Real-Time Malware Uniform Resource Locator Detection: Identification of Novel Discriminative Features through Manual Examination and Empirical Analysis

Morufu Olalere¹, Mohd Taufik Abdullah^{2*}, Ramlan Mahmod², Azizol Abdullah²

¹Cyber Security Science Department Federal University of Technology Minna, 920102, Niger, Nigeria ^{1,2}Information Security research Group Faculty of Computer Science and information Technology, Universiti Putra Malaysia, 43400, Selangor, Malaysia

*Corresponding author email: lerejide@futminna.edu.ng

ABSTRACT. Gone are the days when attackers used to introduce malware into enterprise network through storage devices. With the rapid proliferation of internet technologies and web applications, attackers now use web as a means of introducing malware into enterprise network. This development has forced many enterprises to subscribe to manually created blacklist of malware Uniform Resource Locator (URLs). Manually created blacklist is faced with challenges of wrong detection due to human error and inability to detect newly created malware URL that has not been added to the blacklist. This make blacklisting approach inadequate for detection of any malware URL encountered. Therefore, a real-time malware URL detection that is based on machine learning is required. To achieve this, there is a need to identify discriminative features of malware URL. This need motivated this study. Consequently, the authors of this study identified novel discriminative lexical features of malware URL and study the prevalence of these features. To identify discriminative lexical features, two methods including manual examination of malware URL and empirical analysis were employed. Manual examination of malware URLs was carried out using existing blacklist of malware URLs. This allowed the authors to identify discriminative lexical features. To determine whether there is consistency in the way the attackers craft malware URLs, empirical analysis was carried on both the existing blacklisted malware URLs and newly collected malware URLs. Empirical analysis revealed that there is consistency in the way malware URLs is crafted by the attackers. Therefore, these features can be used to build real-time malware URLs detection.

Keywords. Attackers, Lexical Features, Malware URL, Blacklist, Rea-time Malware URL Detection.

1. Introduction

Gone are the days when a malware infection on an enterprise network occurred only through external storage devices such as external hard disks and flash drives. With the rapid proliferation of Internet technologies, mobile devices, and web applications, attackers now use the Web as a vector for introducing malware into enterprise networks through employee's mobile devices in an environment such as Bring Your Own Device (BYOD). No wonder the Malware challenge remains the topmost challenge facing BYOD¹. The personal mobile device is used to access a web application through the Internet either by typing a URL in the web browser or by clicking a

URL link to the web application. In any case, URLs serve as a means of obtaining access to web applications, thus making it an exploitable tool for attackers to infect malware into the device of their victim.

However, this change in attack vector has forced many organisations to subscribe to blacklisting services of malware URLs which are provided by a range of techniques including manual submission of suspected malware URLs and honeypots. With 571 new websites available on the Internet per minute², the blacklist approach to detect malware URLs is no longer sufficient as many new malware URLs are not blacklisted immediately they are launched on the Internet. More so, since the blacklist is created by volunteer experts, human error in detection is unavoidable. Exact matching in blacklisting also renders it easy to be evaded³.

To address blacklisting challenges, a real-time anomaly based detection of malware URLs is necessary. This approach relies on a machine learning detection model that detects malware URLs as soon as they are encountered, without having to visit the blacklist server. To build such a machine learning detection model, the features of malware URLs play an important role. The selection of discriminative features for any detection algorithm determines the performance of the algorithm. The need for the selection of discriminative features for a malware URL detection model motivated this study. It should be mentioned here that recent studies of other researchers have used different categories of features for the detection of malicious URL (especially phishing and spam). To the best of the knowledge of the authors, little work has been done in the area of malware URL detection or classification. A recent survey⁴, concerning malicious URLs (phishing, spam and malware) detection techniques reported works of Choi et al³ and Eshete et al⁵ as the only malware URL detection studies. Previous studies^{3,6,7} used lexical features (textual properties) of URLs as discriminative features for malware URL detection in the case of Choi et al^3 and phishing URL detection in the case of Blum et al^6 and Le et al^7 . Similarly, our study identifies discriminative lexical features of malware URL through manual examination of blacklisted malware URLs. Also, to determine the level of consistency in the way attackers craft malware URLs, empirical analysis was carried out.

