
VOL. 20, NO. 1, 2021, 65-75
www.elektrika.utm.my
ISSN 0128-4428

65

Quality of Service Evaluation of Software Defined
Internet of Things Network

Paulson Eberechukwu Numan1,3*, Kamaludin Mohamad Yusof2*, Jafri Bin Din1, Muhammad Nadzir Bin
Marsono2, Umar Suleiman Dauda3, Salawu Nathaniel3 and Fapohunda Kofoworola O2

1Wireless Communication Center, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
2School of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.

3School of Electrical Engineering & Technology, Federal University of Technology, PMB 65 Minna, Nigeria.
*Corresponding author: enpaulson2@gmail.com, kamalmy@utm.my

Abstract: With the exponential growth of the Internet of Things (IoT) devices connected to the internet, resource provisioning
for such the heterogeneous network is a challenging task for the traditional network architecture. In this context, the Software-
Defined Networking (SDN) introduces many opportunities and provides the potential to overcome challenges associated with
traditional network architecture. This work presents a Software-Defined IoT (SDIoT) architecture. The main focus of this
research is to design a control plane (CP) for the SDIoT. The scope of this work is limited to the introduction of an overlay
SDN CP in the traditional IoT network architecture. The proposed architecture focuses on resource provisioning while ensuring
the quality of service (QoS) satisfaction for the network. A comparative analysis between the traditional and the SDN network
approach was done in terms of Jitter, Latency and Throughput. From the latency, delay and throughput performance results,
the SDN-based IoT network improves network efficiency by reducing network overheads generated from frequent
communication between the nodes and the controllers. Precisely, the average latency and average jitter percentile improvement
from the traditional IoT network to the SDIoT for all the nodes is 574% and 600% respectively. Also, an overall throughput
improvement is recorded for the SDIoT when compared to traditional IoT network for all the nodes.

Keywords: Internet of Things, Software-Defined Networking, SDIoT, QoS, Jitter, Latency and Throughput.
© 2021 Penerbit UTM Press. All rights reserved

Article History: received 28 June 2020; accepted 27 April 2021; published 30 April 2021.

1. INTRODUCTION	
The introduction of the IoT and SDN technologies refines
every precedent and preconceived notion of networking.
The IEEE defined IoT as a system that deals with the
interconnection of "Things." The word "Things" refers to
any physical object that is relevant from a user or
application perspective [1]. IoT envisions a self-

configuring, adaptive, complex network that interconnects
'things' to the internet through the use of standard
communication protocols. The things offer services which
are made available anywhere, anytime, and for anything,
with or without human intervention [2, 3]. The evolution
of IoT, as shown in Figure 1, dates back to the pre-internet
era when there is only human to human communication.

Figure 1 Evolution to IoT [4]

The era of the internet of content with the evolution of
the worldwide web (www) followed afterwards. After that,
we had the era of the internet of services with the evolution

of "web 2.0", the first game-changer of the modern
internet. In this era, we started using the internet more
frequently for communication and other purposes. Then

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

66

came in the era of the internet of people where humans are
connected in various ways and in real-time not only via
phone and computers. The IoT is the result of many
different enabling technologies such as embedded systems,
wireless sensor networks, cloud computing, and big-data
used to gather, process, and transmit data [5]. It is expected
in the coming era, IoT devices will be part of the
environment around us which will generate an enormous
amount of data. Processing is required on the generated
data, which is then presented in an understandable form to
the requester. There are many different application
domains where IoT plays a crucial role like manufacturing,
health-care, transport, administration, insurance, public
safety, local community, metering, road safety, traffic
management and tracking. These application scenarios
typically require a geographical distribution of sensors and
actuators that aid in fine-grained data collection and
actuation. Also, in these scenarios, resource provisioning
is critical to ensure network users are serviced adequately.
One of the fundamental challenges in supporting such
distributed application scenarios is the need for high
bandwidth, low latency wireless backplane that can
seamlessly interconnect all these sensors and actuators
especially when the sensors and actuators could have high
mobility. These application scenarios continuously
generate large volumes of "tiny data", and the existing
network infrastructure provides minimal functionality for
empowering such applications, primarily due to the low
latency, Throughput, high Jitter and other QoS
requirements.

