity 
interruptions. A typical management solution should 
provide various management functions integrating 
configuration, security operation, administration of 
devices and services of IoT. The following set of functions, 
as illustrated in Figure 4, should be provided by a 
management solution for IoT. 
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Figure 4. The set of functions as that should be provided 

by management solution for IoT. 

3. SDN BASED IOT ARCHITECTURES 
The introduction of SDN to the IoT framework could 

leverage the network efficiency and attain the 
programmability and flexibility of networks. The SDN 
based IoT will help drive the expansion of IoT-enabled 
devices, enable a dynamic and more efficient network 
resource sharing and improve IoT network. There are still 
open research questions regarding the integration of SDN 
in current trends of IoT. In this regard, many studies have 
been conducted on the campuses and on the industrial level 
to get full advantage of programmability from SDN. In this 
section, we present a review of the existing SDIoT 
solution. Many IoT platforms have also been proposed 
[14-16]. We focus on the platforms utilising SDN. The 
early efforts for employing SDN to support policies to 
manage wireless sensor networks include Flow-Sensor 
[17], Sensor OpenFlow [18], and Software-Defined 
Wireless Network (SDWN) [19]. 

Moreover, Yiakoumis et al., [9] reported a home 
network slicing mechanism, which allows multiple service 
providers to share a common infrastructure in a smart 
home. However, many of these efforts are isolated to 
specific application domains. Yue et al. suggested the 
concept of IoT community [15]. Users with the same 
interests construct a community to facilitate data 
maintenance, retrieval, and distribution. However, the 
suggested architecture is neither open to users nor 
convenient for introducing new IoT applications and 
services. One recent effort is to design a software-defined 
approach for IoT environments to dynamically achieve 
differentiated quality levels to different IoT tasks [20]. 
Still, here the focus was on developing a layered SDN 
controller in IoT setting and flow QoS performance. The 
developers of one M2M [21] made efforts on horizontal 
IoT through standardising IoT protocols and data models. 

It addresses the need for a standard M2M service layer that 
can be readily embedded within various hardware and 
software. We share the same idea with oneM2M by using 
a shared service layer. 

In [22, 23], Qin et al., enhanced the idea of Multi-
network controller architecture for heterogeneous IoT 
network based on SDN controller for a multi-network 
environment and another cellular network at the campus 
level and evaluated the performance by measuring delay, 
Jitter and Throughput. Wu et al., in [24] present UbiFlow 
framework, which provides the integration of the SDN and 
the IoT. UbiFlow proposed an efficient flow control and 
mobility management in urban multi-networks using SDN 
distributed controllers. In UbiFlow architecture, IoT 
network is partitioned into small network chunks/cluster in 
which each partition is controlled by a physically 
distributed SDN controller. The IoT devices in each 
partition may be connected to the different access point for 
different data requests. These distributed controllers 
coordinate to provide flow scheduling, mobility 
management, optimised access point selection in a 
consistent, reliable and scalable control order, and provide 
fault tolerance and load balancing for multi-network IoT. 

In this paper, we propose an IoT architecture based on 
SDN technologies for the horizontal IoT services. This 
architecture enables sharing various resources, including 
devices, data, and software, among various applications at 
different levels. Data interoperability can be supported 
interiorly in the network, and new services and 
applications in different domains can be supported rapidly 
and efficiently. We also present a prototype of the 
proposed architecture using OpenFlow and Open vSwitch. 
The architecture tends to describe a general model to 
integrate SDN and IoT by introducing an SDN controller 
in the current IoT architecture that will serve as the CP so 
that solutions to the current scalability challenges 
associated with the traditional networks are achieved. The 
architecture will improve the scalability of IoT networks 
using the advantages of SDN. The overview of SDN based 
IoT (SDIoT) integration architecture is shown in Figure 5. 

