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Abstract

We propose a novel computational framework for the robust optimization of highly

nonlinear, non-convex models that possess uncertainty in their parameter data. The

proposed method is a generalization of the robust cutting-set algorithm that can han-

dle models containing irremovable equality constraints, as is often the case with

models in the process systems engineering domain. Additionally, we accommodate

general forms of decision rules to facilitate recourse in second-stage (control) vari-

ables. In particular, we compare and contrast the use of various types of decision

rules, including quadratic ones, which we show in certain examples to be able to

decrease the overall price of robustness. Our proposed approach is demonstrated on

three process flow sheet models, including a relatively complex model for amine-

based CO2 capture. We thus verify that the generalization of the robust cutting-set

algorithm allows for the facile identification of robust feasible designs for process

systems of practical relevance.
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1 | INTRODUCTION

Data in mathematical optimization models are often subject to some

level of uncertainty. The latter can originate from measurement

errors and the use of empirical data, economic stochasticity

(e.g., market prices), or variations in the process environment

(e.g., feedstock quality). For chemical process models, uncertainty

most often originates from a lack of knowledge regarding underlying

physical properties, such as thermodynamic and kinetic properties,

or constants associated with the prevailing heat and mass transport

phenomena. In the context of process systems engineering, where

critical design and control decisions are made by solving models that

are subject to such uncertainties, it is especially important to under-

stand the effects of parametric uncertainties on the performance of

the chosen solutions, and if significant, to mitigate uncertainty dur-

ing the optimization phase so that any resulting design is safely and

robustly implemented.

Due to the ubiquitous existence of uncertainty in process systems

engineering models, there exists a breadth of literature in developing

and applying risk-averse optimization approaches. Early work in the

field introduced two-stage nonlinear programming formulations with

bounded uncertain parameters,1 two-stage stochastic programming

approaches,2,3 chance-constrained optimization,4 and flexibility analy-

sis formulations and algorithms5-7 for handling process systems engi-

neering design under uncertainty. More recently, work by Li and

Grossmann8 proposed a novel algorithmic approach for solving con-

vex, nonlinear stochastic programming problems with mixed-integer

recourse with applications in batch plant design and planning with

uncertainties in demands and prices. Kelley et al9 developed a frame-

work to account for uncertainty via chance-constraints in

dynamically-constrained scheduling problems, demonstrating this

methodology on a complex air separation unit. Finally, Wang et al10

devised an approach for handling parameter uncertainty in solid–

liquid batch reactors wherein worst-case values for parameters in the
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uncertainty space are iteratively added as scenarios to the optimal

control problem.

Within the field of mathematical programming, robust optimiza-

tion (RO) is a well-established approach for formulating and solving

risk-averse models. The vast majority of the RO literature investigates

its application on linear and convex models. Specifically, linear and

convex RO and adjustable robust optimization (ARO),11 wherein a

subset of variables become “wait-and-see” decisions via functional

dependence on the uncertainty, have had much success in identifying

robust solutions to a variety of problems such as process

scheduling,12-16 model-predictive control,17,18 vehicle routing,19 pro-

ject scheduling,20 industrial steam system optimization,21 and resilient

network design,22 among many other settings. It has also been shown

by Zhang et al23 that there are theoretical similarities between RO

and flexibility analysis when applied to linear systems, which high-

lights the fact that optimization under uncertainty has long been an

area of focus within chemical engineering that has led to the develop-

ment of novel methodologies.

In the chemical process design context, however, models typically

possess complex nonlinearities, including many non-convexities origi-

nating from physical and chemical equations. These nonlinearities can

be in terms of both decision variables and uncertain parameters in the

model, meaning that traditional duality-based reformulation methods

in the RO literature may lead to either overly conservative or non-

robust solutions due to violations of certain underlying assumptions.

To address this, Bertsimas et al24 proposed a local search algorithm

for identifying robust feasible solutions to uncertain optimization

problems with non-convex inequality constraints. Additionally, there

have been recent advances in the development of novel methods and

applications of RO methods to nonlinear process systems engineering

models, including general nonlinear programming robust counterpart

formulations,25 robust counterparts with local linearization of

nonlinear uncertain constraints and a novel sampling algorithm,26

application to the pooling problem utilizing a cutting-plane solution

algorithm,27 application to water treatment network operation,28

robust counterpart derivation for the synthesis of fuel refineries under

cost uncertainty,29 and design and operation of process systems with

resilience to disruptive events,30 to name but a few.

A less widely utilized RO solution approach is the robust cutting-

set algorithm (RCS), which was first proposed by Mutapcic and Boyd31

as an adaptation of Kelley's cutting-set approach32 for application to

inequality-only constrained RO problems. In the RCS algorithm, the

robust counterpart is solved by iterating between two subproblems,

namely the master and the separation problems. In the master sub-

problem, optimal designs are identified that are robust against a care-

fully chosen finite set of uncertain parameter realizations. Then, given

a master subproblem solution, the separation subproblem is solved to

identify violating parameter realizations that are to be added back to

the master problem, with the process repeating until no more viola-

tions can be found. This algorithmic solution approach is generally

applicable to any continuous optimization problem, so long as the

model possesses only inequality constraints and/or equality con-

straints that can be reformulated via direct state-variable elimination.

We acknowledge that there remains a practical need to develop

general RO approaches that can identify robust solutions in nonlinear,

non-convex process models that consist mostly of equality constraints

or state equations, which cannot be readily simplified or solved out of

the formulation. Such constraints ubiquitously arise in process design

models due to the extensive use of empirical property correlations

and the presence of recycle streams in process flow sheets, among

other reasons. For these classes of problems, there is currently no RO

solution approach that guarantees robust solutions against the entire

uncertainty space. To that end, we propose here an extension to the

robust-cutting plane method proposed by Mutapcic and Boyd,31

which we refer to as the generalized robust cutting-set (GRCS)

approach. We aim for the latter to be capable of certifying fully robust

solutions to non-convex optimization problems with a large contin-

gent of equality constraints, as well as be valid for models with nonlin-

earities and non-convexities from both the decision variables and

uncertain parameters. The GRCS algorithm has two key features.

First, it handles equality constraints systematically and without

reformulation. To achieve this, the algorithm sequentially hedges

against realizations of parametric uncertainties by maintaining copies

of state variables and equations for each added uncertain parameter

realization to ensure the feasibility of the master problem state equa-

tions. Second, it uses general decision rules (DR), as applied in the area

of adjustable RO,11 in order to handle control variables, which can be

thought of as second-stage variables in process design contexts.

The key contributions of this work are thus threefold. First, we

provide a formal RO framework in the context of complex, highly

non-convex, equality-constrained process design models via the GRCS

algorithm. Second, we demonstrate the effective use of nonlinear DR

functions in decreasing the adaptivity gap in solving the two-stage

problem, that is, increasing second-stage flexibility to approach true

two-stage optimality. Finally, we illustrate the tractability of our pro-

posed approach on a number of case studies, including a complex

equation-oriented flow sheet model for an amine solvent-based car-

bon capture process.

The remainder of the paper is structured as follows. In Section 2,

we explain the details of our proposed approach, including the prob-

lem formulation and solution algorithm. Next, we discuss our imple-

mentation in Section 3. In Section 4, we discuss our methodology to

properly evaluate the statistical quality of our two-stage robust solu-

tions. We then showcase several case studies in Section 5 to illustrate

the performance of the GRCS algorithm on real process systems

models, before finally concluding with some remarks in Section 6.

2 | METHODOLOGY

2.1 | The robust counterpart to a process design
formulation

We begin the derivation of the robust counterpart with the definition

of variables, parameters, and function mappings. For a process optimi-

zation model, we define design variables x�X⊆ℝm , control variables
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z�ℝn, state variables y�ℝa, and all potentially uncertain input data

q�ℝw. The domain of the design variables, x�X , is defined here

abstractly to represent non-uncertain constraints involving just these

variables. Most often, this domain incorporates the applicable variable

bounds. The design variables (e.g., equipment sizes) are also referred

to as first-stage variables, as they have to be committed upon before

the true realization of the parameters q is known. In contrast, the con-

trol variables (e.g., flow rates, as manipulated via a valve) are also

referred to as second-stage variables, as in principle their values can

be adjusted after this realization is known. Finally, the state variables

y are those second-stage variables that do not constitute degrees of

freedom, rather they depend on the values of x, z, and q.

In process design optimization models, the objective function

considered is most often an economic one, such as some net present

value or some equivalent annual cost (EAC) (or profit). Its general form

is shown in Equation (1), where we split the objective into two parts,

first-stage (i.e., investment) costs, f1(x), where f1 : ℝ
m 7! ℝ,

and second-stage (i.e., operational) costs, f2(x, z, y, q), where f2 :

ℝm + n + a 7! ℝ. Here, ζ represents the objective function value,

which is to be minimized.