Moreover, existing networks infrastructure are
vertically integrated. Vertical integration is the process of
integrating a network's subsystems according to their
functionality, usually by creating information silos.
Usually, networking infrastructure consists of different
networking devices such as switches, routers, and
intermediate devices, in which application-specific
integrated circuits are installed to perform dedicated tasks
[6]. Therefore, the devices are vertically integrated and
pre-programmed with different complex rules which
cannot be modified in real-time, to perform the dedicated
tasks. The vertical integration makes it incredibly difficult
for operators to specify high-level network-wide policies
using new technologies. Also, proprietary software and
closed development in traditional network devices by a
handful of vendors make it extremely difficult to introduce
and deploy new protocol. Likewise, a clean-slate approach
to change the internet architecture (for example, replacing
routing table), is regarded as a daunting task in practice [7,
8].

Furthermore, in the traditional network, the CP and the
data plane (DP) are bundled inside the same networking
devices, as illustrated in Figure 2. The CP decides how to
handle the network traffic while the DP forwards traffic
according to the decisions made by the CP. As a result, the
flexibility of the network is reduced, and the innovation
and evolution of the networking infrastructure are also
hindered [6].

Figure 2. Tradition network vs Software-defined network

To mitigate the challenges associated with traditional
networks, the SDN paradigm offers an attractive solution
to manage IoT resources which have been lately under
focus. The primary objective of the SDN is to separate the
CP from the DP involving the forwarding devices, as
shown in Figure 2. This separation of CP and DP in SDN

can be achieved using a well-defined programming
interface between the switches and the SDN controller.
Experts predict that IoT could comprise a whopping 21
billion devices by 2020, making SDN a critical technology
for IoT [9]. SDN will become important as IoT matures,
and the expected result is that SDN will help drive the

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

67

expansion of IoT-enabled devices, enable a dynamic and
more efficient network resource sharing and improve IoT
network. SDN is significantly advantageous to IoT in
several ways; (i) SDN simplifies the creation, deployment
and ongoing management of the IoT devices and the
applications that benefit from them. (ii) SDN solutions can
help provide a more agile optimised user experience while
allowing the agility increase across the entire network,
decrease deployment time, and reduce costs. (iii) SDN
ensures network admin can deal with varied bandwidth
demands in a flexible manner, providing the bandwidth to
the entity that needs it most at a specific moment. The IoT
and SDN are two technologies that very much depend on
each other. SDN technology can better prepare a network
for a successful and robust IoT. It provides the agility and
elasticity, which IoT demands. Moreover, it provides an
open environment for application developers to develop
innovative tools and software connecting the IoT more
effectively.

Both of these technologies (SDN and IoT) complement
each other in bringing us a better   and vastly more
connected world. The goal of this work is to design and
evaluate the SDIoT network architecture in contrast with
the traditional network architecture. We have presented
results in terms of network latency, Jitter and Throughput
to show the strength of the SDIoT architecture over the
traditional network architecture. The remainder of this
paper is organised as follows. Section 2 gives a brief
introduction to the IoT paradigm and its challenges.
Section 3 presents a review of the existing SDN based IoT
solution. In Section 5, we present the measurement results
and analysis and conclude the paper in Section 5.

2. IOT NETWORK PARADIGM
We are living in the era of connected objects where devices
can communicate with the physical world and capable of
taking decisions due to the data analytics. The IoT is
simply the point in time when more things or objects are
connected to the internet than people [10-13]. As the
boundaries of connected objects are not limited to a
specific technology, diverse ranges of objects connect and
communicate with each other using a different
communication protocol, resulting in the heterogeneous
network. IoT devices are used to sense, collect, process,
infer, transmit, notify, manage, and store data. IoT
architecture follows layered architecture, and a layered
architecture ensures flexibility and capability of invocation
of new services in the network. Most IoT architecture
models are modelled, as shown in Figure 3.

 Sensing layer: Sensing layer is physical object layer
consisting of sensors, actuator, RFIDs, mobile
devices, motes, blue tooth etc. This layer collects the
data from the environment and transmits on the edge
of the network, i.e. gateway or sink.

 Network layer: This layer is responsible for
transmitting data from physical objects to the
gateway/edge of the network for further processing
on the collected information. Different transmission
technologies contribute to the heterogeneity of IoT
such as ZigBee, blue tooth, Wi-Fi etc.

 Data Processing Layer: The data processing layer
consists of the central data processing unit of IoT
devices. The data processing layer takes data
collected in the sensing layer and analyses the data to
make decisions based on the result. In some IoT
devices (e.g., smartwatch, smart home hub, etc.), the
data processing layer also saves the result of the
previous analysis to improve the user experience.
This layer may share the result of data processing
with other connected devices via the network layer.

 Application layer: This layer deal with the
application/services of the user demand by
manipulating the information collected from the
perception layer and processed in the processing
system. The application layer is a user-centric layer
which executes various tasks for the users. There
exist diverse IoT applications, which include smart
transportation, smart home, personal care, health-
care, etc.

