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ABSTRACT 

The process of choosing a suitable parametric model prior least squares collocation suffers from 

a high degree of arbitrariness. Although, the congruency test (wherein𝜎2
0 =  𝜎2)gives an overall 

impression on the validity of the model, but further testing is always required, even when the 

congruency test points to the contrary, since it is possible that effects from different modeling 

errors cancel each other out, in the computation of𝜎2 . Besides, the procedure for estimating the 

variance components from the parametric model is computationally tasking. A semi automated 

assessment procedure is therefore herein presented by considering some rudimentary statistics of 

residuals followed by a student’s t- test on the mean of residuals. The model is simpler as it 

eliminates the need for variance component estimation and faster to implement compared to 

when strict reliance is placed on the congruency test in parametric model selection. 

Keywords: Least squares collocation, parametric models, stochastic models, adjustment 

computation. 

1.0 INTRODUCTION 

The least squares collocation (LSC) is a useful mathematical tool used in gravity prediction, 

filtering of anomalies and estimation of parameters that define the mathematical model 

(Ruffhead, 1987). In gravimetric network design, the LSC is a preferred mathematical tool for 

network adjustment. The process of LSC begins with the formation of observation equations that 

describe the physical behavior of the outcomes in relation to certain system parameters hence the 

need for formulation of suitable parametric equation that will accommodate all the essential 

parameters that affect the system. The process of choosing a suitable parametric model prior 

least squares collocation suffers from a high degree of arbitrariness. Earlier studies have shown 

that the parametric model used affects the estimated value of the variance component and 

consequently might lead to unreliable results since the variance component is often taken as a 

measure of accuracy (Nafisi, 2003). 



A common method of determining suitable parametric models has been the use of the 

congruency test wherein 𝜎2
0 =  𝜎2 (Dermanis and Rossikopoulos, 1991) which requires that 

first a variance component estimate (VCE) be doneafter which an “f”-test is performed between 

the a-priori value and a-posteriori values of the variance of weighted observations. 

Unfortunately, VCE is a computationally tedious procedure and is itself dependent on an 

arbitrary choice of parametric model (Guo and xu, 2015). Besides, the variance component 

estimation procedure, pre-supposes that no biases or systematic effects are present in the data. 

Any unmodelled bias effect (which depends on the parametric equation) may propagate into the 

estimated variances and give unreliable results (Persson, 1981; Koch, 1999). 

The 3 𝜎 –rule is a simple and widely used heuristic for outlier detection especially in statistical 

based analysis (Lehmann, 2013). Although, the procedure is generally used for outlier detection 

and geodetic data filtering, it similarly gives an analyst an idea of the suitability of the 

underlying parametric model upon which the design matrix is built by taking advantage of the 

statistical properties of a least squares as a minimum variance estimate that is distribution-free. 

In this work, asemi-automated assessment procedure is presented by considering some 

rudimentary statistics of residuals followed by a student’s t- test on the mean of residuals to 

determine the most suitable among eight (8) tested parametric models using the south Western 

part gravity points of Nigeria as a case study. 

2.0 Statistical checks for assessment of model fit. 

Before performing a least squares estimate, certain statistical checks could be used to assess the 

fit of the parametric model. Assessing model fit is an essential task in a least squares estimation 

since the quality of the results obtained depends on the correctness or otherwise of imposed 

model. A good parametric model has the following assumptions (Vanicek et al, 2001): 

1) The mathematical expectation of the resulting residuals has zero error i.e mean 0 error 

2) Residuals have constant variance 

3) The error is normally distributed 

4) Observational errors are independent. 

Considering the above stated assumptions, an analysis of the residuals obtained from a particular 

parametric model could be used as a precursory guide in determination of model suitability since 



the residuals of a least squares estimate are of great significance (Lehmann, 2012). Analysis of 

residuals involves certain statistics which include: 

(i) Normalized residuals: 

Given the Gauss Markov model, the residuals are given as (1) 

𝑉 = 𝐴𝑋𝑎  −  𝐿𝑏        (1) 

Where: A = design matrix and has a rank 3 if the equations are consistent 

𝑋𝑎= Vector of adjusted parameters 

L
b
 = Vector of observations 

V = Vector of residuals 

Since the variance (𝜎2) is given as (2) 

𝜎 2 =  
𝑉𝑇𝑃𝑉

𝑛−𝑚
        (2) 

Where P = observational weight 

 n = number of equations 

 m = number of parameters 

The normalized residuals in a least squares are then computed as given in (3): 

𝑉𝑛𝑜𝑟𝑚 =   
𝑉𝑖

𝜎  𝑞𝑣𝑣,𝑖𝑖
       (3) 

Where 

𝑞𝑣𝑣,𝑖𝑖  = corresponds to the ith diagonal of the cofactor matrix of residuals (𝑄𝑣𝑣) 