ζ = f1 xð Þ+ f2 x,z,y,qð Þ ð1Þ

Note how, by definition, the first-stage costs depend exclusively

on the design variables and have no dependence on uncertain param-

eters. At the same time, both first- and second-stage variables are

allowed to inform second-stage costs, which represents the most gen-

eral case. For example, one may choose to not explicitly model the

design of a pump, thus eliminating the freedom to control a given flow

rate. However, the state variable for that flow rate, which is evaluated

at a particular design and control setting, could still induce an opera-

tional cost. There is also clear motivation to allow first-stage design

variables to effect second-stage costs. For example, the height of the

distillation column is chosen at the first stage, yet this height factors

into calculating power consumption and the corresponding fluid

pumping costs at the second stage.

Given q0 to be a specific realization of the input data q, the deter-

ministic formulation of a generic process design model is shown in

Equations (2a)–(2c). Constraints (2b) correspond to a set of inequality

constraints gi : ℝ
m + n + a 7! ℝ, i � ℐ, to which we will be referring to

as performance constraints. The latter typically express desirable levels

of system performance metrics, such as product yields, utilities usage,

or safety thresholds, but a few examples. Explicit bounds on the

z variables are also considered as part of the gi constraints, for nota-

tional convenience. The equality constraints (2c), hj : ℝ
m + n + a 7! ℝ,

j�J , are a system of state equations that define the state variables y.

Note that we pose no restriction on the nature of the objective or

constraints, meaning they may be linear or nonlinear (convex or non-

convex) in either the model variables, parameters, or both.

min
x�X ,

z�ℝn ,y�ℝa

f1 xð Þ+ f2 x,z,y;q0
� � ð2aÞ

s:t: gi x,z,y;q
0

� �
≤0 8i�ℐ ð2bÞ

hj x,z,y;q
0

� �
=0 8j�J ð2cÞ

The above formulation is deterministic because it only considers

a single value for each parameter in the model. However, if the input

parameter data are indeed uncertain, and if that uncertainty is prop-

erly characterized, then the above deterministic model can be used as

the basis to casting a RO model. More specifically, let us postulate

that the uncertain data q may attain values from within a general

uncertainty set, Q�ℝw . The form of the (often multidimensional)

uncertainty set is chosen by the modeler in each case, usually with

the help of a suitable parameter estimation method. Typically, the

“shape” of the set is such that it captures known correlations among

the uncertain parameters, while the “size” of the set is tuned to reflect

a desirable confidence interval for their realization. In principle, the

uncertainty sets in our framework can take on any form, for example,

a continuous convex or non-convex set, or a disjoint set (e.g., a set of

discrete points representing scenarios). Without loss of generality,

however, in the remainder of this work we will limit our attention to

uncertainty sets that are continuous and compact. Convexity is not a

necessary property for our sets.

Given uncertain parameters and an associated uncertainty set,

q�Q , Equations (3a)–(3c) represent the robust counterpart formula-

tion of the previously shown deterministic model. This robust coun-

terpart constitutes a two-stage, min-max-min formulation, where

decisions x are taken before the realized value of the uncertain param-

eters is known, while decisions z are taken after this is the case. Due

to their nature as state variables, values for variables y are also chosen

after the realization of the uncertainty. We assume that all state vari-

ables are non-trivial, meaning they are coupled to uncertain parame-

ters q or second-stage variables z and cannot be simply solved out of

the model equations.

min
x�X

max
q�Q

min
z�ℝn ,y�ℝa

f1 xð Þ+ f2 x,z,y,qð Þ ð3aÞ

s:t: gi x,z,y,qð Þ≤0 8i�ℐ ð3bÞ

hj x,z,y,qð Þ= 0 8j�J ð3cÞ

In its current form, the robust counterpart allows total flexibility for

the control variables within the inner minimization problem. To simplify

the two-stage robust counterpart, we employ DR, which have been

ubiquitously used in the area of ARO to convert second-stage variables

into a function of the uncertain parameters q and new first-stage deci-

sion variables d (the parameterization of the DR themselves). ARO with

affine DR, that is, an affine relationship between uncertain parameters

and second-stage variables, was first proposed by Ben-Tal et al.11 In

process systems engineering applications, affine DR have also been

used to solve two-stage RO problems in the contexts of water
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treatment networks28 and steel-making processes.33 ARO with general-

ized affine DR for mixed-integer linear optimization models has also

been recently demonstrated by Avraamidou and Pistikopoulos34 via a

multi-parametric programming approach.

We note that the motivation for strictly affine DR to preserve linear

model structure does not apply here, as most chemical process models

possess nonlinearities. Here, we present a general functional relationship

for DR, as shown in Equation (4), to highlight the fact that the proposed

approach can admit any general, nonlinear DR function. In this equation,

each control variable zℓ, l �{1, …, n}, has a functional dependence on the

uncertain parameters q and the corresponding first-stage variables, dℓ.

More specifically, dℓ � ℝp, 8 ℓ � {1, …, n}, are mutually exclusive sub-

vectors of d that are only referenced in the specific DR function vℓ : ℝ
p

+ w 7! ℝ associatedwith each zℓ. In Section 2.3, wewill specify the general

form of Equation (4) to consider constant, affine, and quadratic DR, which

wewill later employ in our computational studies.

zℓ = vℓ dℓ,qð Þ 8ℓ� 1,…,nf g ð4Þ

The application of this general DR relationship modifies the

robust counterpart to formulation RC, which is shown in

Equations (5a)–(5e). Note how the functional dependence of the con-

trol policy on the realization of uncertainty, as expressed via the DR,

is chosen at the first stage. Furthermore, an auxiliary epigraph variable

ζ � ℝ has been incorporated to push the objective function to the set

of constraints, for convenience. It is assumed from this point forward

that any given values of x, z and q map to a unique value of y. Under

this assumption, y are simply evaluated in the maximization step.* Fur-

thermore, the inner minimization problem possesses no degrees of

freedom and merely evaluates the (robust) feasibility and (worst-case)

objective value resulting from our first-stage decisions.

RCð Þ : min
x�X ,

dℓ�ℝp8ℓ

max
q�Q,

z�ℝn ,y�ℝa

min
ζ�ℝ

ζ ð5aÞ

s:t: ζ ≥ f1 xð Þ+ f2 x,z,y,qð Þ ð5bÞ

gi x,z,y,qð Þ≤0 8i�ℐ ð5cÞ

s:t: hj x,z,y,qð Þ=0 8j�J ð5dÞ

zℓ = vℓ dℓ,qð Þ 8ℓ� 1,…,nf g ð5eÞ

The above model enforces the robust feasibility of the overall

design under the postulated control policy, which suffices to qualify

the design as robust. However, we remark that the decision maker

need not commit a priori to following this policy, as it may lead to

overly restrictive control actions in light of certain realizations. In

practice, the recourse actions to be followed will be determined a

posteriori by solving an optimal control (or operational) optimization

problem after the uncertainty parameters have revealed their true

values for the operating period of interest. We elaborate further on

these issues in Section 4, where we calculate expected second-stage

variable values to a posteriori assess the overall performance and cost

of the robust designs.

2.2 | The generalized RCS

In this section, we devise a cutting-set based solution approach to

address formulation RC. The GRCS defines certain subproblems: a

master problem and a set of separation problems, one for each con-

straint (5b) and (5c). As this is an iterative solution approach, the mas-

ter and separation problems are solved in alternating fashion until

converging to the robust solution. To that end, these problems are

denoted and indexed as MPk, SP
perf
i , 8i�ℐ , and SPobj. Here, k is the

iteration index, i is used for the separation problems to denote which

performance constraint gi (out of a total of jℐj such constraints) the

problem refers to, while the superscript “obj” implies that the last

problem is associated with the epigraph constraint (5b). A flowchart

representing the algorithm is shown in Figure 1.

The initial master problem,MP0, is initialized to be the determinis-

tic model, defined for some nominal value of the uncertain parame-

ters, q0. In each iteration, the master problem MPk is solved and

requires that the solution is feasible against all realizations qk, k�K ,

that have been identified during the GRCS algorithm's progression. In

the separation problems SPi
perf, we search for new realizations of

uncertainty that render the master problem solution infeasible, leading

to a constraint violation in one or more of the gi inequality constraints.

Then, the parameter realization that corresponds to the largest rela-

tive constraint violation, q*, is identified. If a violation is indeed identi-

fied in the current iteration of the algorithm, a full copy of the second

stage variables is defined and all constraints (i.e., objective epigraph,

performance constraints, state equations, DR), instantiated for the

offending realization q*, are added back to the master problem using

these variables (along with the original, common set of first stage vari-

ables). Conversely, if there are no violations identified in SPi
perf, for

any i�ℐ, when solved to global optimality, then the current design x*

is deemed robust feasible. At that point, the separation effort could

switch focus to solving problem SPobj so as to identify realizations q*

that yield worse objective value than the one currently at hand, in

order to reach worst-case optimality.