Figure 3. The layered IoT architecture [10]

2.1 IoT Architectural Challenges
Initially, the internet was distinctly established over
TCP/IP suite and provided support for a large number of
the connected computer. However, TCP/IP does not
support heterogeneous network. Therefore, the TCP/IP is
not suitable for IoTs. Hence, the heterogeneity of the
connected device in the IoT environment is creating
unprecedented complexity and functional diversity.
Conventional network management techniques are
inapplicable in IoT due to distinctive challenges. IoT
devices are connected to the internet via a gateway.
Usually, in the IoT network, high fault rates are
experienced due to shortfall in energy and connectivity
interruptions. A typical management solution should
provide various management functions integrating
configuration, security operation, administration of
devices and services of IoT. The following set of functions,
as illustrated in Figure 4, should be provided by a
management solution for IoT.

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

68

Figure 4. The set of functions as that should be provided

by management solution for IoT.

3. SDN BASED IOT ARCHITECTURES
The introduction of SDN to the IoT framework could

leverage the network efficiency and attain the
programmability and flexibility of networks. The SDN
based IoT will help drive the expansion of IoT-enabled
devices, enable a dynamic and more efficient network
resource sharing and improve IoT network. There are still
open research questions regarding the integration of SDN
in current trends of IoT. In this regard, many studies have
been conducted on the campuses and on the industrial level
to get full advantage of programmability from SDN. In this
section, we present a review of the existing SDIoT
solution. Many IoT platforms have also been proposed
[14-16]. We focus on the platforms utilising SDN. The
early efforts for employing SDN to support policies to
manage wireless sensor networks include Flow-Sensor
[17], Sensor OpenFlow [18], and Software-Defined
Wireless Network (SDWN) [19].

Moreover, Yiakoumis et al., [9] reported a home
network slicing mechanism, which allows multiple service
providers to share a common infrastructure in a smart
home. However, many of these efforts are isolated to
specific application domains. Yue et al. suggested the
concept of IoT community [15]. Users with the same
interests construct a community to facilitate data
maintenance, retrieval, and distribution. However, the
suggested architecture is neither open to users nor
convenient for introducing new IoT applications and
services. One recent effort is to design a software-defined
approach for IoT environments to dynamically achieve
differentiated quality levels to different IoT tasks [20].
Still, here the focus was on developing a layered SDN
controller in IoT setting and flow QoS performance. The
developers of one M2M [21] made efforts on horizontal
IoT through standardising IoT protocols and data models.

It addresses the need for a standard M2M service layer that
can be readily embedded within various hardware and
software. We share the same idea with oneM2M by using
a shared service layer.

In [22, 23], Qin et al., enhanced the idea of Multi-
network controller architecture for heterogeneous IoT
network based on SDN controller for a multi-network
environment and another cellular network at the campus
level and evaluated the performance by measuring delay,
Jitter and Throughput. Wu et al., in [24] present UbiFlow
framework, which provides the integration of the SDN and
the IoT. UbiFlow proposed an efficient flow control and
mobility management in urban multi-networks using SDN
distributed controllers. In UbiFlow architecture, IoT
network is partitioned into small network chunks/cluster in
which each partition is controlled by a physically
distributed SDN controller. The IoT devices in each
partition may be connected to the different access point for
different data requests. These distributed controllers
coordinate to provide flow scheduling, mobility
management, optimised access point selection in a
consistent, reliable and scalable control order, and provide
fault tolerance and load balancing for multi-network IoT.

In this paper, we propose an IoT architecture based on
SDN technologies for the horizontal IoT services. This
architecture enables sharing various resources, including
devices, data, and software, among various applications at
different levels. Data interoperability can be supported
interiorly in the network, and new services and
applications in different domains can be supported rapidly
and efficiently. We also present a prototype of the
proposed architecture using OpenFlow and Open vSwitch.
The architecture tends to describe a general model to
integrate SDN and IoT by introducing an SDN controller
in the current IoT architecture that will serve as the CP so
that solutions to the current scalability challenges
associated with the traditional networks are achieved. The
architecture will improve the scalability of IoT networks
using the advantages of SDN. The overview of SDN based
IoT (SDIoT) integration architecture is shown in Figure 5.

4. PERFORMANCE OF THE SDIOT NETWORK
ARCHITECTURE
This section presents the simulation results on the
performance evaluation of the SDIoT network
architecture. To study the advantages of the architecture,
we compared the SDIoT architecture with existing IoT
network based on the traditional network architecture. In
the traditional network, devices include two fundamental
elements; the DP and CP which are coupled in a device.
Traditional networks include the various number of
devices such as router and switches among different
vendors which are responsible for data transfer through the
network. While in the SDN architecture, these DP and CP
are decoupled. The CP being the control logic is
implemented in a logically centralised controller. The
traditional network was emulated in GNS3. GNS3 is a
network emulating software used to design networks in lab
environments for testing and study purpose.