 

4. PERFORMANCE OF THE SDIOT NETWORK 
ARCHITECTURE 
This section presents the simulation results on the 
performance evaluation of the SDIoT network 
architecture. To study the advantages of the architecture, 
we compared the SDIoT architecture with existing IoT 
network based on the traditional network architecture. In 
the traditional network, devices include two fundamental 
elements; the DP and CP which are coupled in a device. 
Traditional networks include the various number of 
devices such as router and switches among different 
vendors which are responsible for data transfer through the 
network. While in the SDN architecture, these DP and CP 
are decoupled. The CP being the control logic is 
implemented in a logically centralised controller. The 
traditional network was emulated in GNS3. GNS3 is a 
network emulating software used to design networks in lab 
environments for testing and study purpose. 
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Figure 5. Overview of the SDIoT integrated architecture 

 
On the other hand, the SDN topology was created in 

the Mininet network emulator. Mininet provides a 
comprehensive environment for prototyping SDNs. It 
consists of a controller, for making routing decisions, an 
OpenFlow enabled switch for forwarding the packets 
based on the controllers routing decisions and end Hosts. 
Once the network is up and running, the latency of the 
packets can be determined by conducting a ping test 
between the hosts on the network. On arrival of a packet to 
a switch, an SDN switch undergoes the process shown in 
Figure 6. From Figure 6, the external packet arrives at the 
switch and the switch is connected to a controller. The 
switch block and controller block are modelled as a queue. 
There are three essential phases an SDN model must 
capture. Phase (1), the first packet of a flow arrives at the 
switch, and there are no matching Flow table Entries (FTE) 
for the packet. Phase (2), the packet without a matching 
flow entry is forwarded to the controller or a packet with 
the matching FTE is serviced by the switch and forwarded 
to the destination. Finally, Phase (3), the controller feeds 
the forwarding information back to the switch and updates 
the flow table in the switch. Note that the controller is not 
a substantial part of the switch, but plays a critical role in 
switch forwarding and network performance and cannot be 
neglected. 

4.1 Custom Topology 
One of the benefits of the SDN is that the forwarding 
device is free from any computation related tasks. SDN 
supports two types of controller models: centralised and 
distributed CP model. Each model has its different 
speciality to be considered based on the infrastructure and 
requirements. Moreover, the central controller has certain 
restrictions as limitations in terms of scalability and 
reliability issues. An alternate approach is to make CP in a 
distributed fashion to execute applications of a centralised 
controller. In a network with more than one controller, it is 

difficult but possible to make the control action to be 
centrally controlled. Such an architecture is also known as 
logically centralised [25-28] architecture. An illustration 
of the custom network model of SDN used in this work is 
shown in Figure 7. 

 
Figure 6. Block diagram of a data flow SD-based network 

 
Figure 7. Custom network model of SDN as emulated in 

Mininet 
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Also, the number of controllers needed and their 
respective location must be taken into consideration 
concerning the QoS constraints. There is also the hybrid 
controller model which combines the benefits of both these 
models. The controller must be able to visualise a load of 
a switch globally across the routing path. All the routing-
related information such as statistics, errors, and faults are 
collected and communicated to the controller with the help 
of OpenFlow. In this work, the distributed control model 
has been adopted to proof the concept. The distributed 
control model entails using a multi-controller to manage 
and supervise the entire network. In this model, the 
intelligence does not rely on a single decision unit, unlike 
the centralised model. From Figure 7, every flow decision 
in the network is taken by the controller. This decision is 
based on the initial packet of every flow that is sent to the 
controller. The flow table is updated after creating a path 
on a hop-by-hop basis. With the increase in network 
traffic, the numbers of flow tables states are increased [25, 
29]. As shown in Figure 4.2, the source nodes send a 
packet to the forwarding device, and then the forwarding 
device sends it to the controller. The forwarding device 
receives the packet from the source and sends it to the 
controller for processing. The controller only processes the 
first packet of flow from any forwarding device and update 
the flow table accordingly. Depending on this flow table 
entry, all other packets of the same source get similar 
treatment to reach the desired destination. This flow rule is 
set by the controller, and the forwarding device cannot 
update them without any instructions from the controller. 

4.2 Performance Metrics 
To evaluate the performance of the SDIoT architecture 
over the traditional networking architecture, the system has 
been emulated, and the results are analysed. The traditional 
way of measuring network performance is network 
latency, Jitter and Throughput. The emulation for the SDN 
environment was done using Mininet. On the other hand, 
GNS3 emulator was used for emulating the traditional 
network environment. It's worth noting that the 
performance evaluation is independent of the software 
used. It mainly depends on the hardware components like 
the number of Processors, Memory, Hard disk and a 
network connection between the nodes. Details of the 
performance evaluation metrics are given as follows. 
 
a. Network Latency: Network latency is the term used to 

indicate any kind of delay that happens in data 
communication over a network. Latency is generally 
defined as the time it takes for a source to send a packet 
of data to a receiver, as illustrated in the expressions 
below. 
 

