

An Open Access Journal Available Online

Reviews in Automobile Brake Pads Production and Prospects of Agro Base Composites of Cashew Nut Shells and Nigerian Gum Arabic Binder.

S.S.Lawal¹, N.A.Ademoh¹, K.C. Bala¹, A.S.Abdulrahman²

¹Mechanical Engineering Department, Federal University of Technology,
Minna, Niger State

²Meterial and Metallyrgical Engineering, Federal University of Technology

²Material and Metallurgical Engineering, Federal University of Technology, Minna, Niger State.

Corresponding Author: sadiq.lawal@futminna.edu.ng

Received: 22.03.2019 Accepted: 06.10.2019 Date of Publication: December, 2019

Abstract: The reviews of automobile brake pad production processes, formulations, materials, and properties revealed most works attempt mainly on replacing asbestos found to be carcinogenic with base materials with other ingredients in various formulations and particle sizes. The overview of these trends suggests the need to replace not only the asbestos but also the commonly used epoxy resins or phenolic resins or phenol formaldehyde binders that has been found to corrode outside plates of brake assembly. Therefore, this paper thrust a new research direction of replacing the asbestos and inorganic resins with agro based materials of Cashew Nut Shell and Plant Gum binder respectively to obtain a substantially green based brake pads that are non-injurious to human health and does not corrode any parts of the brake pads assembly. Taguchi design of experimental method was deployed to formulate twenty seven (27) different formulations with the help of Minitab Software approach. The particle size of the compositions was 300µm and the produced composites have favourable properties such as BHN, Compressive Strength, coefficient of friction, wear rate and very high ash content retention suggesting good thermal capacity of the brake pads. The values obtained respectively are 76.66BHN,12.187N/mm2, 0.4848, 1.16mg/m and 97.71%.

Keywords: Brake pad, Composites, Compositions, Cashew Nutshell, Plant Gum binder

1. Introduction

The automobiles brake pad composites are steel plates backed and are the friction materials that grip the disc of the wheel assembly. Thev are in assembly to continuously clamp and hold wheels to slow down or completely stop their motion [1]. The function is to regulate the speed of moving automobile as it convert the kinetic energy to thermal energy by friction and sending the heat produced to the surroundings. Most the automotive brake pads available in the market are either classified as metallic, semi-metallic or nonasbestos organic (NAO) materials [2]. Friction materials include binders, structural materials, fillers and frictional additives. Those containing metal powders called semi-metallic friction materials while those of asbestos called asbestos friction materials. Those without asbestos are referred to as asbestos-free non-asbestos friction materials.

Brake shoes are located inside a drum for drum brake type so that on application of brakes, the shoe is forced outward and pressed against the drum. Disc brakes operate in similar way except that drum brakes are enclosed while disc brakes are exposed to environment [3].In 1930s, Ferodo changed to thermosetting resins and produced molded instead of knitted linings.

Molded linings were made by combining fiber with resin and polymerizing resin under elevated pressure and temperature [4]. According to Idris et al.,[5] brake pads generally consist of asbestos in the matrix along with

several other ingredients. Uses of palm kernel shell, palm kernel fiber and other biomass precursors have been investigated [6]. Because carcinogenic ofthe health challenges asbestos based brake pads posed to workers and users, countries like USA. Colombia, Japan, China and other countries have banned the use of it as friction material [7].The present trend in research for asbestos-free brake pads is to use industrial or agricultural waste (agro-waste) as a raw material source for composite development. Recently, international efforts to address environmental issues and need the the to protect environment has drawn research focus to the use of natural fibers in applications. several including brake pads. The use of asbestos is being avoided because of its health implications such as carcinogenic and harmful nature [7],[8-11]. Asbestos have long been known to cause lung and other cancerous [12]. Consequently, diseases numerous trends in researches have been on to discover human friendly material replacements for asbestos portions and that of the binders in engineering components such as automobile brake pad that is intended after this review. There is also the international efforts to use environmentally friendly [13] and non-hazardous natural fibers [14] and biomasses for the various application and replacements especially brake on pad production. The effectiveness and performance of brake pads are absolutely dependent on the frictional material used in the process of its manufacture [15]. In addition, composite materials have evolved that synthetic fiber reinforced composites are obtained from cost-effective and potentially eco-friendly materials for for use various parts automobile. The many advantages of abudance, comfort and cheap cost of natural fibers for industrial use thrusted researchers to study suitability in producing composites polymer tribological and other applications [16]. Over the years, the production of composite materials worldwide has grown significantly, which many industries technology sectors now use the formulated polymer composites materials which have successfully replaced traditional composite materials [17].

The investigation of new materials, especially agro-waste, has led to the development of new and lowcost options for the development brake which pads are commercially viable and environmentally acceptable, including all properties the required. Therefore, Agro-biomass (Agricultural residues, plant and animal wastes products) have now emerged as the trending materials that is used to produce brake pads that are commercially viable and environmentally acceptable [18-22] .It was reported by Cyras et al.,[23] that lignocellulosic fillers of any agricultural products have become choice filler materials for polymers because of its good properties. It has been revealed thta changes in the percentage weight and types of component composition in the formulation may alter the chemical, mechanical and physical properties of the brake pad materials developed[24-27]. Researchers especially the early ones concluded that no simple correlation exist between friction and wear properties of materials frictional with physical and mechanical properties [28-30].New formulations developed are required to be subjected to several tests evaluate its friction and wear properties ensure that the brake pad material meets the favourable requirements [28].

2. Properties of alternative Automobile Brake Pad Materials and Composites

The trending issues with researches all over the world today is focused on acheivable ways of utilizing either industrial agricultural wastes as a source of raw materials in the industry especially the replacement of asbestos and inorganic resins in production. These pad utilization of wastes will not only be non hazadous and economically profitable, but may increase foreign exchange earnings and environmental control. Researches such as Ibhadode and Dagwa [11]and Deepika et al.[4], have developed and investigated a nonasbestos- friction pad material using an agro -waste material base of palm kernel shell (PKS) as a reinforcement material. Their reason for the selection palm kernel shell was because favourable exhibited more

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

properties than the other agrothey investigated. Researcher like Bashar et al.[31] with other researchers including Aigbodion et al.[1], and Ruzaidi et al.[32] have developed brake pad from that is non-asbestos using shells of coconut. banana peels(bagasse) and ash from palm respectively material as reinforcements.The results obtained in these studies showed the suitability for commercial brake pad alternative. As a result of so many other work carried out, Naemah [34], Lee and Filip [35] and Matějka et al. [36], suggested that comparable materials for brake pads must meet these criteria:

- (a) It is safe for use and must be environmentally acceptable.
- (b)The materials has to exhibit good wear resistance.
- (c) High thermal conductivity and heat capacity, as comfirmed by Lee [3
- (d) It should be able to withstand higher contact pressures.
- (e)High frictional coefficient of the material.
- (f) Frictional stability over range of temperatures and pressures range.
- (g)Good environmental resistant from dust, pressure and moisture.
- (h) The material should possess excellent frictional force and shear strength.

Two authors named Blau [38] and Bashar et al.,[32] investigated and observed that additives for brake pad and other compostions can

alter the end results of the friction material. Therefore, the formulation and control of the composition is of great important in brake production. Blau [38] further stated that friction materials and additives are classified into:

- (a) Reinforcement and fillers materials.
- (b) Abrasives,
- (c) Friction modifiers, and
- (d) Binders.

Most of the trending materials are fibers derived from agriculturalwaste with economic significance and cultural impact throughout the world [39]. These fibers have great potential as composite materials in brake pad production because of their low cost, availability, high strength, eco-friendly in nature, and sustainability [40, 41]. Fibers obtained from agro-waste have properties with potential industrial application especially in brake pad production. This have led to a great deal of researches on how to channel them to useful materials while taking human health and environmental safety into consideration. The use of organic waste and residual materials which are best classifies agricultural materials biomass in polymer composites represents an eco-friendly and significantly high-value substitutes [42]. According to [40], these agricultural wastes are found in many plants such as palm tree. bamboo. corn stalks. sugarcane bagasse, coir (coconut shell), cashew nutshell, pineapple,

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

banana, rice husk, rice straw and plants (stem, leaf, seed, fruit, stem, grass, reed) .It is believed that minutes quantities up till percent of the potentials of these natural fibers are being used and harnessed as alternative materials for industrial uses while most common applications are in bio-composites, bio-medical. automotive parts, and others [43]. The most widely tested and importantly used fiber produced by agricultural activities are cellulose fibers (CF) with the potentials to enhance materials availability, lightness in weigh, renewability. degradable, abrasive properties, and low cost [40, 41, 43]. Cellulose fibers (CF) occurs in with other materials such hemicelluloses, pectin lignin [21]. Agro-waste is the most abundant form of natural fiber and has been used in many areas of modern industry believed to vary in relation to conditions of growth and harvesting [44].