The formulations and solution approaches for these subproblems

will be explained in more detail in the following sections, but before

we do so, it is important to discuss convergence properties. We start

by noting that Mutapcic and Boyd31 provide a proof of convergence

for their original cutting-set method. In that proof, it is argued that

convexity of the model is not required to prove convergence, but it is

assumed to ensure tractable subproblem solving steps. Hence, by fol-

lowing a similar proof as in the above reference, we can guarantee

convergence in terms of total number of iterations for the GRCS algo-

rithm presented here, as long as any and all master and separation

subproblems that arise are tractable. Of course, the latter is an

assumption that may or may not hold in the context of process design

models of interest to this work, given that the subproblems generated

by our algorithm will be non-convex, in general. Indeed, the presence
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of non-linear irremovable state equations hj, j�J , in the proposed

master and separation problem formulations will generally preempt

the non-convexity of the subproblems. From this perspective, if a

pathological subproblem is generated during the progression of the

GRCS algorithm such that the subordinate (local or global) nonlinear

programming solver cannot converge to an optimal solution, then the

overall algorithm will also stall. Despite this possibility, however, we

should mention that we have had empirical success in using the GRCS

algorithm to solve various rather complex process systems models in

reasonable time scales, as we later demonstrate in Section 5.

2.2.1 | The master problem

The general form of the master problem is shown in Equations (6a)–

(6e). In this formulation, control variables, state variables and uncer-

tain parameters are indexed over a set K, which is the set of iterations

of the GRCS algorithm.

MPkð Þ : min
x�X ,ζ�ℝ
dℓ�ℝp8ℓ,

zk�ℝn ,yk�ℝa8k

ζ ð6aÞ

s:t: ζ ≥ f1 xð Þ+ f2 x,zk ,yk;qk
� � 8k�K ð6bÞ

gi x,z
k ,yk;qk

� �
≤0 8k�K,8i�ℐ ð6cÞ

hj x,z
k ,yk;qk

� �
=0 8k�K,8j�J ð6dÞ

zkℓ = vℓ dℓ;q
k

� � 8k�K,8ℓ� 1,…,nf g ð6eÞ

Note how the constraints in formulation MPk are cast for all itera-

tions k�K , meaning that the number of constraints in the master

problem increases by 1+ jℐj+ nð Þ in each iteration. Furthermore, note

how a separate set of state variables yk has been defined for each

uncertain realization qk that is explicitly referenced in this formulation,

which is necessary due to the implicit dependence of variables y on

uncertain parameters q in the robust counterpart. Similarly, separate

sets of second-stage variables are also considered to reflect the fact

that different values (zk) for the control action might have to be cho-

sen, if a different realization of the uncertain parameters (qk) prevails.

We remark that, unlike the case of implicit state variables, the intro-

duction of separate copies of the control variables in MPk is not

strictly necessary, as in the actual implementation, one may simply

substitute variables zkℓ out of the formulation using Equation (6e).

2.2.2 | The separation problems

Each separation problem SPi
perf seeks to identify, if one exists, a reali-

zation of the uncertain parameters belonging to the uncertainty set,

that is, q�Q, which renders the optimal design (and associated control

policy) from the most recently solved master problem, MPjKj−1 , infea-

sible with respect to performance constraint gi. The general formula-

tion for these separation problems is shown in Equations (7a)–(7c). A

strictly positive optimal objective value in this problem reveals that

there exists a realization of the uncertain parameters (the separation

problem's optimal solution itself) that makes the master problem solu-

tion, (x*, d*), infeasible with respect to constraint gi. Conversely, a non-

positive globally optimal value is a certificate that the master solution

will satisfy constraint gi for all realizations in the uncertainty set.

Note that a separation problem of this type must be solved

F IGURE 1 The generalized robust
cutting-set algorithm
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successively for each performance constraint gi, i�ℐ, in order to ver-

ify the overall robustness of the master solution.

SPperfi

� �
: max

q�Q,
z�ℝn ,y�ℝa

gi z,y,q;x
�ð Þ ð7aÞ

s:t: hj z,y,q;x
�ð Þ= 0 8j�J ð7bÞ

zℓ = vℓ q;d�ℓ
� � 8ℓ� 1,…,nf g ð7cÞ

In a similar fashion, the separation problem SPobj seeks to identify,

if one exists, a realization of the uncertain parameters that would lead

the most recently identified design (and associated control policy) to a

worse objective value than the one the master problem solution

suggested. The general formulation for this separation problem is

shown in Equations (8a)–(8c). The optimal objective value of this

problem being strictly positive signifies that there exists a realization

of the uncertain parameters (the separation problem's optimal solu-

tion itself) that would have evaluated the master problem solution, (x*,

d*), to a worse objective, and hence, the solution has not been prop-

erly adjudicated in terms of its worst-case performance. Conversely, a

non-positive globally optimal value is a certificate that this has

occurred.

SPobj
� �

: max
q�Q,

z�ℝn ,y�ℝa

f1 x�ð Þ+ f2 z,y,q;x�ð Þ−ζ� ð8aÞ

s:t: hj z,y,q;x
�ð Þ=0 8j�J ð8bÞ

zℓ = vℓ q;d�ℓ
� � 8ℓ� 1,…,nf g ð8cÞ

We highlight that the above formulations are parameterized over

the set of first-stage design variables and DR, which are fixed to the

optimal values from the previous master problem solution, x* and d*.

At the same time, the uncertain parameters q constitute here decision

variables that are free to take on any value in the uncertainty set Q .

This form of the separation problem differs from the original cutting-

plane algorithm proposed by Mutapcic and Boyd31 due to the neces-

sity of carrying though the block of state equations hj (Equations 7b

and 8b) to evaluate the state variables y that are associated with the

solution of the separation problem. Additionally, DR relationships

(Equations 7c and 8c) must also be included in the formulation so as

order to evaluate the control actions in the context of the separation

problem's optimal solution.

2.3 | Decision rules

In this section, we specify the form of the DR functions vℓ we con-

sider in this study. More specifically, we consider three forms that we

refer to as the static approximation, affine DR, and quadratic DR. We

highlight that Bertsimas et al35 have explored polynomial DR relation-

ships, including cubic ones, for linear dynamical systems affected by

uncertainty. To the best of our knowledge, however, this work is the

first to apply nonlinear DR in the context of nonlinear optimization

models such as those arising in process design applications. For con-

venience, we will partition the variables dℓ into intercepts, d0ℓ , coeffi-

cients for linear terms d1ℓ , and coefficients for quadratic terms d2ℓ to

include both squares and bilinear terms.

vℓ d0ℓ

� �
= d0ℓ 8ℓ� 1,…,nf g ð9Þ

vℓ d0ℓ,d
1
ℓ ,q

� �
= d0ℓ +

Xw
r =1

d1ℓ,rqr 8ℓ� 1,…,nf g ð10Þ

vℓ d0ℓ,d
1
ℓ,d

2
ℓ,q

� �
= d0ℓ +

Xw
r =1

d1ℓ,rqr +
Xw
r =1

Xw
s= r

d2ℓ,r,sqrqs 8ℓ� 1,…,nf g ð11Þ

The form of the static approximation is shown in Equation (9). In

this case, each control variable is chosen to a single value, and there is

no flexibility in the control to respond to the uncertainty, once the lat-

ter is revealed. Effectively, the control variables are treated as first-

stage decision variables. The affine DR are presented in Equation (10),

and they constitute an affine relationship between the (first-stage) DR

variables, d, and the uncertain parameters, q. Finally, we show the

form for the quadratic DR in Equation (11), which constitutes a more

general, nonlinear function that features also square and bilinear

terms in the uncertain parameters. The modeler selects whether to

utilize the static approximation, affine or quadratic DR in each case.

Typically, this selection will be based on experience with the specific

application of interest, in terms of the trade-off between computa-

tional tractability and extent of (and desire to reduce) the two-stage

adaptivity gaps that arise.

3 | IMPLEMENTATION DETAILS

In this section, we outline various important details regarding our imple-

mentation of the proposed GRCS algorithm. For many aspects of the

algorithm, we recognize that there exist other options for implementa-

tion, and we elaborate on which options we selected in each case. Those

choices have been largely informed by their effect on overall tractability,

as assessed via the computational case studies we conducted to address

various complex process models. Those studies are presented later in

Section 5. A modified and more detailed flowchart illustrating the imple-

mentation details outlined in this section is presented in Figure 2.

3.1 | Solving master problems

We first note that, in our implementation of the GRCS algorithm, we

choose to solve all master problemsMPk locally, using a local nonlinear

programming (NLP) solver. This is done given the relative inability of
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today's global NLP solvers to solve to zero gap the complex process

design models we are interested in addressing in this study, even in

their deterministic version. This shortfall is of course exacerbated by

the fact that the master problem size increases in each iteration. The

choice to solve master problems locally comes at the expense of not

being able to assert traditional robust optimality of the final solutions,

rather only their robust feasibility. We note, however, that the GRCS

algorithm could in principle prove robust optimality, provided all mas-

ter problems are solved globally at each iteration.