VOL. 20, NO. 1, 2021, 65-75
www.elektrika.utm.my
ISSN 0128-4428

69

Figure 5. Overview of the SDIoT integrated architecture

On the other hand, the SDN topology was created in

the Mininet network emulator. Mininet provides a
comprehensive environment for prototyping SDNs. It
consists of a controller, for making routing decisions, an
OpenFlow enabled switch for forwarding the packets
based on the controllers routing decisions and end Hosts.
Once the network is up and running, the latency of the
packets can be determined by conducting a ping test
between the hosts on the network. On arrival of a packet to
a switch, an SDN switch undergoes the process shown in
Figure 6. From Figure 6, the external packet arrives at the
switch and the switch is connected to a controller. The
switch block and controller block are modelled as a queue.
There are three essential phases an SDN model must
capture. Phase (1), the first packet of a flow arrives at the
switch, and there are no matching Flow table Entries (FTE)
for the packet. Phase (2), the packet without a matching
flow entry is forwarded to the controller or a packet with
the matching FTE is serviced by the switch and forwarded
to the destination. Finally, Phase (3), the controller feeds
the forwarding information back to the switch and updates
the flow table in the switch. Note that the controller is not
a substantial part of the switch, but plays a critical role in
switch forwarding and network performance and cannot be
neglected.

4.1 Custom Topology
One of the benefits of the SDN is that the forwarding
device is free from any computation related tasks. SDN
supports two types of controller models: centralised and
distributed CP model. Each model has its different
speciality to be considered based on the infrastructure and
requirements. Moreover, the central controller has certain
restrictions as limitations in terms of scalability and
reliability issues. An alternate approach is to make CP in a
distributed fashion to execute applications of a centralised
controller. In a network with more than one controller, it is

difficult but possible to make the control action to be
centrally controlled. Such an architecture is also known as
logically centralised [25-28] architecture. An illustration
of the custom network model of SDN used in this work is
shown in Figure 7.

Figure 6. Block diagram of a data flow SD-based network

Figure 7. Custom network model of SDN as emulated in

Mininet

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

70

Also, the number of controllers needed and their
respective location must be taken into consideration
concerning the QoS constraints. There is also the hybrid
controller model which combines the benefits of both these
models. The controller must be able to visualise a load of
a switch globally across the routing path. All the routing-
related information such as statistics, errors, and faults are
collected and communicated to the controller with the help
of OpenFlow. In this work, the distributed control model
has been adopted to proof the concept. The distributed
control model entails using a multi-controller to manage
and supervise the entire network. In this model, the
intelligence does not rely on a single decision unit, unlike
the centralised model. From Figure 7, every flow decision
in the network is taken by the controller. This decision is
based on the initial packet of every flow that is sent to the
controller. The flow table is updated after creating a path
on a hop-by-hop basis. With the increase in network
traffic, the numbers of flow tables states are increased [25,
29]. As shown in Figure 4.2, the source nodes send a
packet to the forwarding device, and then the forwarding
device sends it to the controller. The forwarding device
receives the packet from the source and sends it to the
controller for processing. The controller only processes the
first packet of flow from any forwarding device and update
the flow table accordingly. Depending on this flow table
entry, all other packets of the same source get similar
treatment to reach the desired destination. This flow rule is
set by the controller, and the forwarding device cannot
update them without any instructions from the controller.

4.2 Performance Metrics
To evaluate the performance of the SDIoT architecture
over the traditional networking architecture, the system has
been emulated, and the results are analysed. The traditional
way of measuring network performance is network
latency, Jitter and Throughput. The emulation for the SDN
environment was done using Mininet. On the other hand,
GNS3 emulator was used for emulating the traditional
network environment. It's worth noting that the
performance evaluation is independent of the software
used. It mainly depends on the hardware components like
the number of Processors, Memory, Hard disk and a
network connection between the nodes. Details of the
performance evaluation metrics are given as follows.

a. Network Latency: Network latency is the term used to

indicate any kind of delay that happens in data
communication over a network. Latency is generally
defined as the time it takes for a source to send a packet
of data to a receiver, as illustrated in the expressions
below.