The need to understand the properties of for the fibers composites necessitated researchers investigate to chemical compositions, mechanical properties, structure. physical properties and dimension of cells. These properties are

believed to vary widely among different species and among same plant [45].

2.1 Chemical Properties

In a report by Kumar et al. [46], biomass consists hemicellulose, cellulose and lignin and some quantity of protein, pectin, and ash. Cellulose offers stiffness, strength, and structural stability to the fiber and maintain the structure that serves as a determining factor in its mechanical properties. Hemicellulose which is a form of branched polymer amorphous in nature. Lignin is a linked formed with hemicellulose in agricultural plant`

cells that has tendency to resist decay in agricultural materials [47]. As reported by Jawaid [48], the composition, properties and structure of agricultural biomass depend on the age of

the plant, conditions of the soil and other environmental factors which include humidity,

stress, and temperature. These polymer characteristics of fibers affect their functionalities and properties [49]. Table 1 highlights the chemical properties of some selected agro-materials used as alternative materials for composites.

Table 1. Chemical Properties of selected Agro-materials for Composite [50]

Type of biomass			Composition (%	%)	
	Cellulose	Extractive	Hemicellulose	Lignin	Reference
Sisal	43.85-56.63	2	21.12-24.53	7.21-9.20	[51]
Oil palm	44.20-49.60	4	18.30-33.54	17.30-26.51	[48, 52]
Kapok	65.63-69.87		6.66-10.49	5.46-5.63	[53, 54]
Bamboo	73	3	12	10	[55]
Corn stalks	38.33-40.31	5	25.21-32.22	7.32-21.45	[50, 56]
Banana	60.25-65.21	-	48.20-59.2	5.55-10.35	[57, 58]
Abaca	69.23-70.64	-	21.22-21.97	5.15-5.87	[59]
Sugarcane (Bagasse)	55.60-57.40	10	23.90-24.50	24.35-26.30	[51, 60, 61]
Pineapple	70.55-82.31		18.73-21.90	5.35-12.33	[62]
Flax	69.22-71.65	6	18.31-18.69	3.05-2.56	[51, 59]
Kenaf	37.50-63.00	6.4	15.10-21.40	18.00-24.30	[59, 63, 64]
Jute	69.21-72.35	4	12.55-13.65	12.67-13.21	[51, 59]
Rice straw	28.42-48.33	17	23.22-28.45	12.65-16.72	[56, 65]
Coconut (coir)	36.62-43.21		0.15-0.25	41.23-45.33	[66]

2.2 Physical and Mechanical Properties

Properties both physical and mechanical of brake pad alternative materials could be very important because of their allied nature to the structure of fibers. Biomass fibers are largely natural organic fibers that exhibit high variability in different properties. Yan-hui et al., [67] and Cicala et al., [68] discussed these physical and mechanical properties of composite fiber to have depended highly on the growing conditions, extraction methods. chemical composition and its ratio. These properties are strongly affected by their individual material, with such important role in the selection of such materials multidisciplinary applications such as brake pad production. The important variables according to Khalil et al. [69] are fiber structure. cell. dimension microfibril angle, and defects. John and Thomas [70] in their finding, stated that source, origin, species and maturity of fiber are determined by the size of a single cell. Structural properties such as fiber length, fiber width and cell wall thickness determine of the determine the tensile strength, tear strength, drainage, adhesion and stress distribution of the product derived [71, 72]. In the same vein, the lumen structure has been reported to have significant effects on the bulk density of fibers which is determining factor of the thermal conductivity and acoustic property of the end

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

product [73]. The mechanical properties of natural fibers are affected by many factors such as fiber bundles or ultimate fibers as

shown in Table 2 showing the physical and mechanical properties of selected biomass fibers.

Table 2. Mechanical and physical properties of some selected agro based materials

		Elongation at break	Young's		Tensile strength	
S/No	Types of fiber	(%)	modulus (GPa)	Density gm ⁻³	(MPa)	References
1	Flax	2.70-3.6	50-70	1.27-1.55	500-900	[74] [75]
2	Oil palm	2.13-5.00	2.7-3.2	0.7-1.55	227.5-278.4	[71]
3	Corn stalks	1.90-2.30	4.10-4.50	0.21-0.38	33.40-34.80	[76]
4	Jute	1.69-1.83	20-50	1.3-1.45	300-700	[77] [78] [74]
5	Abaca	09-Nov	38-45	1.42-1.65	879-980	[77]
6	Banana	1.21-3.55	3.00-3.78	0.65-1.36	51.6-55.2	[79] [80] [81]
7	Kapok	1.20-1.75	4.56-5.12	0.68-1.47	80.3-111.5	[82, 83]
8	Rice straw	2.11-2.25	24.67-26.33	0.86-0.87	435-450	[84] [85]
9	Sisal	4.10-4.3	Oct-30	1.45-1.5	300-500	[77] [78] [74]
10	Bagasse	6.20-8.2	15-18	0.31-1.25	257.3-290.5	[62, 86]
11	Kenaf	1.56-1.78	23.1-27.1	0.15-0.55	295-955	[87, 88]
12	Bamboo	4.0-7.0	22.2-54.2	0.6-1.1	360.5-590.3	[89]
13	Pineapple	2.78-3.34	5.51-6.76	1.25-1.60	166-175	[90]
14	Coconut (coir)	27.21-32.32	4.0-6.0	0.67-1.15	173.5-175.0	[90] [91]

An important physical property of composites is the density, while modulus and tensile strength measure the mechanical properties of a single fiber. Development of agro based biomass in the polymer biomaterial and composite manufacturing are very important [92, 93]. From the reviewed, literatures biomass fibers from agro based material are found to have good potential as filler/enhancement material polymer composites such as brake pad composites.

In various research attempts to replace asbestos with agro-based material in brake pad production for carcinogenic health concern, the need to improve the qualities and properties of emerging brake pad products, many researchers have adopted many material selections. Composition /formulations, processing various optimization methods. Still on the quests to find suitable agroallied material composite that could replace asbestos from brake Osarenmwinda Nwachukwu [94] produce composites from agro waste of sawdust and palm kernel. The particle size of the composite produced was 300 µm with urea formaldehyde binder of 20% of the oven dry weight. The properties evaluated were thickness swelling

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

immersion. of 24hr 24hr immersion in water absorption , modulus of elasticity, hardness, modulus of rupture, density, vield and ultimate strength tensile strength and internal bond adopting the European Norm (EN) specifications EN 310,317 and 319 [95,96,97].This work was taken further by Lawal et al.,[98] on the attempt to use ssawdust sieved into particles three different grades with other inorganic ingredients for the production of the brake pads with good properties.

Most of the materials used are natural fibers from plant, animal or mineral fibers [48]. A researcher named Bledzki [99] listed shells, seeds, barks, stems and leaves as natural fiber materials. With these background, a review of some of the trending works would further widen the reseach gap in the quest to improve quality and properties of brake pads as dicussed below:

2.3 Palm Kernel Shells Based Brake LiningQuite a number of researchers have attempted to use either Palm Kernel Shells (PKS) as shown in Figure 1a, fibers (Figure 1b) or slag to replace asbestos as filler or base material/reinforcement materials in the formulation. In the work of

Deepika etal. [4] on the fabrication and performance evaluation of a composite material for wear resistance application. PKS was used as filler material with sulphur with other brake pad materials such calcium as. carbonate, quartz, iron ore, brass chips, ceramics, cashew nut shell liquid and carbon black. The particle size of the formulation of the pulverized filler was 125µm. The performance of PKS were found to compare closely with asbestos brake linings under different inertial and speed conditions. A developed brake pad by Fono-Tamo and materials Kova[100] for automobile following standard procedures from PKS showed comaprable properties quality results in compared to the comericially produced brake pads. Their results show 40.95Mpa shear strength of hardness of 32.34Mpa appreciable repectively with coefficient of friction of 0.43. These results were in tandem with the reported findings from the work of Fono-Tamo and Koya [101] which gave frictional coefficients of between 0.37 to 0.52 though (Roubicek et al.,[7] suggested friction coefficient range of between 0.30 to 0.70.