In light of the above, it becomes superfluous to seek to solve

problems SPobj at the interest of separating realizations that lead to

worst-case objectives. Therefore, in this work, we only separate prob-

lems SPi
perf, which suffices to guarantee robust feasibility of the final

solutions. Furthermore, we target to identify master problem solutions

that perform best in the nominal case, that is, q q0. This is done by

setting the set of realizations associated with constraints (6b) to only

include q0; that is, K 0f g for (only) constraints 6b when solving

every iteration of the master problem. The choice of the nominal

values of the uncertain parameters, q0, is in principle left for the mod-

eler. Here, we consider q0 as the most likely realization of q, as deter-

mined in expectation, which is also often used in process systems

contexts for “deterministic” optimization. In addition to solving master

problems targeting to minimize nominal costs, care can be taken to

limit the variance of second-stage costs, for example, by including p-

robust constraints36 to limit their increase in other, non-nominal

scenarios.

3.2 | Separation approach

In order to guarantee the robust feasibility of the final solution deter-

mined by the GRCS algorithm, the separation problems must be

solved to global optimality for each and every performance constraint.

This ensures that there are no realizations of the uncertain parameters

(within the uncertainty set) that render the final robust design infeasi-

ble. Unlike master problems, the size and dimensionality of separation

problems are much smaller, making them tractable for global optimiza-

tion in this setting. Regardless, the repeated execution of global opti-

mization runs might still add up to significant computational burden.

To that end, we choose in our implementation to first solve each sep-

aration problem locally. If violating parameters can be identified in this

manner, the algorithm can proceed with its next iteration, defining the

new master problem based on the local solution of a separation prob-

lem. However, whenever the local search returns no violation for each

and every performance constraint, we do proceed to solve the separa-

tion problem using a global solver, in order to assert robust feasibility.

This protocol reduces the overall number of expensive calls to a global

optimization solver, and has been found to improve overall algorithm

performance.

We now offer some remarks regarding the selection of which vio-

lating realization is chosen to iterate the GRCS algorithm when more

than one performance constraints gi exist in a model (i.e., jℐ j > 1). In

such a case, there may be different violating uncertainty realizations

identified in separation. Whereas any and all of them could be chosen

F IGURE 2 Implementation details
of the generalized robust cutting-set
algorithm
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as critical scenarios against which to explicitly insure feasibility in the

subsequent master problem iteration, we recognize that choosing

more than one scenario would contribute to rapid increase of the

master problem size beyond what is absolutely necessary. Therefore,

in our implementation, we choose to only add a single violation, which

is selected as follows. Let ℐV ⊆ ℐ be the subset of performance con-

straints that can be violated in the context of the most recent master

problem solution. More specifically, given (zi,*, yi,*, qi,*) as the optimal

solution of problem SPi
perf, we consider i � ℐV when gi(z

i,*, yi,*, qi,*; x*)

> ε, where ε � ℝ+ is a small tolerance. Once the realizations qj,* that

maximally violate each of the constraints j � ℐV have been deter-

mined, we generate a matrix of dimensions jℐV j × j ℐVj, where each

entry ei,j represents the violation of constraint gi associated with row

i under the uncertain parameter realization qj,* associated with column

j; that is, ei,j ≔ max{gi(z
j,*, yj,*, qj,*; x*), 0}. The entries are normalized by

dividing each of them with the largest value in their row, leading to

the maximum entry in each row being equal to one. The maximally

violating realization to be added back to the next iteration of the mas-

ter problem, q*, is then picked as the one associated with the column

possessing the largest sum of entries; that is, q* = qγ,*, where

γ≔argmax
j�ℐV

P
i�ℐV

ei,j

( )
.

3.3 | DR polishing

It is a well-known fact that the use of DR often leads to solution

degeneracy. In particular, when one solves the master problem at a

given iteration k, there may exist many equivalently optimal combina-

tions of DR coefficients d that satisfy Equation (6e). To that end, when

using affine and quadratic DR, we augment our implementation with

an additional post-processing step after solving the master problem,

which we refer to as the DR polishing step. The purpose of this step is

to comb through the set of equivalently optimal DR and to judiciously

pick a specific, desirable policy. In our context, we consider DR coeffi-

cient values, dℓ � ℝp, ℓ �{1, …, n}, to be more desirable, if their relative

magnitude is collectively smaller. To achieve this, we solve the auxil-

iary optimization problem shown in Equations (12a)–(12h) as soon as

an optimal solution x* with optimal objective value ζ* is obtained from

the master problem in each iteration k.

min
dℓ�ℝp8ℓ,

τ0ℓ�ℝ+ ,τ1ℓ�ℝ
w
+ ,τ

2
ℓ�ℝ

w×w
+ 8ℓ,

zk�ℝn ,yk�ℝa8k

Xn
l=1

τ0l +
Xw
r =1

τ1ℓ,r +
Xw
r =1

Xw
s= r

τ2ℓ,r,s

 !
ð12aÞ

s:t: ζ� ≥ f1 x�ð Þ+ f2 z0,y0;x�,q0
� � ð12bÞ

gi z
k ,yk;x�,qk

� �
≤0 8k�K,8i�ℐ ð12cÞ

hj z
k ,yk;x�,qk

� �
=0 8k�K, 8j�J ð12dÞ

zkℓ = vℓ dℓ;q
k

� � 8k�K, 8ℓ� 1,…,nf g ð12eÞ

−τ0ℓ ≤ d
0
ℓ ≤ + τ0ℓ 8ℓ� 1,…,nf g ð12fÞ

−τ1ℓ,r ≤ d
1
ℓ,rq

0
r ≤ + τ1ℓ,r 8ℓ� 1,…,nf g, 8r� 1,…,wf g ð12gÞ

−τ2ℓ,r,s ≤ d
2
ℓ,r,sq

0
r q

0
s ≤ + τ2ℓ,r,s 8ℓ� 1,…,nf g, 8r,s� 1,…,wf g : s≥ rf g

ð12hÞ

In the above formulation, the objective function (12a) minimizes

the L1-norm of the vector of terms appearing in the applicable DR

function, where τ are non-negative auxiliary variables introduced to

represent the absolute values of each and every such term. Here, we

focus the presentation on the case of quadratic DR as per Equa-

tion (11), noting that a reduced version of this formulation applicable

for the case of affine DR can be obtained by simply fixing all τ2ℓ vari-

ables to zero.† We remark that the objective of the above formulation

focuses on the DR evaluated under the nominal realization of uncer-

tainty q0, corresponding to control actions z0, but other selections

(e.g., an average of all realizations qk) could be readily used instead.

Constraint (12b) is added to ensure that we are searching over the set

of optimal DR policies, that is, those that induce the same objective

value as the master problem solution,‡ while constraints (12c)–(12e)

are added to ensure that we are searching over DR policies that

remain feasible for the original master problem. Finally, constraints

(12f)–(12h) achieve the desired definition for variables τ as the abso-

lute values of the corresponding DR function terms.

4 | EVALUATION OF ROBUST SOLUTION
QUALITY

The GRCS is designed to address primarily two-stage decision prob-

lems, wherein recourse decisions are permitted to adapt to undesir-

able deviations in performance caused by parameter uncertainty.

These recourse decisions are represented in this presentation by the

variables z, where for modeling convenience, we chose to limit them

to values attained via DR relationships. In principle, however, an oper-

ator making decisions in the second stage is not beholden to the opti-

mal DR functions and has the ability to respond to the actual

realization of the uncertainty in an unrestricted fashion. Therefore,

from a practical perspective, it is important to quantify the range of

possible values for second-stage decision variables and the

corresponding expectation and variance of the second-stage costs

they might induce. These metrics allow the modeler to assess the

accuracy of the DR approximation for a given recourse action, and to

explicitly build confidence regarding the overall economic perfor-

mance of the robust design at hand. In this section, we illustrate how

to compute the expected operating costs and expected control vari-

able values, as well as the associated variances, for a given robust fea-

sible design x*.
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To compute these expected values, we solve a set of optimization

problems where the control variables are free to take on any

feasible value. We start with the deterministic formulation in

Equations (2a)–(2c) and fix the first-stage design variables to the

robust design, x x*. Then, we assign a randomly sampled value to

the uncertain parameters, q qs, resulting in the model shown in

Equations (13a)–(13c).

min
z�ℝn ,y�ℝa

f2 z,y;x�,qsð Þ ð13aÞ

s:t: gi z,y;x
�,qsð Þ≤0 8i�ℐ ð13bÞ

hj z,y;x
�,qsð Þ=0 8j�J ð13cÞ

This optimization model is then solved for a set S of uncertainty

scenarios, qs, s�S , which have been suitably defined to this purpose.§

In order to determine desirable metrics about their distribution, the

optimal solutions, (z*, y*), and optimal second-stage costs, f2(z
*, y*; x*,

qs), are thus recorded under each scenario.¶ More specifically, given

probabilities ps for all sampled scenarios s�S , Equations (14) and (15)

are used to compute the expected operating costs and their SD. The

expected second-stage costs may be considered when comparing

robust feasible designs obtained via the GRCS algorithm to any deter-

ministically optimal design, in order to elucidate the overall cost

increase for insuring design robustness.

 f2½ �=
X
s�S

psf2 z�,y�;x�,qsð Þ ð14Þ

σ f2½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
s�S

ps f2 z�,y�;x�,qsð Þ− f2½ �ð Þ2
s

ð15Þ

Using similar formulas, the above-described after-the-fact analy-

sis is also useful to understand the range of control variable actions,

namely  zℓ½ � and σ[zℓ] for all ℓ �{1, …, n}, that shall be required to

achieve robust feasibility in the context of a given design. We demon-

strate such analyses in the computational case studies we present in

the next section.