2. Methodology

The selection of a relevant feature set for any detection model is a process that requires careful attention. In practice, detection models tend to degrade in performance when faced with many features that are not necessary for predicting the correct label. In a situation where there are hundreds or thousands of features, the problem of selecting a subset of a relevant feature set for the best prediction accuracy is always a challenge for detection models. The detection model for malware URL is not left out of this challenge. To address this issue, we used two processes for selecting discriminative lexical features for malware URL detection. These processes include manual examination of URLs in an existing blacklist of malware URLs for identification of discriminative lexical features, and empirical analysis for studying the prevalence of identified features.

A malware patrol blacklist⁸ was used to carry out a manual examination and empirical analysis. Malware patrol is a community of security experts that started operation in 2005 and it is a platform where anyone can submit a suspicious URL that may carry malware, viruses, or Trojans, or ransomware. When a URL is submitted, it is verified by security experts before it is added to the blacklist. The blacklist is updated every 1 hour for subscribers with a monthly payment subscription and every 48 or 72 hours for subscribers with a free subscription. Apart

from the fact that the malware patrol blacklist was used by previous studies^{7,9}, the hourly update is also a factor we considered before choosing the malware patrol blacklist as a source of malware URL data for our study. These processes are discussed in the next subsections.

2.1 Manual Examination of Malware URLS Blacklist

To carry out the manual examination, we downloaded the malware URL blacklist from malware patrol website on the 4th August 2015. On this day, a total of 62015 malware URLs were available on the blacklist. The URLs on the blacklist were manually examined in order to identify discriminative lexical features that make the blacklist URLs different from benign URLs. The discriminative lexical features were identified from three main components (protocol, hostname, and path) of a URL as shown in Figure 1.

<insert figure 1 here>

Based on these components, the feature set is grouped into three groups. Each group comprises of two or more features. The groups are URL to Path features, hostname features, and path features. It is important to note that the technicality behind the lexical structure of malware URL is beyond the scope of this study. Hence, the reason(s) behind the way malware URLs are crafted is/are not discussed in this study. Based on the feature set groups, the feature set identified during manual examination of the blacklisted malware URLs are presented below.

2.1.1 URL to Path Features Group

Two features were identified from this feature set group. These features include the following:

i. Length of URL from protocol to the path end

When we examined the URLs on the blacklist, we observed that some of the URLs have long character strings from the protocol to the end of path. Some URLs on the blacklist have as long as 250 characters. The following URL is an example of URL with long characters from the malware URL blacklist.

dde.integration.storage.conduitservices.com/39/233/ct2331539/cbdebcb46b4149109bd1ed6efbe14178/downloads/prod/dde1.3.8. 4 perion.131024.04/13-11-05-21.50.02.936/

ii. Length of URL from protocol to the path end

Our manual examination revealed that many URLs have IP addresses in their hostname (the hostname is either replaced by the IP or the IP is added to hostname), path, and in some cases, both. This implies that the occurrence of the IP address in any part of the URL is a strong indication that the URL is a malware URL.

120.198.196.101/sanlixop/sanlix_data/sample/unknown/2013-03/2013-03-14/106714/

2.1.2 Hostname Features Group

Our manual examination of the blacklisted malware URLs revealed that the hostname of the malware URL is crafted in a form that is different from the hostname of benign URLs.