Figure 1a: Palm kernel Shell[102]

The feasibility of using PKS agrowaste material by Ibhadode and Dagwa, [31] to replace asbestos in brake pad production was also favourable.The auite optimal manufacturing variables and composition formulation was acheived via Taguchi optimization techniques.The moulding temperature, pressure, moulding temperature, curing time and heat treatment time adapted were 150-170oC, 16.74-27.90 Mpa, 6-10 minutes and 1–3 hour respectively. The formulation of the various compostions used in percentage weight reinforcement, of abrasives.binder and friction modifier are respectively 56,14, 24and 6. The produced brake pads were tested and the results were in close agreement with the asbestos brake based pads.The characterization obtained surface hardness 64 to 89HRB with the frictional coefficient falling between 0.44 to 0.35. The rate of wear was between 0.017 to 0.170 aligning with a report high wear rate at vehicular speeds beyond 80km/hour. The properties satisfactory tested were

Figure 1b: Palm kernel fiber [19]

replacement alternatives.

Also devoloped using palm kernel and other brake pad fibers constituent materials were those efforts of Ikpambese al.,[19].The Palm kernel fibers were prepared and the oil were removed with sodium hydroxide over a period of 24 hours after which it was washed with water and left to dry for a week. The epoxy resin used were varied in the formulations and the properties such as physical, morphological and mechanical were investigated to examine the charecterization effects of the various and composition. They reported that paremeters such as coefficients of friction. temperature. rate of wear, time of stopping and level of noise of the product increased speed increases while surface roughness, specific gravity, porosity, hardness, percentage content of misture, water and oil absorption rate were stable as the higher.The speed get report concluded that the formulation with 40% epoxy-resin along 10% of palm wastes, 15% of calcium carbonate ,6% of Al₂O₃,and 29%

of graphite indicated the satisfactory properties and hence palm kernel fibers can be another good replacement of asbestos in brake pad production.

Another investigged reported work on brake pad production using Palm Kernel Fibers (PKF) carried out by Achebe al.[21].The PKS was used replace asbestor as filler base material with epoxy resin binder in formulation with other ingredients with three sets of formulations made in the study. The standard procedures, materials. equipment were used to ensure suitable results. The properties of the sample C was characterized and reported that the 40 % PKF compostion has 178 Mpa hardness, compressive strength obtained as 96.2 MPa, the specific gravity 1.8 g/cm^3 , abrasion resistance was 1.67. water 1.86% absorption and absorption 0.89% .These results were of best performance rating that compares favourably other studies. The hardness, wear resistance and specific gravity of the composite brake pad were increasing as the filler content increased, while oil and water absorption decreased with incressing filler content.

Using **palm slag** as base material with phelnolic resin binder along calcium carbonate (CaCO₃) and dolomite, Ghazali *et al.*,[103] examined properties which included the hardness, compressive strength and wear behavior of the new composite.

The results showed that in the composite formulation used to produce the brake pads, palm slag has great potential to replace existing fillers .Ghazali et al. [104] with the palm slag as filler material reported higher a performance of between 50 °C to 1000 °C in thermal conductivity as compared with other material inputs. Samuel et al.,[105] using different particle grades(100 µm, 350 µm, 710 µm and 1mm) of PKS developed an asbestos-free brake pad. The formulation varied PKS compostions from 35 % to 55 % of PKS with 20 % of resin, 10 % of graphite, 15 % of steel, and 20 % of SiC and the processing method used was compression molding.Investigation of all the revealed properties 100 μm samples of Palm Kernel Shells offered better properties.

Efforts by Mgbemena et al. [106] from pulverized PKS as base filler material and metallic fillings as abrasives wth Phenolic and alkyd resis binders. The properties of the newly developed samples friction lining material were investigated. It was established that the pulverized PKS-based brake friction lining has better thrmal properties with high wear rate of 0.24 µm and high char content as compared to Original Equipment Manufacturer (OEM) brake lining materials which has a wear rate of 0.16 µm. Some researchers in attempt to improve and investigate the properties of the brake pads mixed Palm Kernel related materials with other plant and or animal agro-based materials.Some of these work were done by Mayowa et al.,[102] that produced and investgated a developed brake pad from friction materials of PKS and cow bone particles.Different Particle sizes of 120 µm and 100 µm was used with formulation 30% PKS and Cow Bone mix while 60 % binder(epoxy resin) and 10 % of hardener were used. They reported a decreased density as the particle sizes increases while the higher particle size samples has increased impact strength than the finer ones. Cow bone composite was also reported to absorbed than more water **PKS** composite. The thermogravimetric analysis (TGA) observation revealed a percentage weight loss increasing with the temperature from 200° to 500° with increasing sieved size of the sample. In the vein. Adevemi [107] produced brake pads composite from mixed Maize Husks (MH), Cocoa Beans Shells (CBS) and Palm Kernel Shells(PKS) using epoxy resin as binder.The physical, mechanical and tribological properties were investigated revealing the abrasion resistance, friction coefficient, and water soak decreasing as the matrix percentage weight increasing. The formulation is compressive strength and tensile strength increased with increasing percentage matrix weight formulation while the density, hardness, thermal conductivity, and oil soak varied inconsistently. The property of the matirx compared well with single fillers as well as the commercial ones

2.4 Coconut Shells (CS) and Coconut Fiber Based Friction Lining

Bashar *et al.* [32] in their contributions used coconut shells shown in Figure 2 to replace asbestos to produce based brake pads. The formulation consists of other ingredients coconut shells powder as filler, epoxy resin binder, reinforcement of Iron chip, methyl ethyl ketone peroxide as catalyst, cobalt nephthanate as accelerator iron and silica as abrasives and brass as friction modifier.

Figure 2: Coconut Shells (Abutu et al., [108])

Figure 3: Coconut Fibers [109]

The percentage weights the coconut shell powder and epoxy resin binder were varied while other igredients such as friction

modifier, abrasives, catalyst and accelerator have their percentage weight kept constant as shown in Table 3.

Table 3:	Percentage	compositions	of different	samples ((Source:Bashar	et al[32]).

	Percentage Composition (%)					
S/No	Constituents	Comp 1	Comp 2	Comp 3	Comp 4	Comp 5
	Matrix	20.00	30.00	40.00	50.00	60.00
1	Reinforcements	10.00	10.00	10.00	10.00	10.00
	Filler	50.00	40.00	30.00	20.0	20.00
2	Catalyst	0.50	0.50	0.50	0.50	0.50
	Accelerator	0.50	0.50	0.50	0.50	0.50
3	Abrasives	10.00	10.00	10.00	10.00	10.0
4	Friction Modifiers	9.00	9.00	9.00	9.00	9.000
	Total	100.00	100.00	100.00	100.00	100.0

The sieve size of 710µm was used to pulverized the filler with the conclusion that the higher the percentage of the ground coconut powder, the lower the breaking strength, compressive strength, hardness and impact thus high percentage of ground coconut powder induces brittleness. The

composites which are a cold worked has properties compared with the Honda commercial brake pads of the Enuco model suggesting suitability of the materials selected. Figures 3 and 4 show comparison of some properties of Bashar *et al.* [32] work with the commercial model.

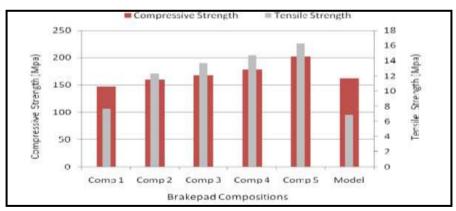


Figure 4: Comparison of compressive and breaking strength for the different compositions and model (Bashar *et al.*,[32])

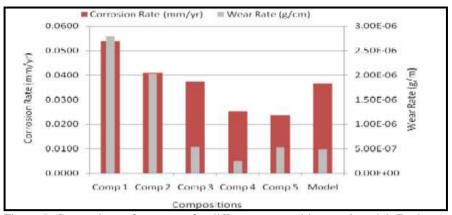


Figure 5: Comparison of wear rate for different compositions and model (Bashar *et al.* [32]).

The efforts of Darlington et al. [9] with three different samples of varving brake pads mass compositions of coconut shell powder and PKS produced results showing the properties of the newly developed samples with a density between 2.55 g/cm³ and g/cm³.the wear rate between 0.2007 g/min to 0.2733 g/min, the absorption of water of between 0.0399% to 0.0522 % and, the hardness was between 3.00Mpa and 3.41Mpa. Though the density and wear rate were high compared with when the commercial brake pad,but the concluded study that environmental convenience.it could be used substitute to asbestos because ofcarcinogenic health challenges it poses.In the report by Bahari et al.,[110], dried coconut husks (Figure 4) were used as the filler material with phenolic resin as the binding material. The 10 % and 30 % of coconut husk particles with size 80 mesh and 100 mesh

adapted paremeter were investiagted. The friction coefficient and characteristics of the heat resistance investigated showed that the brake pads with 100 mesh and 10 % coconut husk particles composition had highest coefficient of friction while the 100 mesh and 30 % of coconut husk dust showed the highest decomposition temperature which increased the thermal stability due to the high proportion of the coconut husk particles in the composition. These results imply that the brake pad from coconut husk particles had better heat resistance than commercial brake pads.