(1)

(2)

(3)

Where L is network latency, Pd is propagation delay,
and Sd is the serialisation delay in Equation 4.6 and D

is the distance between links in meters and S is the
speed in meters per second. For wireless
communication, we have used the speed of light in
Equation 2 and PS is the Packet size (bits)and TR is the
Transmission rate (bps)in Equation 3. High network
latency creates bottlenecks in any network
communication. It prevents the data from taking full
advantage of the network pipe and effectively
decreases the communication bandwidth. The impact
of latency on network bandwidth can be temporary or
persistent based on the source of the delays.

b. Jitter: Jitter is defined as the amount of variation time

of received packets in delay, latency or response. Jitter
can be approximated as the difference between the
maximum packet latency and minimum packet latency
over a given period. Let Tj represent the delay
experienced by the jth packet going through a queue.
The difference of transit time between two consecutive
packets of the tagged flow can be written as;

(4)

Equation 4 can be positive or negative. Where N is the
number of samples, the average end-to-end delay jitter
is then given by the expected absolute value of the
random variable in Equation 5

(5)

From Equation 4, to measure Jitter, we take the
difference between samples, then divide by the (Nth 1)
number of samples. If there is a change in network
conditions (for instance, there is a sudden burst on the
network and queues start to build on an interface), then
this Jitter will increase. The transit time between two
consecutive packets will not be the same anymore: the
second packet will have to go through a long queue,
spending more time, and generating positive Jitter.
Once this burst is over, the queue will progressively
reduce, reversing the situation. Out of two consecutive
packets, the second one will spend less time in the
queues, and will, therefore, generate negative Jitter.

c. Throughput: Throughput is the actual rate that
information is transferred in a computer network;
Throughput is defined as the actual number of bits that
flows through a network connection in a given period.
In mobile networks, the end-user throughput is the
amount of information received in bits /second.
Throughput is measured at the physical layer, data link
layer or even at the application layer. In a network,
often cell throughput is calculated, which is the
throughput of all simultaneous users in the cell. The
throughput can be affected by many factors such as (i)
Network congestion due to heavy network usage. (ii)
Too many users are accessing the same server. (iii)
Low bandwidth allocation between network devices.
(iv) Medium loss of a computer network. (v) Resources
(CPU, RAM) of network devices. Throughput [220] is
calculated as requests/unit of time. The time is
calculated from the start of the first sample to the end
of the last sample. This includes any intervals between

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

71

samples, as it is supposed to represent the load on the
server. The throughput is always less than or equal to
bandwidth but can never exceed the bandwidth, and it
is given by the expression in Equation 6:

(6)

Where TR is the network throughput, p is the packet
loss, MS is the packet size, and RT is the round-trip
time (RTT). Sometimes the term Round trip latency or
RTT is also used to define latency. This is the same as
ping time.

4.3 Results and Discussions
For the performance evaluation network architectures, the
performance metrics for comparison are in terms of
latency, Jitter and Throughput of the two network
architectures. The simulation parameters and results of the
evaluation of the SDIoT and the Traditional IoT network
architecture are presented in Table 1. The subsequent
section presents discussions of the results for simulation
performance based on the latency, Jitter and Throughput
of the two network architectures.

a. Average Network Latency
Latency has been defined as the term used to indicate any
kind of delay that happens in data communication over a
network. Latency is generally defined as the time it takes
for a source to send a packet of data to a receiver. This
section presents the results for the average network latency
performance of the SDIoT in comparison with the

traditional network IoT. A useful tool in measuring a
connection's latency is the "ping" tool. Ping sends a packet
to the destination, and waits for a response, measuring the
round-trip time and calculating connection latency. The
results of several ping commands were averaged over time.
The latency results were tested multiple times (not just a
single series of pings), and at different times and different
custom network topology having the specified number of
nodes as detailed in Table 1. The result of the average
latency of the traditional IoT network in comparison with
the SDIoT network is illustrated in Figure 8.

Table 1. Simulation Parameters and Results of the
evaluation of the SDIoT and the Traditional

IoT Network Architecture.

Simulation
Parameters Traditional SDN

Total number of host
nodes 70 70

Total number of
packets 450 450

ICMP Packet Size 64 bytes 64 bytes
Simulation Platform GNS3 Mininet
Simulation Instances 100 100
Network Topology Custom Topology
Number of
routers/controllers 1

Performance Metrics Latency, Jitter and
Throughput

Figure 8. Average Latency of the Traditional and SDIoT Network.