 
(1) 

 

 
(2) 

 

 
(3) 

Where L is network latency, Pd is propagation delay, 
and Sd is the serialisation delay in Equation 4.6 and D 

is the distance between links in meters and S is the 
speed in meters per second. For wireless 
communication, we have used the speed of light in 
Equation 2 and PS is the Packet size (bits)and TR is the 
Transmission rate (bps)in Equation 3. High network 
latency creates bottlenecks in any network 
communication. It prevents the data from taking full 
advantage of the network pipe and effectively 
decreases the communication bandwidth. The impact 
of latency on network bandwidth can be temporary or 
persistent based on the source of the delays. 

 
b. Jitter: Jitter is defined as the amount of variation time 

of received packets in delay, latency or response. Jitter 
can be approximated as the difference between the 
maximum packet latency and minimum packet latency 
over a given period. Let Tj represent the delay 
experienced by the jth packet going through a queue. 
The difference of transit time between two consecutive 
packets of the tagged flow can be written as; 
 

 
(4) 

Equation 4 can be positive or negative. Where N is the 
number of samples, the average end-to-end delay jitter 
is then given by the expected absolute value of the 
random variable in Equation 5 

 

 
(5) 

From Equation 4, to measure Jitter, we take the 
difference between samples, then divide by the (Nth 1) 
number of samples. If there is a change in network 
conditions (for instance, there is a sudden burst on the 
network and queues start to build on an interface), then 
this Jitter will increase. The transit time between two 
consecutive packets will not be the same anymore: the 
second packet will have to go through a long queue, 
spending more time, and generating positive Jitter. 
Once this burst is over, the queue will progressively 
reduce, reversing the situation. Out of two consecutive 
packets, the second one will spend less time in the 
queues, and will, therefore, generate negative Jitter.  
 

c. Throughput: Throughput is the actual rate that 
information is transferred in a computer network; 
Throughput is defined as the actual number of bits that 
flows through a network connection in a given period. 
In mobile networks, the end-user throughput is the 
amount of information received in bits /second. 
Throughput is measured at the physical layer, data link 
layer or even at the application layer. In a network, 
often cell throughput is calculated, which is the 
throughput of all simultaneous users in the cell. The 
throughput can be affected by many factors such as (i) 
Network congestion due to heavy network usage. (ii) 
Too many users are accessing the same server. (iii) 
Low bandwidth allocation between network devices. 
(iv) Medium loss of a computer network. (v) Resources 
(CPU, RAM) of network devices. Throughput [220] is 
calculated as requests/unit of time. The time is 
calculated from the start of the first sample to the end 
of the last sample. This includes any intervals between 
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samples, as it is supposed to represent the load on the 
server. The throughput is always less than or equal to 
bandwidth but can never exceed the bandwidth, and it 
is given by the expression in Equation 6: 

 
(6) 

Where TR is the network throughput, p is the packet 
loss, MS is the packet size, and RT is the round-trip 
time (RTT). Sometimes the term Round trip latency or 
RTT is also used to define latency. This is the same as 
ping time. 
 

4.3 Results and Discussions 
For the performance evaluation network architectures, the 
performance metrics for comparison are in terms of 
latency, Jitter and Throughput of the two network 
architectures. The simulation parameters and results of the 
evaluation of the SDIoT and the Traditional IoT network 
architecture are presented in Table 1. The subsequent 
section presents discussions of the results for simulation 
performance based on the latency, Jitter and Throughput 
of the two network architectures. 

a. Average Network Latency 
Latency has been defined as the term used to indicate any 
kind of delay that happens in data communication over a 
network. Latency is generally defined as the time it takes 
for a source to send a packet of data to a receiver. This 
section presents the results for the average network latency 
performance of the SDIoT in comparison with the 

traditional network IoT. A useful tool in measuring a 
connection's latency is the "ping" tool. Ping sends a packet 
to the destination, and waits for a response, measuring the 
round-trip time and calculating connection latency. The 
results of several ping commands were averaged over time. 
The latency results were tested multiple times (not just a 
single series of pings), and at different times and different 
custom network topology having the specified number of 
nodes as detailed in Table 1. The result of the average 
latency of the traditional IoT network in comparison with 
the SDIoT network is illustrated in Figure 8. 