Malegue et al. [109] in their investigation, of different compostions namely BP1, BP2, BP3 and BP4 varied from 0, 5, 10 and 15 volume friction. Using a metallurgy technique.the coconut fibers as filler material reinforced with aluminum composites bound with phenolic resin with properties such as

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

density, microstructural analysis, porosity and hardness determined with densometer. Scanning Ellectron Microscopy (SEM). hardness tester and universal testing machine. The properties of the sample with 5 % (BP2) and 10 % (BP3) coconut fiber composites improved lower porosity, with density, and higher compressive strength indicating that the 10 %coconut fiber had the best strength bear the load to applications and compressive

force. The microstructure show an uniformly distributed resin and coconut fiber in the matrix.

2.5 Periwinkle Shell Based Brake Pad

Periwinkle shells as shown in Figure 6 was used to replace asbestos in brake pad production by Yawas, *et al.*,[111].In this work, non-asbestos brake pad of periwinkle shell materials was developed and its properties characterized.

Figure 6: Periwinkle Shells [108]

The formulation included powdered periwinkle shell, engine oil. water and phenol formaldehyde was used as the binder. The periwinkle shells were grounded and particulated into five sieve sizes of 710 µm, 500 µm, 335 µm, 250 µm, and 125 µm while the binder used was 35% resin.The phenolic indicated that five different brake pads produced were by moulding compression processing 40 kg/cm² pressure at 160°C moulding temperature and a curing time of 1.5 hours. All the

samples were reported to have been subjected to standard procedures of brake pad production and post cured with the summary that the periwinkle shell particles homogeneously distributed as the sieve sized decreases.

The hardness compressive strength, and density of the produced brake pad samples increases as the particle size decreases from 710 µm to 125 µm while the wear rate,oil absorption and absorption water a decreasing decreases wth

particle size. The results futher concluded that the 125 particles size compared well with the commercial brake pad with the optimal values of $1.01 \,\mathrm{g/cm^3}$ specific gravity, 0.41 value of coefficient of friction,116.7HRB Hardness, Compressive strength 147 N/mm², and 0.39 % swell in water and 0.37 % swell in oil. Aku al..[112] and Yakubu *al.*.[113] used periwinkle shell (Figure 6) as asbestos-free brake material and the results pad indicates suitabilty in the asbestos repalcement research drives. While Aku *al.*.[112] et uses spectroscopic and wear analysis to investigate and characterize the products. Yakubu et al.,[113] carried out the experiment using X-Ray Diffractometer (XRD), Thermogravimetric Analysis (TGA/DTA), Fouriertransform Infrared Spectrometry (FTIR), and X-Ray Fluorescent Spectrometry (XRF).

2.6 Kaolin Mineral, Ceramic and Fly Ash Based Brake Pad

To further widen search for replacement, asbestos Aderive [114] in his research work carried out a study on kaolin clay from Emure Local Government Area, Ekiti State of Nigeria. The clay beneficiated. examined. characterized and processed for automotive brake pad material. The results as reported revealed that kaolin clay group with good heat resistance is a good friction material in automobile based

industry, refractoriness, electronic products, technical works and ceramic manufacturing industries. Thermal property of kaolin samples was investigated between 1000 to 1400°C temperatures in order to ascertain their suitability for producing automobile brake pads. In the research work, kaolin clay was explored, exploited and employed specifically for ceramic disk brake pads. It was reported that 45 micron kaolin eventually adopted as the fillers in the waste glass matrix composite for the automobile brake pad experimentally developed. The result showed that kaolin grain sizes higher than 45 microns depressed the quality of kaolin required for the ceramic brake pad biding and filling.

Fly ash as shown in Figure 7 is a finely divided residue that is obtained when Coal (pulverized) is combusted and transported by a particle exhaust gases by filtration equipment such electrostatic precipitators before the flue gases reach the chimneys of coal fired power plants. Though the generated waste poses a great environmental concern Anushree Alka[115], Nataraian & al.,[116] was still able to used the fly ash as one for brake pad production investigating effect of the various composition on the mechanical and tribological properties of different brake pad materials.

Figure 7: Fly ash (Source: Natarajan et al.[116]).

Fly ash is composed significant quantity of calcium sulphate, silica, alumina, and un-burnt carbon ranged 10-60% as the filler material for the pad production brake aonther formulation without the fly ash. These work studied the effect of the ingredients on the tribological(coeficient friction and wear) and the mechanical properties different brake pad materials indicating coefficient of friction of the fly-ash in the range of 0.35 to 0.48 and better than the barites based (which do not contain fly-ash) and asbestos based brake pads. The wear resistance friction of the material was reported to have

been greatly influenced by the amounts of rockwool, zircon, ceramic wool and a solution of hydroxide in calcium samples while the presence of terraces (potassium titanate), friction dust powder, and wollastonite (CaSiO₃) influence in strong term the frictional coefficient of the brake pad.Likewise.the presence of para-aramid fiber and glass fiber increased the strength of the friction material. Zaharudin et al.[27] in their attempt, used a semi-metallic ceremic friction materials along other compostiuon as shown in Table 4 to produce another asbestos free brake pad via powder metallurgy method.

Table 4:Ingredients of the Compostion Formulation [27].

rable 4. Ingredients of the Composition Formulation [27].						
Ingredients	%Weight	Ingredients	%Weight			
Steel fiber	20.0	Iron oxide	8.0			
Ceramic Fiber	10.0	Magnesium oxide	3.0			
Friction dust	8.0	Copper chip	10.0			
Iron powder	5.0	Barium sulphate	5.0			
Phenolic Resin	12.0	Calcium carbonate	4.0			
Rubber	3.0	Graphite	12.0			

This study investigated and optimized process parameters namely moulding temperature moulding, pressure, and moulding time deploying the Taguchi desigh of experimental design. Properties evaluated included hardness. specific gravity wear and fade. The investigation revealed that the moulding pressure determine most of the properties.

2.7 Banana Peels Based Brake Pad

Another authors Idris, *et al.* [5] in their research work produced brake pads using banana peels both carbonized and uncarbonized as shown in Figures 8a, b and c with phenolic resin. The binder was varied at 5 % by weight interval from 5 to 30 % weight

Figure 8a: Banana Peel

Figure 8b: carbonized (BCp)

Figure 8c:un-carbonized (BUNCp) (Source: Idris *et al.*, [5]).

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

The study investigated the various properties showing that as more resin were added, the hardness, specific gravity and compressive strength were increasing as well. The water soak, wear rate and oil soak decreased as the resin weight increased. The 25 %weight sample un-carbonized (BUNCp) and 30 % weight of the carbonized (BCp) were of better properties. They concluded that:

(a) Better bonding of the uncarbonized particles with 20%

resin and the carbonized banana peels with 30% resin didn't produce high bonding.

- (b) As more resins are added, compressive strength, hardness, specific gravity increased while the oil soak, water soak and wear rate decreased as more resins were added.
- (c) The 25% un-carbonized samples and 30% carbonized samples have the better properties as summarized in Table 5.

Table 5: The Properties of Banana Peels Based Brake Pads [5].

	Commercial brake	Banana Peels	Banana Peels
Properties	pad asbestos based	Carbonized at	Uncarbonized
		30% Resin	at 25% Resin
Wear rate (mg/m)	3.80	4.67	4.15
Coefficient of Friction	0.30 - 0.40	0.35	0.40
Hardness Values (HRB)	101.0	71.6	98.8
Specific gravity (g/cm ³)	1.89	1.20	1.26
Thickness Swell in Water (%)	0.9	3.0	3.21
Thickness Swell in SEA oil	0.30	1.12	1.15
(%)			
Flame Resistance (%)	Charred ash 9%	Charred ash 12%	Charred ash
			24.67%

2.8 Egg Shells (EG) Based Brake Pad

Edokpia et al., [117] used Egg Shells (EG) asbestos as replacement in developing brake pad samples for its eco-friendly and biodegradable properties. In their work, a plant gum binder called Gum Arabic (GA) was used and the properties of the braked pads evaluated. The Egg Shells and Gum Arabic were alternative additives for asbestos formaldehyde resin respectively which have always been found to be carcinogenic in nature and nonbiodegradable. The composition of the Gum Arabic was varied from 3% 18% weight to and the

compressive strength, hardness values wear rate, swelling in water and SAE oil, thermal resistance, specific gravity and microstructure were all investigated. The 15% to 18 % weight Gum Arabic fairest bonding. The sample with 18% Gum Arabic has properties with maximal temperature decomposition higher asbestos and other alternative material used.