5 | CASE STUDIES

We present a set of three case studies to illustrate the performance

of the GRCS algorithm in identifying robust feasible solutions to

nonlinear process optimization problems. In Case Study I, we focus on

a reactor–separator process. In Case Study II, we study a reactor–

heater process. Finally, in Case Study III, we consider a highly com-

plex, high-fidelity flow sheet model for amine solvent-based CO2 sep-

aration from flue gas. All models were implemented using Pyomo37,38

and tools from the Institute for the Design of Advanced Energy Sys-

tems (IDAES) integrated framework.39,40 We used IPOPT41 paired

with the HSL MA2742 linear solver as the local optimization solver.

Given the built-in flexibility of our implementation, the global solver

Antigone43 was utilized to confirm robust feasibility in Case Study I,

while the global solver BARON44 was employed for Case Studies II

and III. Each case study was solved on a desktop computer featuring

four Intel i7-6700 3.4 GHz processors and 16 GB RAM. All solvers

were configured with an optimality tolerance of 1 × 10−6, while the

tolerance for identifying normalized violations of performance con-

straints via solving separation problems was set to 1 × 10−4. In Case

Studies I and II, we showcase the capabilities of all three DR types, as

the overall model sizes were amenable to the addition of more com-

plex and nonlinear DR functions. In the final case study, we only con-

sider the static approximation and affine DR policies. All references to

sections, equations, tables and figures that begin with the letter “S”
refer to the supplementary material that accompanies this manuscript.

5.1 | Case Study I: Reactor–separator

The flow sheet illustrating the reactor–separator system is shown in

Figure 3a, and has been previously studied in Grossmann and

Sargent,1 Rooney and Biegler,45 and Yuan et al.26 In this design prob-

lem, we are modeling the isothermal, liquid-phase conversion of reac-

tant A into a desired product C via a set of four first-order chemical

reactions, which are outlined in Figure 3b. Products D and E are unde-

sirable side-products in the reaction network.

Using this reaction network information and the process flow

sheet, we can cast the deterministic model shown in Section S1.1.

The objective function in Equation (S1a) corresponds to the equiva-

lent annualized cost using a capital recovery factor of 0.09, which cor-

responds to an operating lifetime of 25 years under an 8% annual

interest rate.46 The inequality constraint of Equation (S1h) states that

feasible designs must yield at least 40 mol
hr of product C. An additional

inequality constraint, Equation (S1i), limits the amount of byproduct

D recycled. Both of these inequalities are considered performance

constraints that are subject to separation steps in the GRCS algorithm.

All other constraints are either state equations or second-stage vari-

able bounds, the latter of which are also subject to separation.

In summary, the deterministic reactor–separator model consists of

9 decision variables, 6 equality constraints, 2 inequality constraints

(excluding variable bounds), and 12 parameters of which four will be con-

sidered in this work as being uncertain. More specifically, the first-stage

decision variable is the volume of the reactor, V, while the second-stage

control variables are the recycle ratios δ and β, which represent the frac-

tions of A and B, and D and E recycled, respectively. The mole fractions

(xa, …, xe) as well as the flow rate F constitute state variables. For this

study, the known parameters are the inlet concentration of the reactant

Ca0 = 10mol
m3 and the inlet flow rate of the reactant Fa0 = 100mol

hr . The

uncertain data are the reaction rate constants ki, i = {1, 2, 3, 4}, which

are correlated in a four-dimensional ellipsoidal uncertainty set. The

original data for describing this set (mean, SD) can be found in Rooney

and Biegler45 and are also reported in Section S1.3, for convenience.

Thus, for the application of the GRCS algorithm, x = (V), z = (δ, β), all

other variables are state variables y, while q = (k1, k2, k3, k4).
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5.1.1 | Case Study I results

Results for the optimal first-stage variables and costs for the deter-

ministic and robust feasible cases are shown in Table 1. The reactor

volume, V, identified in the robust solutions is larger than that of the

deterministic solution, in order to insure against the postulated uncer-

tainty. This is likely due to the fact that feasible robust solutions must

permit sufficient production of product C and sufficient recycle of

byproduct D across the range of values for ki, i = {1, 2, 3, 4}, which in

turn requires increased reactor sizes than the deterministic case.

However, it is important to note that, as recourse flexibility increases

via the use of more involved DR, the reactor volume as well as the

first-stage cost decreases.

The optimal values for second-stage variables and costs for the

deterministic and robust feasible cases are shown in Table 2. When

we compare the values of the control variables δ and β in the deter-

ministic case against the robust feasible values corresponding to the

nominal realization of the uncertainty, we see that the values for the

recycle ratio δ increases in the latter case. This leads to an increase in

nominal second-stage costs when compared to the deterministic solu-

tion. However, if we consider the expected second-stage variable

values and costs in Table 3, they more closely match the deterministic

case solution. In particular, full-flexibility in second-stage control has a

significant economic benefit over more restrictive DR policies. Inter-

estingly, if we pay attention to the expected robust feasible objective

values, representing the total expected cost  ζ½ �= f1 x�ð Þ+ f2½ � , the
affine and quadratic DR solutions result in overall lower costs than

the static approximation policy, even when considering the associated

variance.

A noteworthy observation in this case study is the fact that

 ζ½ �SA > ζ½ �ADR > ζ½ �QDR. This means that, for this system, there is an

economic benefit in utilizing more flexible, nonlinear DR over the tra-

ditional affine or inflexible cases. We also note that, when compared

to the deterministic optimal EAC, ζdet = 18, 816.59 ($/year), the

robust feasible designs incur in expectation a comparable cost. Indeed,

 ζ½ �=ζdet≈1 and σ f2½ �= ζ½ �≈0:066 for all three recourse policies,

indicating that all robust designs are likely to yield actual costs that do

not significantly deviate from those of the deterministic design.

The total number of iterations of the GRCS and the total CPU

time for completing the GRCS algorithm are shown in Table 4. This

table also reports the fraction of total time spent on master and sepa-

ration subproblems via calls to subordinate solvers, as well as the

residual fraction spent on code overhead, which primarily includes

time for Pyomo model manipulations. Clearly, for this case study,

which features a high-dimensional uncertainty set and multiple

inequality constraints, the number of iterations increases with affine

and quadratic DR. This hints to the likelihood of decreased tractability

when more flexible DR are used in conjunction with complex models,

though the relatively small size of the underlying model in this case

study caused no computational issues. Whereas the total times are

generally small, a significant portion is spent in solving separation

problems. This is due to the fact that there are multiple such problems

to be solved in each iteration, as well as the fact that a number of calls

to global solvers are required to confirm robustness.

Additionally, we plot in Figure 4 the GRCS progression toward

robust feasibility at each iteration of the GRCS for the static approxi-

mation recourse policy. The trajectories of the algorithm under affine

and quadratic DR policies are deferred in Figures S1 and S2. Each plot

depicts the performance of designs at a given iteration k, as deter-

mined from the master problem MPk. The plots are generated by eval-

uating each optimal design via the same set S of 200 uniformly

sampled realizations qs�Q, s�S. Feasibility of each design at a realiza-

tion qs is determined via one of the two constraints in Equations (S1h)

and (S1i). We remark that, although the constraints for bounds on

control variables δ and β were included in the set of constraints sub-

ject to separation, they never led to a violation across the range of

values within the uncertainty set, and are hence not referenced in this

analysis. The constraint for which feasibility is shown in a given plot is

determined by which constraint yielded a maximum violation in the

separation problem SPk,i.

For each point in the plots, the solution is either feasible and rep-

resented as a blue dot, or is infeasible and represented as a red dot.

(a) (b)

F IGURE 3 Flow sheet (a) and
reaction mechanism (b) representing
the reactor–separator system
considered in Section 5.1, as adapted
from Grossmann and Sargent1

TABLE 1 Optimal values of first-
stage variables and costs for the reactor–
separator model

Deterministic Static approx. Affine DR Quadratic DR

V (m3) 103.18 105.50 103.56 103.20

f1(x
*) ($/year) 9,973.32 10,426.31 10,047.29 9,978.13

Abbreviation: DR, decision rules.
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TABLE 2 Optimal values of second-
stage variables and costs, under the
nominal realization of uncertainty, for the
reactor–separator model

Deterministic Static approx. Affine DR Quadratic DR

δ mol A +mol B
total mol

� �
0.46 0.68 0.66 0.64

β mol D+mol E
total mol

� �
0.016 0.017 0.017 0.018

f2(z
*, y*; q0) ($/year) 8,843.27 13,250.84 12,881.24 12,614.63

Abbreviation: DR, decision rules.