Consequently, five discriminative lexical features were identified. These features are described below.

i. Length of Hostname

During manual examination, it was observed that many URLs have long character strings which make them different from benign URLs. Example of this type of URL from the malware URL blacklist is given below.

dde.de.resource-efilesdrive.com/29/773/ct7739229/4caee31a80f04d0a83e40d536dba48eb/Downloads/Prod/SmallStub 1.3.9.0.140504.01/15-01-25-09.49.18.728/

ii. The Presence of www

Manual examination of malware URL blacklist revealed that many URLs from the blacklist do not have www. Very few URLs on the malware URL blacklist have www. All the examples of URL given above have no www. The following URL is another example of URL from the malware URL blacklist that has no www.

download2.77169.com/soft/hacrktools/attack/200906/

iii. The Presence of a Third Level Domain (TLD)

Manual examination of the malware URL blacklist revealed that many URLs on the blacklist have TLD. Example of this type of URL from the malware URL blacklist is as follows:

dl-2.one2up.com/onetwo/content/2014/6/12/

iv. The Presence of a Decimal Number in the Second Level Domain (SLD)

Many URLs on the malware URL black list have decimal number in their SLD. It was observed that some URLs SLDs have combination of decimal number(s) and alphabet(s). While some URLs on the malware URL blacklist have only decimal number(s) as their SLDs. Example of URL in this category is given below.

download5.77169.com/soft/other/2006/200612/

v. The Presence of a Decimal Number in the TLD

During manual examination of the malware URL blacklist, it was observed that many URLs on the blacklist have decimal numbers in their TLDs. Some of the URLs on the malware URL blacklist have only decimal number(s) as their TLDs. While some of the URLs have combination of decimal number(s) and alphabet(s) as their TLDs. URL below is an example of this category of malware URL from the blacklist.

56ffec5e.dl-one2up.com/onetwo/content/2015/9/27/

2.1.3 Path Features Group

The path features group represents features identified from the path of the URL. We identified five features from the URL path. These features are described below.

i. Length of the path

The length of the path of the malware URL was observed to be long in most of the blacklisted URLs. Example of this type of URL from the malware URL blacklist is given below.

s.ddirectdownload-

about.com/82/288/ct2888182/67b7b53e3fc449c8a73307c88c60bb39/Downloads/Prod/DDE1.4.0 .5.150121.02/15-02-17-18.05.10.828/

ii. Number of Subdirectories in the Path

When the malware URL blacklist was examined, it was observed that many of the URLs on the blacklist have two or more subdirectories in their paths. The URL below is an example of this type of URL from the malware URL blacklist. The URL has 8 subdirectories.

s.ddirectdownload-

 $about.com/95/242/ct2427695/ea7f8d9e06d64be6b9730677d138730f/downloads/prod/dde1.4.0.5.\\150121.02/15-03-07-05.40.59.238/$

iii. Length of Longest Subdirectory

During manual examination, it was observed that some of the URLs on the malware URL blacklist have one or more of their subdirectories very long. Below is an example of malware URL with the longest length of its subdirectory equal to 32.

218.207.102.106/1Q2W3E4R5T6Y7U8I9O0P1Z2X3C4V5B/dlsw.baidu.com/sw-search-sp/2015_05_08_20/bind1/36561/

iv. The Presence of a Date in the Path

Many URLs on the malware URL blacklist have a date in their path. It was observed that presence of a date in the path takes different formats. Some of the URLs on the malware URL blacklist have full date format (with month, day and year), while some have only year. Example of URL with dates is given below.

60.10.0.246/1103esv2013/files/322500000016514D/dlsw.baidu.com/sw-searchsp/2015_05_08_22/bind1/11006/

v. The Presence of Hexadecimal String in the Path

The last feature identified under this group is whether there is a hexadecimal character string in the path or otherwise. We observed that many URLs on the malware URL blacklist have a

hexa-decimal character string. The URL below is an example of URL with hexadecimal string in the path.

cdn1.mydown.yesky.com/55a6673a/df3b2fe23a66e96894a7ad6e3f5ddbd3/soft/200807/

2.2 Empirical Analysis

Some of the identified features are categorical (present or not present) while others are not. These categorical features include the presence of an IP, presence of www, presence of a date, whether the hostname has a TLD or otherwise, presence of a decimal number in a SLD, presence of a decimal number in the TLD, and whether a hexadecimal character string is present in the path or not. To study the prevalence of these features, we carried out an empirical analysis of 62103 malware URLs on the blacklist and on the newly collected (as the blacklist is updated) malware URLs. The purpose of this empirical analysis was to determine the level of consistency in the way attackers craft malware URLs. Details of the empirical analysis are described in the following subsections.