From individual results observed for the traditional

network, the latency results of the packets sent from
several hosts are either same or more for the traditional
network architecture. When the first packet arrives at the
switch, the switch checks its MAC table for the
corresponding destination address in the MAC table. Since
this is the first packet and there is no entry for the address,
the switch forwards the packet to the router for the routing
decisions. The router makes the routing decisions and
sends the routing decision entry to switch. The switch
forwards the packet accordingly and flushes the entry. This

process is repeated for all packets that arrive at the switch.
Therefore, this account for the high latency experienced by
all the packets. While in SDN, the time taken by the first
packets is more compared to the consecutive packets.

The reason for the high latency of the first packet in
comparison to other packets is that the routing decision
happens only for the first packet. Once the controller
updates itself with the flow rule for the first packet, the
switch buffers the flow rule in its flow table after thirty
seconds [8, 30]. SDN switch buffers the flow entry inserted
by the controller into the flow table of the switch. This

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

72

eliminates the necessity of contacting the controller for
routing decision for every packet, thus reducing the latency
of the consecutive packets after the first packet. The
consecutive packets are forwarded by the switch without
contacting the controller for the routing decision. After
thirty seconds, the buffer is timed out, and the flow table is
cleared, and the same procedure repeats. There are
different scenarios to get an idea of how network load can
and will affect latencies.

The high network latency experienced in the traditional
network set-up can be attributed to a range of issues. Still,
generally, it comes down to the state of routers and the
distance between your network devices. These include (i)
propagation (the amount of time it takes for a packet to
travel from one source to another). (ii) routers take time to
analyse the header information of a packet as well as, in
some cases, add additional information. Each hop a packet
takes from router to router increases the latency time. The
more routers a packet has to travel through the more
latency there is because each router has to process the
packet. In this simulation, the distance that a packet
travelled had a significant influence on the amount of
latency within a network. When packets travel across a
network to their destination, they rarely travel to the node
in a straight line. As such, the amount of latency is
dependent on the route that the packet takes.

In SDN domain, latency is an important measurement
to express the expected responsiveness of a network
connection. From the result of the average latency of the

traditional IoT network in comparison with the SDIoT
network illustrated Figure 8, the SDIoT network
architecture has a significantly better average latency
performance when compared to the traditional IoT
network architecture for all number of nodes considered.
The average latency percentage improvement from the
traditional IoT network to the SDIoT for all the nodes is
574%. In SDN, services like loading a web page are less
sensitive to latency than others, such as real-time gaming
or VoIP calling, which results in a noticeable delay in both
gameplay and conversation, respectively. Hence, the IoT
network built on SDN architecture will perform better
when compared to traditional network architecture.

b. Average Network Jitter

Jitter has been defined as the time variation in
latency/response time in milliseconds. Jitter depends on
the packet routes and is caused by multiplexing several
flows in the node queues. There are several definitions of
Jitter that try to capture the delay variation of packets. In
this work, we adopt the IETF [31] definition of Jitter. The
IETF definition is based on the transit delay between the
entry and the exit nodes. The results were computed using
the parameters in Table 1 and the equation for jitter
measurement, as explained in [31]. The result of the
average Jitter of the traditional IoT network in comparison
with the SDIoT network is illustrated in Figure 7.

Figure 9. Average Jitter of the Traditional and SDIoT Network.

There are several ways to measure Jitter. The
approach adopted in work for the measurement of Jitter
involves comparing send and receive timestamps on pairs
of packets transmitted as such: (a) transmit and receive
time of the first packet in the pair and (b) transmit and
receive time of the second packet in the pair. On observing
Figure 9, the average Jitter for the traditional network is
higher when compared with SDIoT network architecture.
This high Jitter makes the service unusable by negatively
impacting service quality. This is not acceptable,
especially for a large-scale SDIoT network where packets
will travel through multi-hops. For the SDN, the Jitter is

consistently low for every packet after the first packet. This
is the direct opposite of the situation in the traditional
network set-up.

The Jitter is usually introduced by network devices
themselves and can be slightly more complicated to
measure than latency. Packets being buffered, queued, and
switched around a network all introduce small delays that
tend to add up, and are measured as the Jitter. Estimating
and controlling the delay variation is essential for the
operator to avoid both a buffer overflow, which causes
packet losses, and buffer underflow when the application
does not receive packets for some time.

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

73

The main challenge of the traditional architecture will
be in the integration and support of a wide variety of
applications and services combining voice, data,
streaming, and Video on Demand in IoT. The different
media types exchanged by these applications have
different requirements in terms of Jitter. The popularity of
these applications has highlighted the limitations of the
traditional network infrastructure for IoT. For real-time
and interactive applications, delay jitter remains one of the
essential parameters of QoS. For most of the applications,
the variation in the arrival time of packets at the terminal
must be compensated by using a playback buffer to
provide a regular packet stream to the application.