TABLE 3 Expected values and SDs of
second-stage variables and costs for the
reactor–separator model

Static approx. Affine DR Quadratic DR

 δ½ ��σ δ½ � mol A+mol B
total mol

� �
0.45 ± 0.07 0.46 ± 0.07 0.46 ± 0.07

 β½ ��σ β½ � mol D+mol E
total mol

� �
0.016 ± 0.0004 0.016 ± 0.0004 0.016 ± 0.0004

 f2½ ��σ f2½ � ($/year) 8,395.78 ± 1,240.87 8,758.91 ± 1,245.64 8,829.64 ± 1,246.56

 ζ½ ��σ f2½ � ($/year) 18,822.10 ± 1,240.87 18,806.20 ± 1,245.64 18,805.77 ± 1,246.56

Abbreviation: DR, decision rules.

TABLE 4 Total number of iterations
and CPU time spent within the GRCS
algorithm when addressing the reactor–
separator model

Static approx. Affine DR Quadratic DR

# of GRCS iterations 4 9 9

Total CPU time (s) 10.3 11.4 33.2

% spent on master problems 0.1 0.2 0.1

% spent on separation 81.8 75.9 91.2

% overhead time 18.1 23.9 8.7

Note: The total time includes the time to execute the algorithm and subordinate solver calls. The

percentage of time spent on master and separation problems only includes the total execution time for

the respective subordinate solvers.

Abbreviations: DR, decision rules; GRCS, generalized robust cutting-set.

(a) (b) (c)

(d)

F IGURE 4 Evolution during the generalized robust cutting-set (GRCS) algorithm of the robust feasibility of the reactor–separator designs
using the static approximation policy [Color figure can be viewed at wileyonlinelibrary.com]
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All points shown as a green triangle are the realizations at which the

current design is explicitly robust against.** All points represented as

yellow crosses are violating points identified in solving SPk,i at the cur-

rent iteration k. Constraints under these realizations will thus be

appended in subsequent iterations of the master problem. We also

note that, because the uncertainty set considered in the reactor–

separator model is four-dimensional, we merely project to the two

dimensions with the largest variance, namely k3 and k4, and the black

dotted lines represent the projection of the boundary of the uncer-

tainty set in these two dimensions.

The plots reveal two regions in which each of the inequality con-

straints are active and lead to constraint violations. The main region

of infeasibility for constraint (S1h) is in the upper-right end of the

uncertainty set, while the region where violations for constraint (S1i)

occur in the lower-left end. The trajectory toward robustness against

each performance constraint is easily seen over progressive iterations

of the algorithm for each recourse policy case, as the region of red

infeasible sample points becomes blue. The amount of infeasibility

that persists in each iteration is quantified in Table S1.

5.2 | Case Study II: Reactor–heater

In this case study, we consider the flow sheet shown in Figure 5,

which represents a reactor–heater system previously studied in

Halemane and Grossmann,47 Varvarezos et al,48 Rooney and

Biegler,49 and Yuan et al.26 This system consists of a reactor and heat

exchanger with a single first-order, exothermic reaction to convert

reactant A to product B. The task is to identify a design that achieves

the target of 90% conversion of reactant A, while minimizing EAC.

The deterministic reactor–heater model consists of 10 decision

variables, five equality constraints, four inequality constraints (exclud-

ing variable bounds), and 10 parameters of which two will be consid-

ered uncertain. The complete NLP model for the reactor–heater flow

sheet, as well as a table of pertinent data, are shown in Sections S2.1

and S2.2, respectively. The objective function in Equation (S2a) seeks

to minimize the EAC, including annualized capital cost and yearly

operating cost terms taken from Varvarezos et al.48 The set of state

equations J includes Equations (S2b)–(S2f), while the set of

performance constraints ℐ includes Equations (S2j)–(S2n) as well as

the bounds on second-stage variables in Equations (S2o) and (S2p).

In this optimization model, the size of the reactor V and the area

of the heat exchanger A are the first-stage decision variables, while

the two second-stage variables are the flow rates F1 and Fw dictating

utility usage. The remaining variables, xA, T1, T2, Tw1, Tw2, and ΔTln††

constitute state variables. The uncertainty considered in this example

lies in the Arrhenius rate constant for the reaction taking place in the

reactor, k0, and overall heat-transfer coefficient in the heat exchanger,

U. Thus, x = (V, A), z = (F1, Fw), all other variables are state variables y,

and q = (k0, U). For this study, we postulate that the two aforemen-

tioned uncertain parameters are independent to each other, and

therefore utilize a simple two-dimensional box uncertainty set. The

data for the nominal values and uncertainty deviations of k0 and

U can be found in Section S2.3.

5.2.1 | Case Study II results

Results for the optimal first-stage variables and costs for the deter-

ministic and robust feasible cases are shown in Table 5. In this case

study, the GRCS algorithm returned the same robust solution for the

affine and quadratic DR. This outcome is possible due to the fact that

a feasible solution with affine DR is also a feasible solution under qua-

dratic DR, and it just so happens that, for this particular model and

uncertainty set, greater flexibility via quadratic DR does not improve

upon the robust feasible solution. This observation alludes to the pos-

sibility that the extra computational burden to consider more involved

recourse policies might not always yield a payoff. To that end, the

modeler has a critical role to play in judiciously selecting the form of

DR to be employed in the context of each particular model. In Sec-

tion 5.4, we provide additional remarks on the selection of recourse

policy.

When comparing the deterministic first-stage variables to the

robust solutions, we see that there is an increase in reactor volume

and heat exchanger area for robust solutions. The robust designs must

satisfy the constraint regarding production of product A for all uncer-

tain parameter values within the uncertainty set, and this is accom-

plished via larger capacity facilitated by larger equipment.

The optimal values for second-stage variables and costs for the

deterministic and robust feasible cases are shown in Table 6, where

we note that these do not change substantially under the case of the

nominal realization. When we compare the values of the control vari-

ables, F1 and Fw, in the deterministic case against their robust feasible

values, we notice that the values of these flow rates increase, which

leads to an increase in second-stage costs. This can be explained by

the fact the reaction producing product A is exothermic, requiring

increased circulation through the cooler in the robust designs. In

regards to expected second-stage variable values and costs shown in

Table 7, we observe that these values are actually greater than the

nominal values in the previous table. This may be an indicator of the

optimizer taking advantage of the nominal second-stage cost, f2(x, z, y;

q0), in the objective. In the case of the nominal uncertain parameter

F IGURE 5 Flow sheet representing the reactor–heater system
considered in Section 5.2, as adapted from Halemane and
Grossmann47
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realization, q0, the robust feasible design requires slightly lower flow

rates, and correspondingly a lower second-stage cost. However, in

expectation, these flow rates will be higher, as reported in Table 7. It

is also interesting to note that DR seem to help alleviate some of the

conservativeness of the static approximation solution, as they strictly

improve in terms of EAC, both nominal and expected.

The total number of iterations of the GRCS algorithm, its total

CPU time and the fraction of total time spent on various portions of

the algorithm are shown in Table 8. The number of iterations and

CPU times are relatively small, due to the small scale and good tracta-

bility of the deterministic optimization problem. As in the previous

example, the majority of the GRCS algorithm's time is spent solving

separation problems. The algorithmic overhead tasks also consumed a

significant fraction of the total CPU time, noting though that the very

small total CPU times do not encourage general insights.

In Figure 6, we show the progression of feasibility over each iter-

ation of the GRCS for the case of the static approximation recourse

policy. Similar plots for the cases of affine and quadratic DR policies

are provided in Figures S3 and S4. In these plots, the designs from

each iteration of the master problem are evaluated across a set S of

200 uniformly sampled realizations qs�Q , s�S . The feasibility of a

design under a realization qs is defined against the performance con-

straint in Equation (S2n), as this was the only inequality constraint in

the formulation that led to violations in the separation problems

solved. In other words, for points shown in blue, the design leads to

xA≥0.9, while for points shown in red, xA<0.9. Figure 6a, which is a

plot depicting the feasibility of the nominal deterministic design under

various uncertain parameter realizations, clearly shows a horizontal

division in the uncertainty set between a region of feasibility and a

region of infeasibility. More specifically, while the nominal realization,

q0 = U0,k00

� �
, is included in the region of feasibility, most points with

k0 < k
0
0 render the design infeasible. Interestingly, the first violating

parameter realization identified in separation, q1, is a non-vertex point

on the border of the otherwise polyhedral uncertainty set. The

amount of infeasibility that persists in each iteration is quantified in

Table S2.