𝑄𝑣𝑣 = 𝑃−1 − 𝐴 𝐴𝑇𝑃𝐴 −  𝐴𝑇  

P = Weight matrix 

 



(ii) Sum of squares of residuals (SSR): 

The sum of squares of residuals is given as (4) 

SSR =  𝑣2 =  ((𝐴𝑋𝑎  −  𝐿𝑏)2)    (4) 

(iii) Standard error (SE): 

𝑆𝐸 =
𝑆𝑆𝑅

𝑑𝑓
       (5) 

(iv) Error distribution  

Although, the least squares method is a distribution free method, computation of confidence 

intervals and hypothesis testing of the resulting data requires that the error are normally 

distributed i.e𝑣 ~ 𝑁(0, 𝜎2𝑃−1)which is a pre-requisite for equation (6) to hold 

𝑣 =  −𝑄𝑣𝑣𝑃 𝐿𝑎       (6) 

Where 𝐿𝑎  = vector of adjusted observations. 

Identifying the data distribution for non-repeated observations could be problematic. The 

standard geodetic approach is to assume a balance in the number of positive and negative 

values of residuals as a standard tool for determining the normality or otherwise of residual 

distribution. 

If the sum of positive residuals balances with the sum of non-positive values, then the 

residuals are considered normally distributed and vice versa. 

(v) 3𝝈-rule for outlier detection 

As a general rule of thumb, observations larger than 3𝜎 are often considered as outliers in 

data adjustment (Lehmann, 2012). However, it is logically reasonable to state that the better 

the model fit, the more points the model accommodates, hence the lower the number of 

outliers. The rule is mathematically described by (6) 

If  𝑣𝑖  ≥ 3𝜎      (7) 

Then 𝑖 is an outlier observation. 



(vi) The student-t test statistic 

From the vector of residuals, the t-statistics is then used to further ascertain correctness of the 

model. Since the least squares estimate is aimed at minimizing the sum of squares of 

observational residuals, then (8) holds as stated below: 

 𝑣2 = minimum      (8a) 

𝑣𝑇𝑃𝑉 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚     (8b) 

∴ 𝐻0: 𝐸 𝑣  ≤ 0     (8c) 

𝐻𝐴: 𝐸 𝑣  ≥ 0      (8d) 

Taking equation 8c and d, the Null and alternative hypothesis respectively become: 

𝐻0: The mean of residuals is less than or equal to zero therefore the model is optimal 

𝐻𝐴: The mean of residuals is greater than zero therefore the model is not optimal 

To test the hypothesis, the one sample student t-statistic given by (9) is then used thereby 

statistically validating the correctness of the model. 

𝑡 =  
𝑥 − 𝜇

𝑆𝐸
       (9) 

 Where: 

𝜇= hypothesismean 

𝑥 = Sample mean 

𝑆𝐸 = standard error. 

 

 

 

 



3.0 Parametric Model 

Determining a suitable parametric model that could efficiently represent the gravity field of a 

study area is an essential step in LSC since the design matrix is dependent on it. Since the 

parametric model is expected to include all the known parameters that affect the system. In this 

work, eight (8) models were tested in order to determine the optimal amongst them using the 

statistical criteria earlier discussed. The tested models are given in equations 10 (a – h). 

∆𝑔 =  𝑥0 +  𝑥1𝜑 + 𝑥2𝜆     (10a) 

∆𝑔 =  𝑥0 +  𝑥1𝛾 +  𝑥2𝛾
2     (10b) 

∆𝑔 =  𝑥0 +  𝑥1 +  𝑥2
2     (10c) 

∆𝑔 =  𝑥0 +  𝑥1 +  𝑥2𝛾 + 𝑥3𝛾    (10d) 

∆𝑔𝑖𝑗 =  𝛿𝛾𝑖𝑗 −  𝛿𝑔𝑖𝑗 +  Δ𝑔𝑖      (10e) 

∆𝑔 =  𝑥0 +  𝑥1𝜑 + 𝑥2𝜆 + 𝑥3 +  𝑥4𝛾   (10f) 

∆𝑔 =  𝑥0 +  𝑥1𝜑 + 𝑥2𝜆 + 𝑥3𝜑𝜆 +  𝑥4 +  𝑥5𝛾 +  𝑥6𝛾 (10g) 

∆𝑔 =  𝑥0 +  𝑥1𝜑 + 𝑥2𝜆 + 𝑥3𝜑𝜆    (10h) 

Where: 

∆𝑔 = gravity anomaly 

𝑥0. . . 𝑥𝑛  = parameter coefficients 

𝜑, 𝜆,  = 3D station geodetic coordinates in degrees, degrees and meters respectively. 

𝛾 = station normal gravity computed based on the WGS84 normal gravity formulae. 