3. Brake Pad Composites from Cashew Nuts Shells and Plant Gum Binder

This study was experimentally based and the basic materials for the formulation and production of the composites were (1) Cashew Nut Shell (CNS) (2) Nigerian Gum Arabic grade 1, (3) Silicon Carbide (SC), Graphite (G) and Steel Dust (SD).

The equipment that were used include (1) Ball Milling Machine (2) Hammer Crushing and Milling Machine.(3) Hydraulic Model Piooeh-type, 100T-Capacity, Serial No 38280 (4) Vibro Electric Oven (5) Europer Bench Grinder of MD-250F,750W,380V-50Hz, R 29500rpm (6) Ø(50-27)mm by 65mm Mould (7) Digital Weighing Machine (8) Testometric Universal Testing Machine (TUF-C 1,000KN) (9) (M500-25KN,Gunt Tensometer Hamburg Hardness Tester and WP300) while other equipment used were BS 410 standard sieve sizes of aperture 300µm, micrometer screw gauge Stirrer,

Bowls, Optical Electron Microscope(OEM), Steel Spatula, and desiccators.

3.1 Methods

The first step is the $L_{27}3^5$ orthogonal array Design Experiment (DOE) via Taguchi with twenty seven (27) different formulations of Cashew Shells, Silicon Carbide, Nigerian Gum Arabic, Graphite and Steel Dust [118]. The Cashew Nut Shells. Silicon Carbide and Nigerian Gum Arabic compositions were varied while the other constituents such as Graphite and Steel Dust were kept constant and three (3) level $L_{27}3^5$ orthogonal arrav Experimental Matrix for the Composition formulation that was originated and utilized is shown in Table 6.

Table 6: Three (3) level $L_{27}3^5$ orthogonal array Experimental Matrix for the Compositions

Trial No	Cashew Nut Shells CNS (Grams)	Steel Dust SD (Grams)	Graphite G(Grams)	Silicon Carbide SC (Grams)	Nigerian Gum Arabic (Grams)
1	52.5	22.5	7.5	30	37.5
2	52.5	22.5	7.5	30	30
3	52.5	22.5	7.5	30	22.5
4	52.5	22.5	7.5	22.5	37.5
5	52.5	22.5	7.5	22.5	30
6	52.5	22.5	7.5	22.5	22.5
7	52.5	22.5	7.5	15	37.5
8	52.5	22.5	7.5	15	30
9	52.5	22.5	7.5	15	22.5
10	67.5	22.5	7.5	15	37.5
11	67.5	22.5	7.5	15	30
12	67.5	22.5	7.5	15	22.5

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

13	67.5	22.5	7.5	30	37.5
14	67.5	22.5	7.5	30	30
15	67.5	22.5	7.5	30	22.5
16	67.5	22.5	7.5	22.5	37.5
17	67.5	22.5	7.5	22.5	30
18	67.5	22.5	7.5	22.5	22.5
19	82.5	22.5	7.5	22.5	37.5
20	82.5	22.5	7.5	22.5	30
21	82.5	22.5	7.5	22.5	22.5
22	82.5	22.5	7.5	15	37.5
23	82.5	22.5	7.5	15	30
24	82.5	22.5	7.5	15	22.5
25	82.5	22.5	7.5	30	37.5
26	82.5	22.5	7.5	30	30
27	82.5	22.5	7.5	30	22.5

3.2 Development of the Composites

The Compression moulding method as successfully adopted and reported by Yewas et al., [111], Koya and Fono [100,101] and Bashar et al., [32] were used to develop the brake pad powdered composites. The Cashew Nut Shells was sieved into grades of 100 µm and the component materials of Cashew Nut Shells Powder, Gum Arabic Powder, the Steel Dust, Silicon Carbide and Graphite were weighed in the Digital Weighing Machine correspondingly formulations designed via Taguchi. The mixtures thoroughly ensured with the help of Homogenizer or Mixer of Model 89.2 Rid Scale & Co Ltd, Middleborough, England). mixing of the composition was

done for 20 to 30 minutes to achieve almost homogeneous mixture inside the mixer before pouring into the mould kept in a hot plate press at temperature of 150°C and 100,000N/cm² pressure for two (2) minutes. They were then being subjected to cold pressing and hot pressing before being allowed to cool at room temperature. After removing from hot press, the composites were removed from the mould and properly cleaned. It was then heat treated at a temperature of 120°C for 8 hours in the hot air oven. These procedures were repeated for all the twenty-seven (27)formulations produce the to respective composites. The produced samples were characterized using standard procedures for Brinell hardness,

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

Compressive strength, wear rate, Coefficient of friction and Ash content.

4. Results and Discussion

The results obtained from the tests and characterization of the twenty-seven (27) differently formulated samples are presented in table 7.

Table 7: Properties of the composites from Cashew Nut Shells and Plant Gum Binder

Samples	Hardness (BHN)	Compressive Strength (N/mm²)	Young Modulus (N/mm²)	Wear Rate (mg/m)	Coefficient of Friction	Flame Resistance (%)
1	31.83	3.643	68.398	2.31	0.3868	97.71
2	47.49	6.714	141.188	4.24	0.4554	96.67
3	31.83	6.332	100.016	3.47	0.3868	97.71
4	76.66	8.417	235.454	0.77	0.426	96.94
5	47.49	7.976	121.073	8.48	0.4162	96.95
6	76.66	5.879	83.375	4.62	0.4358	98.98
7	47.49	4.398	107.604	1.16	0.3966	97.21
8	31.83	7.138	58.906	1.54	0.426	96.69
9	76.66	9.863	182.783	8.48	0.4456	96.18
10	76.66	4.209	119.088	7.71	0.4064	96.71
11	76.66	6.956	117.789	6.55	0.4456	96.43
12	47.49	5.145	97.484	5.01	0.3868	97.22
13	47.49	6.365	147.826	8.48	0.475	95.91
14	47.49	5.509	75.071	5.78	0.4848	95.65
15	47.6	12.187	169.358	3.47	0.4456	96.18
16	31.83	4.781	106.285	8.86	0.475	95.66
17	47.49	7.851	136.013	6.17	0.4848	95.65
18	47.49	5.432	95.143	3.08	0.4064	97.2
19	31.83	3.568	80.162	3.85	0.4554	95.93
20	47.49	3.927	85.627	3.08	0.4848	95.41
21	76.66	3.758	65.04	8.09	0.4554	95.93
22	47.49	5.699	145.694	3.85	0.4554	96.17
23	76.66	3.099	71.829	2.7	0.4554	95.69
24	31.83	3.081	55.408	7.71	0.426	96.69

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

25	22.26	2.267	161.697	4.24	0.478	95.91
26	47.49	4.437	73.32	5.01	0.4848	95.65
27	47.49	6.405	152.709	2.31	0.4848	95.65

From the table it is observed that substatial values evaluated for all the properties such hardness, compressive strength, wear rates, ash content and coefficient of friction compares favourably with values reported by Ademoh and Olabisi [119], Asotah and Adeleke [120] and Isiaka and Temitope [121], Bala et al., [12] and Mayowa et al..[102] who used Cow bones to replace asbestos.Idris et al.,[5] reported properties of commercial brake pads thus: Wear rate-3.80mg/m, Co-efficient of friction-0.3-0.4. Hardness value-101HRB, Compressive Strength-110N/mm2 and 9% of charred ash. From table 7, the best values obtained are 1.16mg/m, 0.4848 76.66BHN. 12.187N/mm2 97.71% of ash content retained. It is clear that these value compare favourably therefore suggesting promising prospect replacing asbestos with cashew nut while shells the plant gum binder(Nigerian Gum Arabic) replaces the toxic resins such as epoxy, phenolic and formaldehyde binders.

5. Conclusion

From the study, the following conclusion can be adduced

(1) Agro based materials especially fibres from plants

- are good replacements for asbestos and resin components of brake pads material
- (2) Cashew nuts shells is suitable as frictional or base material to replace asbestos in brake pads production
- (3) Plant Gum such as Nigerian Gum Arabic is an alternate binding material in the composites mix for automobile brake pads

Recommendations

With this promising outlook of using cashew nut shells and plant gum binder in the composites mix of automobile brake pads, it is recommended that smaller sieve sizes say 100µm and 150µm be used and Signal-to-Noise ratios, contour plots be used to optimize the best formulations and the properties.

Grey Relational Analysis (GRA) can also be used to compress the multi-response properties to a single response optimization.