Comparatively, from the results shown in Figure 9, the
traditional network architecture cannot support the jitter
requirement of the IoT network. The SDN, on the other
hand, offers a better performance in terms of network jitter
to the traditional network architecture. The average jitter
percentage improvement from the traditional IoT network

to the SDIoT for all the nodes is over 600%. This makes
SDN ideal for the deployment of IoT network.

c. Network Throughput
Although it's essential to measure latency and Jitter, it is
also essential to know the throughput performance of the
network because it gives information about how the
network behaves under different circumstances. Network
throughput is the term used to refer to the quantity of data
being sent that a system can process within a specific
period. Throughput in this work has been measured in bits
per second (bps). Throughput is an excellent way to
measure the performance of the network connection
because it tells you how many messages are arriving at
their destination successfully. If the majority of messages
are delivered successfully, then throughput will be
considered high. In contrast, a low rate of successful
delivery will result in lower throughput. The throughput
performance of the SDIoT and the traditional network is
shown in Figure 10.

Figure 10: The Throughput of the Traditional and SDIoT Network.

From the results of Figure 10, the traditional network

architecture performs poorly when compared with this
SDN architecture for all cases. The performance of IoT
devices rely on successful packet delivery to communicate
with each other, so if packets aren't reaching their
destination, the end result is going to be poor service
quality. Generally, poor network throughput can be caused
by several factors. One of the main factors is poor
hardware performance. If devices like routers are
experiencing performance degradation, faults, or are
simply outdated, then you can end up with low throughput.
Likewise, if networks are congested with lots of traffic,
then packet loss will occur. Packet loss is where packets
are lost in transit. Low network throughput is often caused
when packets are lost in transit. In this case, the later and
the architecture of the traditional network contributed to
the low throughput experienced.

5. CONCLUSION
In this paper, we have presented an SDN controller design
in IoT networks whose central, novel feature is the layered
architecture that enables flexible, effective, and efficient
management on task, flow, network, and resources. From
the results presented for the latency, delay and throughput
performance of the SDIoT network, it can be concluded
that the SDIoT improves network efficiency by reducing
network overheads generated from frequent
communication attempt between the CP and DP every time
a packet is received. Thus, accounting for the higher
throughput observed from the result. The study has been
conducted with the use of one CP architecture. This may
not guarantee optimal results and also represent a single
point of failure. These challenges, among other issues, are
related to the scalability of the CP. When the network
scales up in the number of nodes, switches, services or
traffic, it can drastically increment the load on the

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

74

controllers which can become a potential bottleneck to the
network resources such as bandwidth, memory and
processor of controllers. We are currently in the process of
integrating this layered controller design with a new
controller placement algorithm. The algorithm has been
designed to find the number of controllers and their
placement in any kind of network

REFERENCES
[1] R. Minerva, A. Biru, and D. Rotondi, "Towards a

definition of the Internet of Things (IoT)," IEEE
Internet Initiative, vol. 1, pp. 1-86, 2015.

[2] C. Associati, "The evolution of internet of things,"
Focus. Milão, fev, 2011.

[3] J. Chase, "The evolution of the internet of things,"
Texas Instruments, p. 1, 2013.

[4] M. Fischer, S. Lyon, and D. Zeitlyn, "The Internet
and the future of social science research," in The
Sage handbook of online research methods., N.
Fielding, R. M. Lee, and G. Blank, Eds. London:
Sage, 2008, pp. 519-536.

[5] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif,
"Publish/subscribe-enabled software defined
networking for efficient and scalable IoT
communications," IEEE communications magazine,
vol. 53, no. 9, pp. 48-54, 2015.

[6] H. Farhady, H. Lee, and A. Nakao, "Software-
defined networking: A survey," Computer Networks,
vol. 81, pp. 79-95, 2015.

[7] B. Raghavan, M. Casado, T. Koponen, S.
Ratnasamy, A. Ghodsi, and S. Shenker, "Software-
defined internet architecture: decoupling architecture
from infrastructure," in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, 2012, pp. 43-
48: ACM.

[8] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig,
"Software-defined networking: A comprehensive
survey," Proceedings of the IEEE, vol. 103, no. 1, pp.
14-76, 2015.

[9] S. Singh and N. Singh, "Internet of Things (IoT):
Security challenges, business opportunities &
reference architecture for E-commerce," in 2015
International Conference on Green Computing and
Internet of Things (ICGCIoT), 2015, pp. 1577-1581:
IEEE.

[10] K. K. Patel and S. M. Patel, "Internet of things-IOT:
definition, characteristics, architecture, enabling
technologies, application & future challenges,"
International journal of engineering science and
computing, vol. 6, no. 5, 2016.