2.2.1 Analysis of 62013 URLs

Under this analysis, we extracted the total number of URLs having each of the categorical features. Then, the percentage of each feature appearance in the 62103 malware URLs was computed. Table 1 shows the result of the percentage appearance of each of the categorical features in the 62103 malware URLs.

2.2.1 Analysis of Newly Collected 18015 URLs

To study the prevalence pattern in which malware URL was crafted, we collected newly added malware URLs from [8]. This collection took place from 5th August 2015 to 13th October 2015 and resulted in a total of 18015 malware URLs in 30 rounds. Table 2 summarises the details of how the URLs were collected. While in all the 30 rounds, Tables 3, 4, 5, 6, 7, 8 and 9 show the percentage of the URLs with IP address, without www, with a date, whit a TLD, with a decimal number in the SLD, whit a decimal number in the TLD and with hexadecimal character string in the path respectively. Meanwhile, Table 10 shows the result of the percentage appearance of each of the categorical features in the 18015 malware URLs.

3. Results and Discussion

Figure 2 shows comparison of percentages of each of the categorical features in the 62103 and 18015 URLs. The percentage of the presence of decimal numbers in the TLD in the 62103 URLs was the same as the percentage of the presence of decimal numbers in the TLD in the 18015 URLs. The presence of www, presence of TLD, and presence of hexadecimal numbers in the path have almost the same percentage in both cases. Also, the percentages of the presence of an IP, presence of a date, and presence of decimal numbers in the SLD were slightly higher in the 62103 URLs than in the 18015 URLs. The implication of this is that the attackers tend to use to the same pattern of crafting malware URLs.

However, Figure 2 shows that more than 80 % of the 62103 and 90 % of the 18015 URLs contain the TLD. This implies that many malware URLs are crafted to include the TLD. Our analysis revealed that many URLs with a decimal number in the SLD also have a decimal number in the TLD. The SLD and TLD belong to the same part (hostname) of the URL. We therefore combined the presence of a decimal number in the SLD and TLD to form a single feature. We refer to this feature as the presence of a decimal number in the hostname. Table 11 shows a summary of all features with their value type. It is important to note that these features are novel features for malware URL detection, although some of the features have been used for phishing or/and spam URL detection in previous studies. All the categorical features which have not been used for any malicious URL detection in previous studies.

4. Conclusion and Future Work

In this paper, novel discriminative lexical features of malware URL's are identified and consistency in the way malware URLs are crafted by the attackers was also investigated. Our first step was to manually examine blacklisted malware URLs. This step led to the identification of 12 discriminative lexical features. The second step was an empirical analysis of the identified features of existing blacklisted malware URLs and newly collected malware URLs. Empirical analysis was carried out to determine whether there was consistency in the way malware URLs are crafted by the attackers. The results of our empirical analysis revealed that there is indeed consistency.

However, for the purpose of evaluation, the identified features in this study can be used to train any machine leaning algorithm for real-time detection of malware URL. Performance in term of accuracy and time to build detection model with both the previously used features and novel features identified can be compare with a view to identify best set of features for real-time detection of malware URL.

Total URL	62103			
No.	Features	No. of URL	% in Total URL	
1	Presence of IP address	11422	18.39	
2	Presence of www	57296	92.26	
3	Presence of a date in the path	27388	44.10	
4	Presence of TLD	49815	80.21	
5	Presence of a decimal number in the SLD	17233	27.75	
6	Presence of a decimal number in the TLD	19218	30.95	
7	Presence of hexadecimal in path	7988	12.86	

Table 1. Percentage of each of the categorical features in 62103 malware URLs.