5.3 | Case Study III: MEA-solvent CO2 separation
flow sheet

The final example studied here is a complete equation-oriented model

for post-combustion CO2 capture using a monoethanolamine (MEA)

solvent. The complete flow sheet for the process is shown in Figure 7.

The key units in this process include the absorber and regenerator

(stripper) columns, the cross heat exchanger, and the reboiler and con-

denser. The electrolyte non-random two-liquid (e-NRTL) model51 was

used to represent the vapor–liquid equilibrium, while an enhancement

factor52 is used to characterize the effect of liquid phase reaction on

the mass transfer rate between the liquid and gas phases. The latter

was based on a two-film model, wherein mass transfer occurs via

molecular diffusion through a stagnant film of a given thickness and

the bulk phase is well mixed.53 In addition, our process model includes

rigorous submodels to describe gas–liquid reactions, surface tension,

diffusivity, and heat transfer. The mass and energy balances in the col-

umn models are differential equations, as the concentrations of vapor

and liquid components as well as the temperature varies along the

length of the columns. Some representative model equations are

TABLE 5 Optimal values of first-
stage variables and costs for the reactor–
heater model

Deterministic Static approx. Affine DR Quadratic DR

V (m3) 4.43 4.98 4.94 4.94

A (m2) 9.70 9.97 9.92 9.92

f1(x
*) ($/year) 5,374.66 5,596.62 5,575.26 5,575.26

Abbreviation: DR, decision rules.

TABLE 6 Optimal values of second-
stage variables and costs, under the
nominal realization of uncertainty, for the
reactor–heater model

Deterministic Static approx. Affine DR Quadratic DR

F1 (kmol/hr) 94.19 95.77 95.69 95.69

Fw (kmol/hr) 1,754.75 1,782.49 1,784.21 1,784.21

f2(z
*, y*; q0) ($/year) 4,107.47 4,175.15 4,177.78 4,177.78

Abbreviation: DR, decision rules.

TABLE 7 Expected values and SDs of
second-stage variables and costs for the
reactor–heater model

Static approx. Affine DR Quadratic DR

 F1½ ��σ F1½ � (kmol/hr) 96.98 ± 9.82 96.80 ± 9.63 96.80 ± 9.63

 Fw½ ��σ Fw½ � (kmol/hr) 1,809.47 ± 97.89 1,798.57 ± 94.64 1,798.57 ± 94.64

 f2½ ��σ f2½ � ($/year) 4,236.47 ± 264.11 4,214.15 ± 256.51 4,214.15 ± 256.51

 ζ½ ��σ f2½ � ($/year) 9,833.10 ± 264.11 9,789.41 ± 256.51 9,789.41 ± 256.51

Abbreviation: DR, decision rules.
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shown in Section S3.3 and have first been presented in Chinen et al54

for a solvent-based carbon capture system. Notably, the simulation

model of the flow sheet, featuring zero degrees of freedom and

30 finite elements to discretize the differential equations, is a system

of 4,334 variables and 4,327 constraints.

In our study, we seek to design a process for treating 1,000 mol/s

of flue gas, with the main performance constraint calling for the pro-

cess to achieve 85% CO2 capture. Therefore, we augmented the simu-

lation model to include degrees of freedom for investments to install

capacity for the various utilities and an overall economic objective to

minimize the EAC. We adapted the straightforward algebraic formula-

tion of Mores et al46 and utilize simple capital cost correlations from

Towler and Sinnott55 and Seider et al56 to demonstrate relative

impact on EAC of our RO approach. Note that we do not account for

uncertainty in costs and that the use of more rigorous costing

methods are outside the scope of this paper. The full set of equations

defining the EAC function can be found in Section S3.2.

After the above augmentations, the deterministic optimization

model we used consists of 4,342 decision variables, 4,327 equality

constraints, and 13 inequality constraints (excluding variable bounds).

The main first-stage design variables correspond to the sizing of major

equipment, namely the diameters of the columns, Dabs and Dreb, the

heights of the columns, Labs and Lreg), and the total surface area of the

cross heat exchanger, Axhx. There are also several first-stage variables

introduced in the model to properly capture the investment costs for

the installed capacities of necessary utilities. These include the power

to pump CO2-rich solvent from the absorber bottom to the inlet of

the regenerator, Ppump, volumes of storage tanks for the hold-up of

H2O and MEA solvent to supply to the make-up mixer, VMEA−TK and

VH2O−TK , as well as the effective surface areas of the reboiler and

TABLE 8 Total number of iterations
and CPU time spent within the GRCS
algorithm when addressing the reactor–
heater model

Static approx. Affine DR Quadratic DR

# of GRCS iterations 3 3 3

Total CPU time (s) 1.3 2.9 4.0

% spent on master problems 0.5 0.3 0.4

% spent on separation 49.0 66.5 66.0

% overhead time 50.5 33.2 33.6

Note: The total time includes the time to execute the algorithm and subordinate solver calls. The

percentage of time spent on master and separation problems only includes the total execution time for

the respective subordinate solvers.

Abbreviations: DR, decision rules; GRCS, generalized robust cutting-set.

(a) (b) (c)

F IGURE 6 Evolution during the generalized robust cutting-set (GRCS) algorithm of the robust feasibility of the reactor–heater designs using
the static approximation policy [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Flow sheet representing the MEA-based CO2 capture
flow sheet considered in Section 5.3, as adapted from Mores et al46
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condenser, Areb and Acon, respectively. In summary, x = (Dabs, Dreg, Labs,

Lreg, Axhx, Ppump, VMEA−TK, VH2O−TK, Areb, Acon). The second-stage con-

trol variables are the heat duties supplied to the reboiler and con-

denser, thus z = (Qreb, Qcond). All remaining variables are considered to

be state variables y.

Potential sources of uncertainty have been studied in the

literature,54,57 while the optimization under uncertainty of the

absorber column unit for MEA-based post-combustion carbon capture

has been studied also in Reference 58. Here, we expand upon previ-

ous works by studying the entire process flow sheet, presenting solu-

tions obtained via our novel algorithm. More specifically, we postulate

an ellipsoidal uncertainty set representing the 95% confidence interval

around two parameters, q = (b1, b2), used to calculate equilibrium con-

stants Keq,r, r �{1, 2} via Equations (S3m) in Section S3.3. Here, the

index r refers to two solvent-phase reactions considered in the kinetic

model.59 We stress that parameters b1 and b2 participate non-linearly

in the set of equations defining the equilibrium constants, while the

latter are further non-linearly related to the overall mass-transfer

coefficient between the vapor and liquid phases. As we shall show

later, this leads to interesting regions of feasibility of the deterministic

design within the uncertainty set. Details regarding the uncertainty

set used, including the mean and covariance matrix values, are pro-

vided in Section S3.4.

There are several inequality constraints in the model representing

requirements on performance. These include a constraint on the frac-

tion of CO2 captured, that is, ηCO2
≥ 0:85, where ηCO2

=
yinCO2

−youtCO2

yin
CO2

and

yCO2
is the gas phase mole fraction of CO2. In addition, explicit con-

straints on the superficial vapor velocities at the bottom of the

absorber and the top of the regenerator are imposed, in order to pre-

vent flooding. These constraints can be found in Section S3.3

(Equations S3n–S3r). Additional inequality constraints of interest are

the bounds on the control variables, namely the reboiler and con-

denser duties. The latter include trivial “zero” bounds to limit their

sign (Equations S3u and S3v) as well as induced bounds due to the

availability of steam (Equation S3w) and cooling water (Equation S3x),

respectively. In the case of affine DR, these bounds must be included

in the set of performance constraints to be separated against. All

other equations in the model represent state equations, in which the

uncertain parameters participate nonlinearly and implicitly. Addition-

ally, we note that the flue gas flow rate at the bottom of the absorber

is fixed to 1,000 mol
s , while the solvent flow rate at the top of the

absorber is fixed to 3.64 kmol
s . The solvent's temperature at this inlet is

calculated as a state variable in the model. The solvent make-up is set

to be 27.5% wt. MEA at the outlet of the make-up mixer.

5.3.1 | Case Study III results

For this case study, we only consider the static approximation and

affine DR as our two recourse policies. Results under quadratic

recourse are not presented due to the fact that the subordinate

nonlinear optimization solver failed to converge while attempting to

solve a subproblem generated at an intermediate iteration of the

GRCS algorithm. This is an example of how the overall performance

of the GRCS algorithm depends on the ability of the employed subor-

dinate solvers to identify optimal solutions to subproblems at each

and every iteration and in reasonable computational times.

The optimal values for first-stage variables and costs for the

deterministic and robust feasible solutions are shown in Table 9. Our

deterministic design is consistent with general trends established in

optimal designs previously presented in the literature,46,60 such as the

fact that the absorber height is greater than the regenerator column,

as well as a drum-like regenerator column wherein L/D ≈ 1. One pos-

sible motivation for this is to drive down capital and utility costs asso-

ciated with pumping the solvent to the top of a higher regenerator

column, at the expense of increased reboiler duty. This may also be

motivated by the presence of explicit constraints to limit the superfi-

cial vapor velocity within a fraction of the flooding velocity at the

regenerator bottom, since an increase in diameter corresponds to a

decrease in velocity for a given volumetric flow rate.