Acknowledgements

The authors wish to acknowledge the financial supports both thesis allowance and other adminstartive offered by the Federal University of Technology, Minna in the actualization of this research work for publication

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

References

- [1] Aigbodion, V S, Agunsoye, J O. (2010).Bagasse (Sugarcane waste):Non-Asbestos Free Brake Pad Materials. Lambert Academic Publishing, Germany, ISBN 978-3-8433-8194-9.
- [2] Fu Z., Suo B., Yun., Lu.Y., Wang H., & Qi S.(2012).Development of ecofriendly brake friction composites containing flax fibers.Journal of Reinforced Plastics and Composites,31(2), 681-689.
- [3] Bono, S.G., & Dekyrger, W.J., (1990), Auto Technology, Theory and Service, 2nd ed., DELMAR Publishers, New York, 45–48.
- [4] Deepika, K., Reddy Ramana, Reddy D. (2013). Fabrication and Performance Evaluation of a Composite Material for Wear Resistance Application, International Journal of Engineering Science and Innovative Technology (IJESIT), 2(6), p.1 - 6.
- [5] Idris, U. D., Aigbodion, V. S., Abubakar, I. J., & Nwoye, C. I., (2015). Eco-friendly asbestos free brake-pad: using banana peels, Journal of King Saud University Engineering Sciences, 27, 185 192.
- [6] Ishidi, E.,
 Adamu,I.,Kolawale,E.,
 Sunmonu,K., & Yakubu, M.
 (2011).Morphology and
 Thermal Properties of
 Alkaline Treated Palm Kernel
 Nut Shell–HDPE Composites.
 Journal of Emerging Trends
 in Engineering and Applied

- Sciences (JETEAS),2, 346-350.
- [7] Roubicek, V.,Raclavska, D., Filip, H...Juchelkova P.,(2008), Wear and environmental of aspects composite materials for automotive braking industry, Wear, Vol. 265, pp 167 -175
- [8] Rao,R.U.,& Babji, G.(2015).A Review paper on alternate materials for Asbestos brake pads and its characterization,.International Research Journal of Engineering and Technology, 2,556-562.
- [9] Darlington E., Chukwumaobi O., & Patrick O. (2015).Production of Eco-Friendly Brake Pad Using Raw Materials Sourced Locally in Nsukka.Journal of Energy Technologies and Policy, 5(11), ISSN 2224–3232.
- [10] Onyeneke,F., Anaele,J.,& Ugwuegbu, C. (2014). Production of Motor Vehicle Brake Pad Using Local Materials (Perriwinkle and Coconut Shell)," The International Journal Of Engineering And Science (IJES).
- [11] Ibhadode, A. O. A.,& Dagwa,I.M.(2008).Developm ent of asbestos-free friction lining material from palm kernel shell," J. Braz. Soc. Mech. Sci. Eng., 1,1-2.
- [12] Bala, K. C., Okoli, M., & Abolarin, M. S.(2016).Development of Automobile Brake Lining using Pulverized Cow

- Hooves, Leonardo Journal of Sciences, 15(28), p.95 108.
- [13] Bajpai, P.K., Singh, I., & Madaan, J.(2013).Tribological behavior of natural fiber reinforced PLA composites," Wear, 297,829-840.
- [14] Menezes, P.L., Rohatgi, P.K., & Lovell, M.R.(2012).Studies on the tribological behavior of natural fiber reinforced polymer composite," in Green Tribology, ed: Springer, 329-345.
- [15] Nagesh, S.,Siddaraju, C.,Prakash,S., & Ramesh, M.(2014).Characterization of brake pads by variation in composition of friction materials, Procedia Materials Science,5, 295-302.
- [16] Al-Oqla, F.M., Sapuan, S.M., Ishak, M.R., & Nuraini, A.A. (2015).Α Model Evaluating and Determining the Most **Appropriate** Polymer Matrix Type for Natural Fiber Composites," International Journal of Polymer Analysis and Characterization, 20, 191-205.
- [17] Carus, M., Eder, A., Dammer, L., Korte, H., Scholz, Essel, L. (2015). Wood-Plastic Composites (WPC) and Natural Fibre Composites (NFC)," Nova-Institute: Hürth, Germany, 16.
- [18] Blesdzki, A. K., & Gassan J. (1999). Composite Reinforced with Cellulose based Fibres, Progress in Polymer Science, 24(2), 221–274. doi:

- 10.1016/S0079–6700(98)00018–5.
- [19] Ikpambese, K. K., Gundu, D. T... & Tuleu. L. T. (2014).Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads.Journal of King Saud University Engineering _ Sciences, 28 (1), 110–118.
- [20] Leman,Z., Sapuan, S.,Saifol,A., Maleque, M., & Ahmad, M,(2008).Moisture absorption behavior of sugar palm fiber reinforced epoxy composites," Materials & Design,29,1666-1670.
- [21] Achebe, C., Chukwuneke, J., Anene, F., & Ewulonu. C.(2018).A retrofit for asbestos-based brake pad employing palm kernel fiber the base filler as material.Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials.Design and **Applications** 146442071879605.
- [22] Afolabi, M., Abubakre, O.K., Lawal,S.A., & Raji, A.(2015). Experimental investigation of palm kernel shell and cow bone reinforced polymer composites for brake pad production, "International Journal of Chemistry and Materials Research, 3(2), 27-40.
- [23] Cyras, V.P, Iannace, S., Kenny J. M., Vazquez, A. (2001). Relationship between processing and properties of

- biodegradable composites based on PCL/starch matrix and Sisal fibers. Polymer Composites, 22: 104–110.
- [24] Jang, H., & Kim, S. J. (2000). The Effects of Antimony Trisulfide and Zirconium Silicate in the automotive. Wear,239, 229–236.
- [25] Cho, M., Kim, D., &Kim S. J. (2005). Effects of ingredients on tribological characteristics of a brake pad, An experimental case study, Wear, 258, (11–12),1682–1687.
- [26] Mutlu, I., Eidogan, O., Findik, F. (2005). Production of ceramic additive automotive brake pad and investigation of its braking characteristics, International journal of Tribology, 84–92.
- [27] Zaharudin A.M., Tali R.J., Berhan M.N., BudinS., & Aziurah R. (2012). Taguchi method for optimizing the manufacturing parameters of friction materials, Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450, Penang, Malaysia Kedah, Malaysia.
- [28] Talib, R. J., Mohmad, S. S., Ramlan, K.. (2012). Selection of best formulation for semimetallic brake friction materials development. Powder metallurgy (accessed at www.intechopen.com), 1–30.
- [29] Todorovic, J. (1987). Modelling of the tribological properties of friction materials

- used in motor vehicles brakes. Processing Instruction Mechanical Engineers. 226, 911–916.
- [30] Tanaka, K., Ueda, S., & Noguchi, N. (1973). Fundamental studies on the brake friction of resin–based friction materials. Wear, 23, 349–365.
- [31] Ibhadode, A. O. A., & Dagwa, I. M. (2008). Development of asbestos—free friction pad material from palm kernel shell, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 30(2), 166173.
- [32] Bashar D., Peter B. M., and Joseph M. (2012). Effect of Material Selection and Production of a Cold–Worked Composite Brake Pad, Journal of Engineering of a Pure and Applied Science, 2(3),154.
- [33] Ruzaidi, C.M., Mustafa, A. B., Shamsul, J.B., & Alida A., Kamarudin, H. (2011).Morphology and Wear Properties of Palm Ash and PCB Waste Brake International Conference on Asia Agriculture and Animal IPCBEE vol.1, IACSIT Press, Singapore.
- [34] Naemah, B. A. (2011).

 Application of Palm Waste
 Product for Raw material in
 organic brake friction
 materials, Department of
 Mechanical Engineering,
 UTem, Melaka, Malaysia.