Table 1. Simulation Parameters and Results of the 
evaluation of the SDIoT and the Traditional  

IoT Network Architecture. 

Simulation 
Parameters Traditional SDN 

Total number of host 
nodes 70 70 

Total number of 
packets 450 450 

ICMP Packet Size 64 bytes 64 bytes 
Simulation Platform GNS3 Mininet 
Simulation Instances 100 100 
Network Topology Custom Topology 
Number of 
routers/controllers 1 

Performance Metrics Latency, Jitter and 
Throughput 

 

 

 
Figure 8. Average Latency of the Traditional and SDIoT Network. 

 
From individual results observed for the traditional 

network, the latency results of the packets sent from 
several hosts are either same or more for the traditional 
network architecture. When the first packet arrives at the 
switch, the switch checks its MAC table for the 
corresponding destination address in the MAC table. Since 
this is the first packet and there is no entry for the address, 
the switch forwards the packet to the router for the routing 
decisions. The router makes the routing decisions and 
sends the routing decision entry to switch. The switch 
forwards the packet accordingly and flushes the entry. This 

process is repeated for all packets that arrive at the switch. 
Therefore, this account for the high latency experienced by 
all the packets. While in SDN, the time taken by the first 
packets is more compared to the consecutive packets. 

The reason for the high latency of the first packet in 
comparison to other packets is that the routing decision 
happens only for the first packet. Once the controller 
updates itself with the flow rule for the first packet, the 
switch buffers the flow rule in its flow table after thirty 
seconds [8, 30]. SDN switch buffers the flow entry inserted 
by the controller into the flow table of the switch. This 
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eliminates the necessity of contacting the controller for 
routing decision for every packet, thus reducing the latency 
of the consecutive packets after the first packet. The 
consecutive packets are forwarded by the switch without 
contacting the controller for the routing decision. After 
thirty seconds, the buffer is timed out, and the flow table is 
cleared, and the same procedure repeats. There are 
different scenarios to get an idea of how network load can 
and will affect latencies. 

The high network latency experienced in the traditional 
network set-up can be attributed to a range of issues. Still, 
generally, it comes down to the state of routers and the 
distance between your network devices. These include (i) 
propagation (the amount of time it takes for a packet to 
travel from one source to another). (ii) routers take time to 
analyse the header information of a packet as well as, in 
some cases, add additional information. Each hop a packet 
takes from router to router increases the latency time. The 
more routers a packet has to travel through the more 
latency there is because each router has to process the 
packet. In this simulation, the distance that a packet 
travelled had a significant influence on the amount of 
latency within a network. When packets travel across a 
network to their destination, they rarely travel to the node 
in a straight line. As such, the amount of latency is 
dependent on the route that the packet takes. 

In SDN domain, latency is an important measurement 
to express the expected responsiveness of a network 
connection. From the result of the average latency of the 

traditional IoT network in comparison with the SDIoT 
network illustrated Figure 8, the SDIoT network 
architecture has a significantly better average latency 
performance when compared to the traditional IoT 
network architecture for all number of nodes considered. 
The average latency percentage improvement from the 
traditional IoT network to the SDIoT for all the nodes is 
574%. In SDN, services like loading a web page are less 
sensitive to latency than others, such as real-time gaming 
or VoIP calling, which results in a noticeable delay in both 
gameplay and conversation, respectively. Hence, the IoT 
network built on SDN architecture will perform better 
when compared to traditional network architecture. 

b. Average Network Jitter 

Jitter has been defined as the time variation in 
latency/response time in milliseconds. Jitter depends on 
the packet routes and is caused by multiplexing several 
flows in the node queues. There are several definitions of 
Jitter that try to capture the delay variation of packets. In 
this work, we adopt the IETF [31] definition of Jitter. The 
IETF definition is based on the transit delay between the 
entry and the exit nodes. The results were computed using 
the parameters in Table 1 and the equation for jitter 
measurement, as explained in [31]. The result of the 
average Jitter of the traditional IoT network in comparison 
with the SDIoT network is illustrated in Figure 7. 

 
Figure 9. Average Jitter of the Traditional and SDIoT Network. 