 Table 2. Details of how URLs were collected

Collection round	Date interval	No. of days	No. of URL
Round1	05-07/08/2015	3	205
Round2	08-09/08/2015	2	149
Round3	10-11/08/2015	2	184
Round4	12-14/08/2015	3	177
Round5	15-16/08/2015	2	100

Round10 Round11 Round12	26-28/08/2015 29-30/08/2015	3 2 2	1783 1329 1400
Round13	31-01/09/2015 02-04/09/2015	3	925
Round14	05-06/09/2015	2	457
Round15	07-08/09/2015	2	222
Round16 Round17	09-11/09/2015 12-13/09/2015	3 2	464
Round18	14-15/09/2015	2 3	529
Round19 Round20	16-18/09/2015 19-20/09/2015	2	1649 329
Round21	21-22/09/2015	2 3	<u>301</u>
Round22	23-25/09/2015		583
Round23	26-27/09/2015	2 2	351
Round24	28-29/09/2015		368
Round25	30-02/10/2015	3	1018
Round26	03-04/10/2015	2	594
Round27	05-06/10/2015	2	114
Round28	07-09/10/2015	3 2	<u>94</u>
Round29	10-11/10/2015		71
Round30	12-13/10/2015	2	686
	DTAL	70	18015

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Table 3. The percentage of the URLs with IP address

	Table 5. The percentage of the UKLS with IT address			
Round	Total URL collected per round	Presence of IP	% of presence of IP	
Round1	205	14	6.83	
Round2	149	24	16.11	
Round3	184	4	2.17	
Round4	177	26	14.69	
Round5	100	11	11.00	
Round6	47	21	44.68	
Round7	127	6	4.72	
Round8	1330	115	8.65	
Round9	978	31	3.17	
Round10	1783	110	6.17	
Round11	1329	150	11.29	
Round12	1400	101	7.21	
Round13	925	14	1.51	
Round14	457	5	1.09	
Round15	222	23	10.36	
Round16	464	14	3.02	
Round17	1451	44	3.03	
Round18	529	30	5.67	
Round19	1649	120	7.28	
Round20	329	50	15.20	
Round21	301	20	6.64	
Round22	583	41	7.03	

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Round23	351	11	3.13
Round24	368	10	2.72
Round25	1018	80	7.86
Round26	594	89	14.98
Round27	114	15	13.16
Round28	94	10	10.64
Round29	71	5	7.04
Round30	686	104	15.16
	TOTAL	18015	1298

Table 4. The percentage of the URLs without www

Round	Total URL collected per round	URLs without www	% URLs without www
Round1	205	195	95.12
Round2	149	144	96.64
Round3	184	121	65.76
Round4	177	142	80.23
Round5	100	83	83.00
Round6	47	39	82.98
Round7	127	122	96.06
Round8	1330	1287	96.77
Round9	978	956	97.75
Round10	1783	1721	96.52
Round11	1329	1371	103.16
Round12	1400	1371	97.93
Round13	925	906	97.95
Round14	457	449	98.25
Round15	222	217	97.75
Round16	464	456	98.28
Round17	1451	1404	96.76
Round18	529	507	95.84
Round19	1649	1613	97.82
Round20	329	315	95.74
Round21	301	291	96.68
Round22	583	546	93.65
Round23	351	320	91.17
Round24	368	344	93.48
Round25	1018	989	97.15
Round26	594	579	97.47
Round27	114	103	90.35
Round28	94	81	86.17
Round29	71	66	92.96
Round30	686	632	92.13
TOTAL	18015	17370	96.42

Table 5. The percentage of the URLs with a date in the path

Round	Total URL collected per round	URLs with a date	% of URLs with date
Round1	205	52	25.37
Round2	149	25	16.78

Round5 Round6	<u>100</u> 47	33 15	<u>33.00</u> <u>31.91</u>
Round7	127	27	21.26
Round8	1330	157	11.80
Round9	978	135	13.80
Round10	1783	751	42.12
Round11	1329	497	37.40
Round12	1400	451	32.21
Round13	925	125	13.51
Round14	457	85	18.60
Round15	222	79	35.59
Round16	464	80	17.24
Round17	1451	135	9.30
Round18	529	111	20.98
Round19	1649	420	25.47
Round20	329	44	13.37
Round21	301	64	21.26
Round22	583	47	8.06
Round23	351	36	10.26
Round24	368	63	17.12
Round25	1018	109	10.71
Round26	594	101	17.00
Round27	114	17	14.91
Round28	94	11	11.70
Round29	71	27	38.03
Round30	686	121	17.64
TOTAL	18015	3895	21.62