URL: http://journals.covenantuniversity.edu.ng/index.php/cjet

- [35] Lee,P.W.,& Filip, P.(2013).Friction and wear of Cu-free and Sb-free environmental friendly automotive brake materials," Wear, 302,1404-1413.
- [36] Matějka, V.,Fu, Z.,Kukutschová, J.,Qi, S.,Jiang, S.,Zhang, X.(2013)
 "Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites," Materials & Design,51,847-853.
- [37] Lee,P.W.(2013). Design and optimization of low-copper and copper-free automotive brake friction materials: Southern Illinois University at Carbondale.
- [38] Blau, P., J. (2001),Compositions, Functions and Testing of Friction Brake Materials and their Additives, Being a report by Oak Ridge National Laboratory for U.S. Dept. of Energy. http://www.Ornl.gov/webworks/cppr/y2001/rpt/112 956.pdf, 78–80.
- [39] AShalwan, A.,& Yousif, B.F,(2013).In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres, Materials & Design,48,14-24,
- [40] Jawaid M., & Khalil,H.A.(2011).Effect of layering pattern on the dynamic mechanical properties and thermal degradation of oil palm-jute

- fibers reinforced epoxy hybrid composite," BioResources, 6, 2309-2322.
- [41] Kalia. S., Kaith,B.,& Kaur, I. (2009). Pretreatments of natural fibers and their application reinforcing as material in polymer composites—a review. Polymer Engineering & Science, 49,1253-1272.
- [42] Väisänen, T.,Haapala, A., Lappalainen,R., & Tomppo,L. (2016).Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review," Waste Management, 54,62-73.
- [43] Kalia, S.,Dufresne, A.,Cherian, B.M.,Kaith, B., Avérous, L.,Njuguna, J.(2011).Cellulosebased bioand nanocomposites: a review," International Journal of Polymer Science, 20(11).
- [44] Pickering, k. (200). Properties and performance of natural-fibre composites: Elsevier.
- [45] ohn M.J.,& Anandjiwala, R.D.(2008).Recent developments in chemical modification and characterization of natural fiber-reinforced composites," Polymer composites, 29, 187-207.
- [46] Kumar, P., Barrett, D.M., Delwiche, M.J., & Stroeve, P.(2009).Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production," Industrial

- & engineering chemistry research,48,3713-3729.
- [47] Majhi,S.K., S.K.. Navak. Mohanty. S., & Unnikrishnan.L. (2010). Mechanical and fracture behavior of banana fiber reinforced Polylactic acid biocomposites.International Journal of **Plastics** Technology, 14, 57-75.
- [48] Jawaid M.,& Khalil, H.A.(20110.Cellulosic/synthe tic fibre reinforced polymer hybrid composites: A review," Carbohydrate polymers, 86, 1-18.
- [49] Gorshkova, T., Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T., Lev-Yadun, S. (2012). Plant fiber formation: state of the art, recent and expected progress, and open questions, Critical Reviews in Plant Sciences, 31, 201-228.
- [50] Oluwafemi E. I., Freddie L. I., and Gloria A.A. (2019). Biomass Based Composites for Brake Pad: A Review, International Journal of Mechanical Engineering and Technology (IJMET) 10(4), 18–41, Article ID: IJMET_10_04_002
- [51] Khalil, H.A., Bhat, A., & Yusra, A.I. (2012). Green composites from sustainable cellulose` nanofibrils: A review," Carbohydrate Polymers, 87,963-979.
- [52] Khalil, H.A., Hanida, S., Kang,C., & Fuaad,

- N.N.(2007).Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites, Journal of Reinforced Plastics and Composites, 26,203-218.
- [53] Anigo, K., Dauda, B., Sallau, A.,& Chindo, I.(2011).Chemical composition of kapok (Ceibapentandra) seed and physicochemical properties of its oil," Nigerian Journal of Basic and Applied Sciences,21,105-108.
- [54] Chaiarrekij, S.,
 Apirakchaiskul, A.,
 Suvarnakich,K.,&
 Kiatkamjornwong,
 S.(2011).Kapok
 I:characteristcs of Kapok fiber
 as a potential pulp source for
 papermaking," BioResources,
 7, 0475-0488.
- [55] Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R.(2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production," Industrial crops and products, 19,245-254.
- [56] Vijayalakshmi,K., Neeraja, C.Y., Kavitha, A.,& Hayavadana, J.(2014).Abaca fibre, Transactions on Engineering and Sciences,2,16-19.
- [57] Guimarães, J., Frollini, E.,Da Silva, C., Wypych, F.,& Satyanarayana, K

- .(2009).Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil,"Industrial Crops and Products, 30,407-415.
- [58] Preethi, P., & Balakrishn Murthy,G.(2013). Physical and chemical properties of banana fibre extracted from commercial banana cultivars grown in Tamilnadu State, Agrotechnol S11, 8.
- [59] A. Leão, S. M. Sartor, and J. C. Caraschi, "Natural fibers based composites—technical and social issues," Molecular Crystals and Liquid Crystals, vol. 448, pp. 161/[763]-177/[779], 2006.
- [60] B. Wahlang, B., Nath, K., Ravindra, U., Chandu R., & Vijayalaxmi, K. (2012). Process and utilization ing for sugarcane bagasse functional food formulations," Proceedings International Conference and Exhibition on Food Processing and Technology, 106-112.
- [61] Hemmasi, A., Samariha, A., Tabei, A., Nemati, M., & Khakifirooz, A.(2011). Study of morphological and chemical composition of fibers from Iranian sugarcane bagasse, "American-Eurasian J. Agric. & Environ. Sci, 11, 478-481.
- [62] Pardo, M.E.S., Cassellis, M.E.R., Escobedo, R.M., & García, E.J. (2014). Chemical characterization of the industrial residues of the

- pineapple (Ananas comosus)," Journal of Agricultural Chemistry and Environment, 3, 53.
- [63] Khalil, h.A., Yusra, A.I., Bhat, A., & Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber, "Industrial Crops and Products, 31, 113-121.
- [64] Thiruchitrambalam,
 M.,Alavudeen,A., &
 Venkateshwaran,
 N.(2012).Review on kenaf
 fiber composites," Rev. Adv.
 Mater. Sci,32, 106-111.
- [65] Zhao, X., Zhang, L., & Liu. D.(2012).Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose," **Biofuels** Bioproducts and Biorefining, 6, 465-482.
- [66] Satyanarayana, K.G., Arizaga,G.G., & Wypych, F.(2009).Biodegradable composites based on lingo cellulosic fibers—An overview," Progress in polymer science, 34, 982-1021.
- [67] Yan-hui, H.,Ben-hua, F.,Yan, Y.,& Rong-jun, Z.(2012).Plant age effect on mechanical properties of moso bamboo (Phyllostachys heterocycla var. pubescens) single fibers,"Wood and Fiber Science, vol. 44, pp. 196-201.

- [68] Cicala, G., Cristaldi, G.,Recca, G., & Latteri, A.(2010).Composites based on natural fibre fabrics," in Woven fabric engineering, ed: InTech.
- [69] Khalil, H.A., Jawaid, M., Hassan, A., Paridah, M., & Zaidon. A.(2012).Oil palm biomass fibres and recent advancement in oil palm biomass fibres based hybrid biocomposites," Composites and their applications, ed: InTech.
- [70] John, M.J.,& Thomas, S.(2008) "Biofibres and biocomposites," Carbohydrate polymers, 71, 343-364.
- [71] AbdulKhalil, H., Siti-Alwani, M., Ridzuan, R., Kamarudin, H., & Khairul, A. (2008).Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers," Polymer-Plastics Technology and Engineering, 47,273-280.
- [72] Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production," Industrial crops and products, 19,245-254.
- [73] Liu, K., Takagi, H., Osugi, R.,& Yang, Z.(2012). Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites,"

- Composites Science and Technology, 72, 633-639.
- [74] Bongarde, U., & Shinde, V.(2014). Review on natural fiber reinforcement polymer composites, International Journal of Engineering Science and Innovative Technology, 3,431-436.
- [75] Soiela, M.,Ilves, A.,Viikna, A.,&
 Erberg,E.(2005).Properties of flax fiber-reinforced polyethylene films," Cheminë technologija, 36, 38-45.
- [76] Rodriguez, M., Rodriguez, A., Bayer, J., Vilaseca, F., Girones, J., & Mutje, P. (2010).
 "Determination Of Corn Stalk Fibers'strength Through Modeling Of The Mechanical Properties Of Its Composites," BioResources, 5, 2535-2546.
- [77] Vijayalakshmi, K., Neeraja, C.Y., Kavitha, A.,& J. Hayavadana, J.(2014).Abaca fibre,"Transactions on Engineering and Sciences, 2,16-19.
- [78] Alves, C., Freitas, M., Silva, Luz,S.,& Alves, D.(2009).Sustainable design procedure: the role of composite materials to combine mechanical and environmental features for agricultural machines," Materials & Design, 30, 4060-4068.
- [79] Alwani, M.S., Khalil, H.A.,Islam, N.,Sulaiman, O., Zaidon, A.,& Dungani,R.(2015).