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
"Internet of Things (IoT): A vision, architectural
elements, and future directions," Future generation
computer systems, vol. 29, no. 7, pp. 1645-1660,
2013.

[12] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir,
and P. Urien, "Internet of things: a definition &
taxonomy," in 2015 9th International Conference on
Next Generation Mobile Applications, Services and
Technologies, 2015, pp. 72-77: IEEE.

[13] L. Atzori, A. Iera, and G. Morabito, "The internet of
things: A survey," Computer networks, vol. 54, no.
15, pp. 2787-2805, 2010.

[14] M. Floeck, A. Papageorgiou, A. Schuelke, and J.
Song, "Horizontal M2M platforms boost vertical
industry: Effectiveness study for building energy
management systems," in Internet of Things (WF-
IoT), 2014 IEEE World Forum on, 2014, pp. 15-20:
IEEE.

[15] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang,
"DataClouds: Enabling community-based data-
centric services over the Internet of Things," IEEE
Internet of Things Journal, vol. 1, no. 5, pp. 472-482,
2014.

[16] Y. Li, X. Su, J. Riekki, T. Kanter, and R. Rahmani,
"A SDN-based architecture for horizontal Internet of
Things services," in Communications (ICC), 2016
IEEE International Conference on, 2016, pp. 1-7:
IEEE.

[17] A. Mahmud and R. Rahmani, "Exploitation of
OpenFlow in wireless sensor networks," in
Proceedings of 2011 International Conference on
Computer Science and Network Technology, 2011,
vol. 1, pp. 594-600: IEEE.

[18] T. Luo, H.-P. Tan, and T. Q. Quek, "Sensor
OpenFlow: Enabling software-defined wireless
sensor networks," IEEE Communications letters,
vol. 16, no. 11, pp. 1896-1899, 2012.

[19] S. Costanzo, L. Galluccio, G. Morabito, and S.
Palazzo, "Software defined wireless networks:
Unbridling SDNs," in 2012 European Workshop on
Software Defined Networking, 2012, pp. 1-6: IEEE.

[20] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N.
Venkatasubramanian, "A software defined
networking architecture for the internet-of-things,"
in Network Operations and Management Symposium
(NOMS), 2014 IEEE, 2014, pp. 1-9: IEEE.

[21] O. M. Alliance, "Onem2m: Standards for m2m and
the internet of things," ed, 2014.

[22] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, G.
Denker, and N. Venkatasubramanian, "MINA: A
reflective middleware for managing dynamic multi-
network environments," in 2014 IEEE Network
Operations and Management Symposium (NOMS),
2014, pp. 1-4: IEEE.

[23] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N.
Venkatasubramanian, "A software defined
networking architecture for the internet-of-things,"
in 2014 IEEE network operations and management
symposium (NOMS), 2014, pp. 1-9: IEEE.

[24] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A.
McCann, "UbiFlow: Mobility management in urban-
scale software defined IoT," in Computer
Communications (INFOCOM), 2015 IEEE
Conference on, 2015, pp. 208-216: IEEE.

[25] S. Rout, S. S. Patra, and B. Sahoo, "Performance
Evaluation of the Controller in Software-Defined
Networking," in Computational Intelligence in Data
Mining: Springer, 2017, pp. 543-551.

[26] C.-S. Li and W. Liao, "Software defined networks,"
IEEE Communications Magazine, vol. 51, no. 2, pp.
113-113, 2013.

[27] M. Casado, T. Koponen, S. Shenker, and A.
Tootoonchian, "Fabric: a retrospective on evolving

Paulson Eberechukwu Numan et al. / ELEKTRIKA, 20(1), 2021, 65-75

75

SDN," in Proceedings of the first workshop on Hot
topics in software defined networks, 2012, pp. 85-90:
ACM.

[28] Y. Kanaumi, S. Saito, and E. Kawai, "Toward large-
scale programmable networks: Lessons learned
through the operation and management of a wide-
area openflow-based network," in Network and
Service Management (CNSM), 2010 International
Conference on, 2010, pp. 330-333: IEEE.

[29] R. Raghavendra, J. Lobo, and K.-W. Lee, "Dynamic
graph query primitives for sdn-based cloudnetwork
management," in Proceedings of the first workshop
on Hot topics in software defined networks, 2012, pp.
97-102: ACM.

[30] F. Souad and M. Moughit, "Evaluation of MTCP
over POX Controller."

[31] C. Demichelis and P. Chimento, "IP packet delay
variation metric for IP performance metrics (IPPM),"
2002.