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Table 6. The percentage of the URLs with a TLD

Round	Total URL collected per round	URLs with TLD	% of URLs with TLD
Round1	205	181	88.29
Round2	149	129	86.58
Round3	184	96	52.17
Round4	177	122	68.93
Round5	100	74	74.00
Round6	47	36	76.60
Round7	127	114	89.76
Round8	1330	1242	93.38
Round9	978	908	92.84

Round22 Round23	351	256	<u>80.27</u> 72.93
Round22	583	468	80.27
Round21	301	249	82.72
Round20	329	286	86.93
Round19	1649	1552	94.12
Round18	529	486	91.87
Round17	1451	1323	91.18
Round16	464	451	97.20
Round15	222	214	96.40
Round14	457	434	94.97
Round13	925	853	92.22
Round12	1400	1341	95.79
Round11	1329	1259	94.73
Round10	1783	1653	92.71

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Table 7. The percentage of the URLs with a decimal number in the SLD

Round	Total URL collected per round	URLs with a decimal No. in SLD	% of URL with a decimal No. in SLD
Round1	205	23	11.22
Round2	149	16	10.74
Round3	184	21	11.41
Round4	177	35	19.77
Round5	100	26	26.00
Round6	47	7	14.89
Round7	127	27	21.26
Round8	1330	283	21.28
Round9	978	215	21.98
Round10	1783	350	19.63
Round11	1329	238	17.91
Round12	1400	261	18.64
Round13	925	201	21.73
Round14	457	47	10.28
Round15	222	33	14.86

Round16 95 20.47 464 252 17.37 Round17 1451 Round18 529 197 37.24 Round19 1649 345 20.92 Round20 329 92 27.96 Round21 29.57 301 89 197 583 33.79 Round22 351 33 9.40 Round23 368 39 10.60 Round24 Round25 1018 233 22.89 594 147 24.75 Round26 114 25 21.93 Round27 94 13 Round28 13.83 14 71 19.72 Round29 65 9.48 Round30 686 TOTAL 18015 3619 20.09

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Table 8. The percentage of the URLs with a decimal number in the TLD

Rounds	Total URLs collected	URLs with a decimal	% of URLs with a decimal
	per round	No. in TLD	No. in TLD
Round1	205	21	10.24
Round2	149	21	14.09
Round3	184	32	17.39
Round4	177	34	19.21
Round5	100	35	35.00
Round6	47	12	25.53
Round7	127	56	44.09
Round8	1330	728	54.74
Round9	978	542	55.42
Round10	1783	451	25.29
Round11	1329	341	25.66
Round12	1400	356	25.43
Round13	925	320	34.59
Round14	457	142	31.07
Round15	222	45	20.27
Round16	464	111	23.92
Round17	1451	346	23.85
Round18	529	108	20.42
Round19	1649	434	26.32
Round20	329	131	39.82
Round21	301	115	38.21
Round22	583	107	18.35

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Round23	351	70	19.94
Round24	368	54	14.67
Round25	1018	557	54.72
Round26	594	138	23.23
Round27	114	26	22.81
Round28	94	36	38.30
Round29	71	24	33.80
Round30	686	195	28.43
TOTAL	18015	5588	31.02

Table 9. The Percentage of the URLs with hexadecimal characters string in the path