𝑖 and 𝑗 = occupied station and control/reference station respectively. 

 

 



4.0 Data used: 

A total of 4511 gravity data points located across the entire country was collected from the BGI 

(Bureau Gravimetric International) database. The data were collected from various sources and 

archived by the BGI (see table 1 for various data sources). The data was then filtered for noise 

and non-homogeneity using the standard cross over adjustment technique (Odumosu et al, 2016) 

leaving 2634 nationally homogenous points. The Baarda’s outlier detection technique and 3𝜎-

rule was then used to remove outlier observations. A total of 1074 nationally consistent points 

were left after filtering of which the 193 points located within South Western part of Nigeria. 

These 193 points were used in this study in an attempt to model the gravity field of the study 

area using the LSC.  

Table 1: Gravity data from various sources (Collected from BGI) 

 
S/N Data Source Number of 

points 

Accuracy 

(mgals) 

Date of 

Observation 

1 IGSN-71  1 0.040 1-11-1961 

2 Euro/African Secondary Calibration Line survey  4 0.032 1-11-1965 

3 British Antarctic Survey  63 Not available 1-11-1975 

4 Academy of Science, France  11 Not available 1-11-1938 

5 Princeton University, USA  220 Not available 1-1-1969 

6 University of Leeds  789 Not available 1-11-1984 

7 Geological Survey of Nigeria 987 Not available 1-11-1961 

8 Shell Exploration Company 69 Not available 1-1-1965 

9 University of Ibadan 192 Not available 1-1-1978 

10 Ahmadu Bello University, Zaria 151 Not available 1-1-1978 

11 University of Ibadan 303 Not available 1-1-1978 

12 University of Calabar and Leeds 1074 Not available 1-1-1984 

13 Cratchley, C. R (1960) 460 Not available 1-1-1960 

14 Anonymous observer 69 Not available Unknown 

15 Garcia, G 117 Not available 1-11-1967 

 

 

 



5.0 Methodology: 

Figure 1 pictorially describes the methodology herein presented for model optimality 

determination. The process starts by computing the OLS based on the selected parametric model 

and evaluating the residuals obtained. From the obtained residuals, the various test statistics as 

earlier discussed are carried out in sequence all to determine model optimality. 
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Figure 1: Flow chart of model execution methodology. 

Models that indicate fewer outliers based on the 3𝜎-test are considered suitable since they have 

effectively fitted well into most of the data used. But the 3𝜎-test cannot be used as the only basis 

for suitability determination. Further tests are therefore before a decision can be taken. The 

further tests are done by analyzing the residuals using the sum of squares of residuals (SSR) and 

Parametric Model 

Perform OLS 

Compute Residuals 

Normalised Residuals Analysis of residuals (SSR, SE) 

3𝜎 − 𝑡𝑒𝑠𝑡 
 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑡 − 𝑡𝑒𝑠𝑡 
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standard error (SE). Amongst the two analysis the sum of squares of residuals is more important 

since the principal objective of a least squares is to minimize the sum of squares of weighted 

residuals. 

After the residuals have been analysed the student-t test is performed to test the hypothesis 

statistically. The t distribution provides a good way to perform one sample tests on the mean 

when the population variance is not known provided the population is normal or the sample is 

sufficiently large so that the Central Limit Theorem applies. 

Therefore, if the P-value falls within the significance level (i.e𝑃 ≤ 𝛼 (0.05)) we do not reject the 

null hypothesis. Similarly, when the t critical value is greater than the t-observed i.e (𝑡𝑐𝑟𝑖𝑡  ≥

𝑡𝑜𝑏𝑠 ), the null hypothesis is sustained that the mean of residuals is less than zero therefore the 

chosen parametric model is optimal. 

6.0 Results and discussion of results 

Presented in table 2 is a summary of results obtained from each model. The least squares 

adjustment was performed using both the weighted and unweighted models and the results are as 

presented in table 2.  

Also results obtained from the t-test for each model is presented in table3. It is seen that although 

model 5 gave the least standard error and sum of squares of residuals which makes it appear to 

be the most suitable model, a look at the normality of the residuals indicate that the model 

residuals are not normally distributed but rather lump-sided. This non-normality is further seen in 

the hypothesis test of the model which rather than give the highest probability gave an average 

probability of 50% conformity of the data with the null hypothesis. 