- "Microstructural study, tensile properties, and scanning electron microscopy fractography failure analysis of various agricultural residue fibers, Journal of Natural Fibers, 12, 154-168.
- [80] Sumaila, M., Amber,I., & Bawa, M.(2013). Effect of fiber length on the physical and mechanical properties of ramdom oriented, nonwoven short banana (musabalbisiana) fiber/epoxy composite," Cellulose, 62, 64.
- [81] Sakthivel, M., and Ramesh, S. (2013). Mechanical properties of natural fiber (banana, coir, sisal) polymer composites," Science park, 1, 1-6.
- [82] Mwaikambo, L., & Ansell, M.(2001). The determination of porosity and cellulose content of plant fibers by density methods. Journal of materials science letters, 20, 2095-2096.
- [83] Chaiarrekij,
 S.,Apirakchaiskul,
 A.,Suvarnakich, K., &
 Kiatkamjornwong, S.(2100).
 Characteristcs of Kapok fiber
 as a potential pulp source for
 papermaking. BioResources,
 7, 0475-0488.
- [84] Bouasker, M., Belayachi, N., Hoxha, D., & Al-Mukhtar, M. (2014). "Physical characterization of natural straw fibers as aggregates for construction materials applications," Materials,7, 3034-3048.

- [85] Reddy, N., & Yang, Y. (2006). Properties of high-quality long natural cellulose fibers from rice straw. Journal of agricultural and food chemistry,54,8077-8081.
- [86] Driemeier, C., Santos, W.D., & Buckeridge, M.S. (2012). Cellulose crystals in fibro vascular bundles of sugarcane culms: orientation, size, distortion, and variability," Cellulose, 191507-1515.
- [87] Munawar, S.S., Umemura, K., & Kawai S.(2007). Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles, Journal of Wood Science, 53,108-113.
- [88] Paridah, M.& Khalina, A.(2009).Effects of soda retting on the tensile strength of kenaf (Hibiscus cannobnius L.) bast fibres, Project Report Kenaf EPU, 21.
- [89] Rathod, A, & Kolhatkar, A. (2014). Analysis of physical characteristics of bamboo fabrics,"International Journal of Research in Engineering and Technology, 3, 21-25.
- [90] Alwani, M.S., Khalil, H.A., Islam, N., Sulaiman, O., Zaidon, O., and Dungani, R.(2015). Microstructural study, tensile properties, and scanning electron microscopy fractography failure analysis of various agricultural residue fibers. Journal of Natural Fibers, 12,154-168.

- [91] Sakthivel, M., & Ramesh, S. (2013). Mechanical properties of natural fiber (banana, coir, sisal) polymer composites," Science park, 1,1-6.
- [92] Biagiotti, J., Fiori, S., Torre, L., López-Manchado, M., & Kenny, J.M.(2004).Mechanical properties of polypropylene matrix composites reinforced with natural fibers: a statistical approach," Polymer composites, 25, 26-36.
- [93] Puglia, D., Biagiotti J., & Kenny, J. (2005). A review on natural fibre-based composites—Part II: Application of natural reinforcements in composite materials for automotive industry, "Journal of Natural Fibers, 1, 23-65.
- [94] Osarenmwinda, J.O., & Nwachukwu, J.C. (2010), Development of Composite Material from Agricultural Waste. International Journal of Research in Africa 3: 42-48.
- [95] EN 310 (1993), Wood based panels, Determination of modulus of elasticity in bending and bending strength, European standardization committee, Brussels.
- [96] EN 317 (1993), particleboards and fibreboards determination of swelling in thickness after Immersion, European Standardization committee, Brussels.
- [97] EN 319 (1993), Particleboards and fibreboards

- determination of tensile strength perpendicular to plane of the board, European standardization committee, Brussels.
- [98] Lawal, S.S, Bala, K.C., and Alegbede, A.T. (2017). Development and production of brake pad from sawdust composite, Leonardo Journal of Science, 16(30) 47-56, http://www.ljs.academicdirect .org
- [99] Bledzki, A., Franciszczak, P., Osman, Z., & Elbadawi, M. (2015).Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers," Industrial Crops and Products, 70, 91-99.
- [100] Fona, R.S., and Koya, O.A. (2013). Characteristics of Pulverized Palm Kernel Shell for sustainable waste diversification. International Journal of Science & Engineering Research ,4.
- [101] Fono–Tamo, R. S., & Koya, O. A. (2013). Evaluation of Mechanical properties of Friction Pad developed from Agricultural Waste. International Journal of Advancements in Research & Technology, 2(154), 2278–7763.
- [102] Mayowa, A., Abubakre, O. K.. Lawal, S. A., & Abdulkabir, R. (2015).Experimental Investigation of Palm kernel shell and Cow polymer Bone Reinforced composites for Brake Pad Production. International

- Journal of Chemistry and Material Research, 3(2), 27–40.
- [103] Ghazali, C.M.R., Kamarudin, H., Jamaludin, S.B., & Abdullah, M. (2011). Comparative study on thermal, compressive, and wear properties of palm slag brake pad composite with other fillers," in Advanced Materials Research,1636-1641.
- [104] Ghazali, C.M.R., Kamarudin, H., Shamsul, J., Abdullah, M., & Rafiza, A. (2012. Mechanical properties and wear behavior of brake pads produced from palm slag," in Advanced Materials Research, 26-30.
- [105] Elakhame Z., Alhassan, O., & Samuel, A. (2014). Development and production of brake pads from palm kernel shell composites," International Journal of Scientific & Engineering Research, 5,735-744.
- [106] Mgbemena, C.O., Mgbemena, C.E., & Okwu, M.O. Thermal stability of pulverized palm kernel shell (PKS) based friction lining material locally developed from spent waste.
- [107] Adeyemi I.O. (2016).

 Development of AsbestosFree Automotive Brake Pad
 Using Ternary Agro-Waste
 Fillers," Development, 3.
- [108] Abutu J., Lawal S A, Ndaliman M. B., & Lafia Araga R A. (2018). An

- Overview of Brake Pad Production Using Non Hazardous Reinforcement Materials. ACTA TECHHNICA CORVINIENSES-Bulletin of Engineering Tome XI.
- [109] Maleque M., Atiqah, A.,Talib, R., and Zahurin, H. (2012) New natural fibre reinforced aluminium composite for automotive brake pad. International journal of mechanical and materials engineering, 7,166-170.
- [110] Bahari S.A., Chik M.S., M.A., Kassim Som-Said C.M.. Misnon M.I.. Mohamed **Z**. (2012).Frictional and heat resistance characteristics of coconut filled husk particle brake automotive pad.American Institute Physics Conference Series.162-168.
- [111] Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos—free brake pad.Journal of King Saud University—Engineering Sciences, 28, 103–109.
- [112] Aku S., Yawas D., Madakson P.,& Amaren, S.(2012).Characterization of periwinkle shell as asbestosfree brake pad materials, The Pacific Journal of Science and Technology, 13, 57-63.
- [113] Yakubu, A.S., Amaren, S., & Saleh, Y.D. (2013) Evaluation of the wear and

- thermal properties of asbestos free brake pad using periwinkles shell particles. Usak University Journal of Material Sciences, vol. 2, 99-108.
- [114] Aderiye, J. (2014), Kaolin Mineral Material for Automobile Ceramic Brake Pad Manufacturing Industry, International Journal of Technology Enhancements and Emerging Engineering Research, 2(3), ISSN 2347-4289.
- [115] Anushree, M. & Alka, T., (2009). Eco–friendly Fly Ash Utilization: Potential for Land Application. Journal of Critical Reviews in Environmental Science and Technology, 39(4), 333–366. Retrieved from http://dx.doi.org/10.1080/106 43380 701413690.
- [116] Natarajan, M. P... Rajmohan, B., & Devarajulu, (2012).Effect Ingredients on Mechanical **Tribological** and Characteristics of Different Materials. Brake Liner International Journal Mechanical Engineering and Robotic research. 1(2). IJMERR, ISSN 2278 – 0149.
- [117] Edokpia, R. O., Aigbodion,
 V. S., Obiorah, O. B.,
 Atuanya, C. U. (2014).
 Evaluation of the Properties
 of Ecofriendly Brake Pad
 Using Egg Shell Particles—
 Gum Arabic. Science

- Direct®, Elsevier B.V. DOI: 10.1016/j.rinp.06.003
- [118] Sadiq, S.L., Nuhu, A.A., Katsina. C.B., Abdulrahman, A.S. (2019). Optimization of Compositions for Wear Rate of Cashew Nut Shells Based Automobile Brake **Pads** Composites.4th National Conference. Nigerian Institution of mechanical Engineers, Minna Chapter 22-
- [119] Ademoh, N.A., & Olabisi, A.I. (2015). Development and evaluation of maize husks (asbestos free) based brake pad. Industrial Engineering Letters. 3(2) 67-79.
- [120] Asotah, W., and Adeleke, A. (2017) Development of asbestos free brake pads using corn husks," Leonardo Electronic Journal of Practices and Technologies 129-144.
- [121] Isiaka, O. O., & Temitope, A. A. (2013). Influence of Cow Bone Particle Size Distribution on the Mechanical Properties of Cow Bone–Reinforced Polyester Composites. Biotechnology Research International, 13, Article ID 725396.