Round	Total URL collected	URLs with hexadecimal	% of presence of URLs
<u> </u>	per round	in path	with hexadecimal in path
Round1	205	71	34.63
Round2	149	57	38.26
Round3	184	24	13.04
Round4	177	22	12.43
Round5	100	17	17.00
Round6	47	14	29.79
Round7	127	25	19.69
Round8	1330	662	49.77
Round9	978	612	62.58
Round10	1783	637	35.73
Round11	1329	531	39.95
Round12	1400	723	51.64
Round13	925	599	64.76
Round14	457	272	59.52
Round15	222	101	45.50
Round16	464	259	55.82
Round17	1451	379	26.12
Round18	529	211	39.89
Round19	1649	497	30.14
Round20	329	40	12.16
Round21	301	35	11.63
Round22	583	116	19.90
Round23	351	46	13.11
Round24	368	51	13.86
Round25	1018	105	10.31
Round26	594	63	10.61
Round27	114	19	16.67
Round28	94	13	13.83
Round29	71	11	15.49

Proceedings of the 2nd International Conference on Science, Technology and Social Sciences 2016 (ICSESS2016) © Universiti Teknologi Malaysia

Round30	686	61	8.89
TOTAL	18015	6273	34.82

Table 10. Percentage of each of the categorical features in 18015 malware URLs

Total URL	18015		
No.	Features	No. of	% in Total URL
		URL	
1	Presence of IP	1298	7.21
2	Presence of www	17370	96.42
3	Presence of a date in the path	3895	21.62
4	Presence of TLD	16280	90.37
5	Presence of a decimal number in the SLD	3619	20.09
6	Presence of a decimal number in the TLD	5588	31.02
7	Presence of hexadecimal in the path	6273	34.82

Feature groups	Features	Value type
	Length of URL to the path end	Integer
URL to path	Presence of IP address	Binary
	Length of the hostname	Integer
	Presence of www	Binary
	Presence of a TLD	Binary
Hostname	Presence of a decimal number	Binary
	in the hostname	
	Length of the path	Integer
	Number of Subdirectory in the	Integer
	path	
	Length of longest subdirectory	Integer
Path	in the path	
	Presence of a date in the path	Binary
	Presence of Hexadecimal in	Binary
	the path	

Figure 1. Components of a URL considered for feature set identification.

Figure 2. Comparison of percentage of each of the categorical features in both 62103 URLs and 18015 URLs.

5. References

- Olalere M, Abdullah MT, Ramlan M, Abdullah A. A review on bring your own device on security issues. Sage Open. 2015; 05(02): 1-11. doi: 10.1177/2158244015580372 Published 10 April 2015
- 2. Ever wondered how many websites are created every minut? [Internet] 2014 June 11 [updated 2016 Jan 1; cited 2016 Apr 5]. Available from: http://www.designbyconet.com/2014/06/ever-wondered-how-many-websites-are-created-every-minute/.
- 3. Choi HS, Zhu BB, Lee H. Detecting malicious web links and identifying their attack types. Proceedings of the 2nd USENIX Conference on Web Application Development; 2011 USENIX Association Berkeley, CA, USA. ACM Digital Library; 2011. p. 1-11.
- 4. Patil DR, Patil JB. Survey on malicious web pages detection techniques. International Journal of U- and E- service, Science and Technology. 2015; 08(5):195-206.

- Eshete B, Villafiorita A, Weldemariam K. BINSPECT: Holistic analysis and detection of malicious web pages. Proceedings of 8th International ICST Conference, SecureComm 2012; 2012 Sep. 3–5; Padua, Italy. Berlin: Springer; 2013. p. 149-166.
- 6. Blum A, Wardman B, Solorio T, Warner G. Lexical feature based phishing URL detection using online learning. Proceedings of the 3rd ACM workshop on Artificial Intelligence and Security; 2010 October 04 08; Chicago, Illinois, USA. ACM; 2010. p. 54-60.
- 7. Le A, Markopoulou A, Faloutsos M. PhishDef: URL names say it all. Proceedings of IEEE INFOCOM, 2011; 2011 April 10-15; Shanghai, China. IEEE; 2011.p. 191–195.
- 8. Malwarepatrol. Available at http://www.malwarepatrol.net.
- Kalafut AJ, Shue CA, Gupta M. Malicious hubs: detecting abnormally malicious autonomous systems. Proceedings of IEEE INFOCOM, 2010 Conference. 2010 March 14-19; San Diego, CA, USA. IEEE; 2010. p. 1-5.