There are several ways to measure Jitter. The 
approach adopted in work for the measurement of Jitter 
involves comparing send and receive timestamps on pairs 
of packets transmitted as such: (a) transmit and receive 
time of the first packet in the pair and (b) transmit and 
receive time of the second packet in the pair. On observing 
Figure 9, the average Jitter for the traditional network is 
higher when compared with SDIoT network architecture. 
This high Jitter makes the service unusable by negatively 
impacting service quality. This is not acceptable, 
especially for a large-scale SDIoT network where packets 
will travel through multi-hops. For the SDN, the Jitter is 

consistently low for every packet after the first packet. This 
is the direct opposite of the situation in the traditional 
network set-up. 

The Jitter is usually introduced by network devices 
themselves and can be slightly more complicated to 
measure than latency. Packets being buffered, queued, and 
switched around a network all introduce small delays that 
tend to add up, and are measured as the Jitter. Estimating 
and controlling the delay variation is essential for the 
operator to avoid both a buffer overflow, which causes 
packet losses, and buffer underflow when the application 
does not receive packets for some time. 
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The main challenge of the traditional architecture will 
be in the integration and support of a wide variety of 
applications and services combining voice, data, 
streaming, and Video on Demand in IoT. The different 
media types exchanged by these applications have 
different requirements in terms of Jitter. The popularity of 
these applications has highlighted the limitations of the 
traditional network infrastructure for IoT. For real-time 
and interactive applications, delay jitter remains one of the 
essential parameters of QoS. For most of the applications, 
the variation in the arrival time of packets at the terminal 
must be compensated by using a playback buffer to 
provide a regular packet stream to the application. 

Comparatively, from the results shown in Figure 9, the 
traditional network architecture cannot support the jitter 
requirement of the IoT network. The SDN, on the other 
hand, offers a better performance in terms of network jitter 
to the traditional network architecture. The average jitter 
percentage improvement from the traditional IoT network 

to the SDIoT for all the nodes is over 600%. This makes 
SDN ideal for the deployment of IoT network. 

c. Network Throughput 
Although it's essential to measure latency and Jitter, it is 
also essential to know the throughput performance of the 
network because it gives information about how the 
network behaves under different circumstances. Network 
throughput is the term used to refer to the quantity of data 
being sent that a system can process within a specific 
period. Throughput in this work has been measured in bits 
per second (bps). Throughput is an excellent way to 
measure the performance of the network connection 
because it tells you how many messages are arriving at 
their destination successfully. If the majority of messages 
are delivered successfully, then throughput will be 
considered high. In contrast, a low rate of successful 
delivery will result in lower throughput. The throughput 
performance of the SDIoT and the traditional network is 
shown in Figure 10. 

 

 
Figure 10: The Throughput of the Traditional and SDIoT Network. 

 
From the results of Figure 10, the traditional network 

architecture performs poorly when compared with this 
SDN architecture for all cases. The performance of IoT 
devices rely on successful packet delivery to communicate 
with each other, so if packets aren't reaching their 
destination, the end result is going to be poor service 
quality. Generally, poor network throughput can be caused 
by several factors. One of the main factors is poor 
hardware performance. If devices like routers are 
experiencing performance degradation, faults, or are 
simply outdated, then you can end up with low throughput. 
Likewise, if networks are congested with lots of traffic, 
then packet loss will occur. Packet loss is where packets 
are lost in transit. Low network throughput is often caused 
when packets are lost in transit. In this case, the later and 
the architecture of the traditional network contributed to 
the low throughput experienced. 

 

5. CONCLUSION 
In this paper, we have presented an SDN controller design 
in IoT networks whose central, novel feature is the layered 
architecture that enables flexible, effective, and efficient 
management on task, flow, network, and resources. From 
the results presented for the latency, delay and throughput 
performance of the SDIoT network, it can be concluded 
that the SDIoT improves network efficiency by reducing 
network overheads generated from frequent 
communication attempt between the CP and DP every time 
a packet is received. Thus, accounting for the higher 
throughput observed from the result. The study has been 
conducted with the use of one CP architecture. This may 
not guarantee optimal results and also represent a single 
point of failure. These challenges, among other issues, are 
related to the scalability of the CP. When the network 
scales up in the number of nodes, switches, services or 
traffic, it can drastically increment the load on the 



Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75 

74 

controllers which can become a potential bottleneck to the 
network resources such as bandwidth, memory and 
processor of controllers. We are currently in the process of 
integrating this layered controller design with a new 
controller placement algorithm. The algorithm has been 
designed to find the number of controllers and their 
placement in any kind of network 
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