From table 2, we also observe that the more the number of outliers detected (based on the 3𝜎-

test) in a model, the lesser the suitability of the chosen model because the outlier reduce the 

number of data points fitted into the model. However, this alone is not sufficient to take a 

decision about a model’s suitability since model 5 though with most suitable SSR and minimal 

number of outliers the residual distribution and its percentage probability (as seen in table 3) 

suggest that it is not the most optimal model. 

http://www.real-statistics.com/sampling-distributions/central-limit-theorem/


Table 2: Analysis of residuals 

  
Min Resi Max Resi Range_res Distr 

<= 3σ > 3σ 
Outliers Stddev 

Σv Σv^2 Std Error RMS  Norm_resi 

Model equation 1 

OLS -37.25 29.05 66.30 Normal 191 0 0 12.54 2.80E-10 29562.92 12.54 12.44 

Weighted LS -40.48 29.21 69.69 Normal 117 74 74 0.94 -100.90 31089.94 12.86 12.76 

Model equation 2 

OLS -42.54 26.24 68.78 Normal 191 0 0 13.09 -1.68 32047.49 13.06 12.95 

Weighted LS -50.77 23.77 74.54 Normal 131 60 60 1.02 -571.66 36141.74 13.87 13.76 

Model equation 3 

OLS -46.72 25.02 71.74 Normal 191 0 0 12.42 0.00 28982.49 12.42 12.32 

Weighted LS -53.43 21.32 74.75 Normal 131 60 60 0.99 -653.99 32729.05 13.19 13.09 

Model equation 4 

OLS -35.76 6.40 42.16 Normal 191 0 0 12.41 -0.0076 28811.5576 12.41 12.28 

Weighted LS -53.30 19.61 72.91 Normal 130 61 61 1.01 -694.68 34924.6365 13.67 13.52 

Model equation 5 

OLS 
8.88 E -15 4.26 E-14 3.11E-14 

Lump 

sided 
191 0 0 2.89 E -14 

0.00 0.00 0.00 0.00 

Weighted LS 
-1.95 E-14 3.55 E-15 2.31E-14 

Lump 

sided 
190 1 1 7.03 E -16 

0.00 0.00 0.00 0.00 

Model equation 6 (5 parameters) 

OLS -18.13 32.97 51.10 Normal 190 1 1 8.33 2.600 12584.372 8.23 8.12 

Weighted LS -27.69 38.73 66.42 Normal 123 68 68 0.70 -64.650 14657.986 8.88 8.76 

Model equation 7 (7 parameters model) 

OLS -16.85 22.41 39.26 Normal 190 1 1 6.25 -52.58 7181.48 6.25 6.13 

Weighted LS -16.42 21.65 38.07 Normal 122 69 69 0.56 -55.24 7235.25 6.27 6.15 

Model equation 8 

OLS -22.37 27.63 50.00 Normal 191 0 0 9.33 0.00 16267.81 9.33 9.23 

Weighted LS -24.18 27.56 51.74 Normal 118 73 73 0.73 -31.91 16425.19 9.37 9.27 



Table 3: Result of hypothesis test 

Model No 8 7 6 5 4 3 2 1 

Count 191 191 191 191 191 191 191 191 

Mean -0.61 -0.15 0.34 0.01 0.39 0.07 0.51 0.73 

Stddev 12.70 12.41 12.94 12.82 12.40 12.52 12.53 12.52 

Std error 0.91 0.89 0.93 0.92 0.89 0.90 0.90 0.90 

Hypothesis  mean 0 0 0 0 0 0 0 0 

alpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

tails 1 1 1 1 1 1 1 1 

df 190 190 190 190 190 190 190 190 

t-stat -0.67 -0.17 0.37 0.01 0.43 0.07 0.57 0.81 

p value 0.75 0.57 0.36 0.50 0.33 0.47 0.29 0.21 

t-critical 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 

Significance ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT ACCEPT 

 

A glance at table 3 suggests that the model 7 despite the significant number of outliers it 

identifies. Comparing the results of model 3 on both tables, we see that the SSR of the model is 

the next most suitable after model 5 (which is the principal objective function of a least squares).  

Furthermore, it shows a 50% probability of statistical suitability which is next to the highest P 

value of 75%.  

Model 8 is seen to show the statistically most significant result but from previous analysis does 

not seem to conform to the factors that make for model suitability. We therefore can see that the 

statistical significance test alone does not suffice to determine model suitability hence stressing 

the importance of further testing. 

Model 7 which though rank second best fit in terms of analysis of residuals and also statistical 

test is considered most suitable. This is because the model maintains consistently suitable results 

for both the analysis of residuals and the test statistics. It is therefore chosen as the most suitable 

model describing the gravity data distribution across the study area and thus adopted as the 

chosen parametric model for the least squares collocation (LSC). 

 

 

 



7.0 Conclusion and Recommendation 

This work presents a simple and easily implementable method for confirming model suitability 

to be used in LSC. The method incorporates the use of analysis of model residuals with statistical 

t-tests in checking mathematical models. It is concluded that integration of the residual analysis 

with the statistical test provides model users a more scientific and rationale means of judging 

model suitability than mere dependence on only the statistical test.  
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