We begin by comparing the deterministic solution to the robust

solutions. First, we notice that the robust solutions (static approxima-

tion and affine DR) feature decreased heights of both columns as well

as an increased diameter of the regenerator column, as compared to

the deterministic solution. As a result of the reboiler column height

decrease in the robust solutions, there is also a corresponding

decrease in the required pump power. Additionally, there is an

increase in heat transfer surface area in the reboiler and condenser.

This can be attributed to the increase in reboiler and condenser heat

duties, contributing to achieving robust feasibility. This also relates to

the decrease in the robust values of cross heat exchanger surface

area, since more heat transfer load between streams can be taken on

by the larger condenser and reboiler.

Next, we consider notable differences between the robust solu-

tions determined via the static approximation and affine DR policy.

First, we see that the optimal surface areas for the heat exchanger,

reboiler and condenser are smaller in magnitude in the case of an

affine DR policy, when compared to the static approximation. Because

TABLE 9 Optimal values of first-stage variables and costs for the
CO2 capture flow sheet model

Deterministic Static approx. Affine DR

Labs (m) 7.57 6.00 6.93

Dabs (m) 4.95 4.96 4.96

Lreg (m) 4.00 3.00 3.52

Dreg (m) 3.44 4.04 4.00

Axhx (m
2) 4,734 3,928 3,764

Ppump (kW) 4.44 3.67 4.28

VMEA−TK (m3) 2.25 3.46 3.48

VH2O−TK (m3) 11,541 13,300 13,486

Areb (m
2) 179.4 813.4 797.4

Acon (m
2) 191.8 2,116.8 2,034.0

f1(x
*) (MM$/year) 2.06 2.07 2.09

Abbreviation: DR, decision rules.
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the affine DR allow for more flexible heat transfer policies in the

second-stage, there is less need to invest in larger equipment, such as

heat transfer surface areas, in the first-stage. This decrease in heat

transfer surface areas in the affine case leads to a corresponding

increase in the regenerator column height, which is necessary for

achieving sufficient CO2 regeneration at the implied lower reboiler

and condenser duties. In spite of the above differences, the first-stage

capital costs appear to be very similar in all three solutions.

Table 10 presents information related to the second-stage vari-

ables and costs, under the scenario of nominal uncertainty realization.

In this case, the robust reboiler heat duty, Qreb, is much higher than

the optimal value in the deterministic case, as is also the flow rate of

solvent supplied to the regenerator. This is illustrating a trade-off

wherein the shorter, more drum-like regenerator columns require

higher reboiler duties to achieve the lower lean loading values. The

decrease in column height also allows for larger flow rates of solvent

due to a decreased pumping requirement. As expected, robustness

comes at a noticeable increase in total cost, which is necessary for the

design to possess enough flexibility to remain operational (feasible)

under a wide range of scenarios (uncertainty set). It is important to

note, however, that the use of affine DR leads to a robust feasible

solution with a slightly lower nominal EAC, when compared to the

static approximation policy, which demonstrates reduction of the

two-stage adaptivity gap. In addition to the optimal deterministic

second-stage variables and costs, Table 10 also shows the optimal

values for several state variables of interest. These include the CO2

capture, denoted as ηCO2
, the lean loading calculated as α=

xCO2
xMEA

, where

xCO2
and xMEA are liquid phase mole fractions, as well as several key

flow rates related to the pumping utility (Finreg,liq) and the solvent make-

up supplied by the mixer at the top of the absorber (Finmix,MEA and

Finmix,H2O
). We see that the nominal capture for the robust solutions, in

both the affine DR and static approximation cases, is larger than the

deterministic case. To achieve feasibility against all uncertain parame-

ter realizations, there must be a degree of “over-design” when consid-

ered in light of a subset of realizations in the uncertainty set. This

means that, for some realizations, and in particular the nominal reali-

zation, the robust design will exceed the requirements of the perfor-

mance constraints. Additionally, we see that lean loading values are

lower in the robust solutions, when compared to the deterministic

case, due to the increase in the robust reboiler duties.

The expected values and SDs for the second-stage costs and vari-

ables are shown in Table 11. We note that the expected second-stage

costs are significantly lower than their values when the nominal reali-

zation prevails. This can be attributed to the fact that the expected

values are determined without a particular DR policy in place, instead

being calculated in light of unrestricted recourse potential. By simply

allowing for more flexibility in second-stage recourse, there is a

broader range of operating points available, which can decrease the

second-stage costs. Unlike in the previous case studies, the affine DR

solution does not result in lower overall expected costs when com-

pared to the static approximation solution, albeit these costs show

less variation. Note that the trade-offs between first-stage investment

costs and second-stage operating costs are more complex in this sys-

tem, and since the economic objective function only considers the

nominal scenario, we do not get a guarantee that the designs under

the more flexible recourse policy will be lower in expectation.

In terms of control variables, Table 11 reveals that the need for

reboiler duty is generally more stable than the need for condenser

duty. Indeed, as different scenarios were sampled, the latter ranged

quite a bit more on a relative scale, leading to a more skewed distribu-

tion with an elongated tail. Overall, the range of values that these

duties would have to attain under the various sampled scenarios is

larger in the design stemming from the affine DR policy, which can be

explained by the fact that this design was explicitly chosen to perform

under a wider range of control variable values.

The iterations count and algorithm execution times for the CO2

capture flow sheet study are shown in Table 12. When compared to

the previous case studies, the total CPU times are much higher due to

the larger model size and complexity. For reference, the deterministic

version of the CO2 capture flow sheet model already requires 31 s of

TABLE 10 Optimal values of second-stage control and other key variables, as well as total and second-stage costs, evaluated under the
nominal realization of uncertainty, for the CO2 capture flow sheet model

Deterministic Static approx. Affine DR

Qreb (MW) 18.14 41.10 39.05

Qcon (MW) −4.54 −25.18 −22.89

ηCO2

molCO2
totalmol

� �
0.85 0.93 0.96

α mol CO2
mol MEA

� �
0.22 0.17 0.17

Finreg,liq kg=sð Þ 84.84 92.10 91.22

Finmix,MEA kg=sð Þ 0.03 0.04 0.04

Finmix,H2O
kg=sð Þ 4.44 4.85 5.00

f2(z
*, y*; q0) (MM$/year) 5.19 8.83 8.67

ζ* (MM$/year) 7.25 10.90 10.76

Abbreviation: DR, decision rules.
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CPU time to optimize locally. Table 12 also reveals that, despite the

number of iterations being the same in both cases, the total CPU time

for the affine DR is roughly 50% higher than the static approximation

case, alluding to the fact that the complexity of the GRCS is directly

related to the complexity of the DR relationship used. Additionally, we

see the same trend as in previous case studies wherein the percentage

of time spent solving separation problems is significantly larger than

that spent solving the master problems. We also see that there is signif-

icant overhead time spent outside of subordinate solver optimization

calls. In particular, due to the larger models involved in this case study,

there are significantly more constraints and variables that need to be

copied at each iteration as the master problem formulation evolves,

leading to increased times spent toward Pyomo model building.

Figure 8 presents the progression of feasibility over each iteration

of the GRCS under the static approximation policy. The progression

under affine DR can be found in Figure S5. As before, designs are

evaluated in light of 200 uniformly sampled realizations qs�Q , s�S .
Here, feasibility of the designs primarily refers to the CO2 capture con-

straint and the upper bound constraining the superficial vapor velocity

in the absorber, as these were the only inequality constraints to lead to

violations in the separation step. The nominal design performance

shown in Figure 8a reveals that there exist two disjoint regions within

the uncertainty set that render the nominal solution infeasible, which is

indicative of the nonlinear manner in which the uncertain parameters

affect design feasibility. Regardless, after a few iterations of the GRCS

algorithm, the design becomes robust feasible across the totality of the

uncertainty set. The amount of infeasibility that persists in each itera-

tion is quantified in Table S3. It is also worth noting that, in this exam-

ple, all of the violating parameter realizations added to master problems

were points from the boundary of the ellipsoidal uncertainty set.

5.4 | Choosing form of recourse policy

In this section, we summarize some empirical findings and conclusions

pertaining to the performance of the different recourse policies,

hoping to inform a future modeler that wishes to address other pro-

cess design models via our GRCS algorithm. First, we note that, in

each of the examples investigated, the costs of designs determined

via affine and quadratic DR are relatively close to each other, while

they both differ more significantly from the deterministic and static

approximation costs. From this perspective, our results clearly support

the incentive to choose some kind of DR (i.e., affine or quadratic) over

the static approximation recourse policy.

The choice to deviate from affine DR and invoke quadratic rules

was less clearly motivated in our investigations. For example, the

results for Case Study I showed a small, yet strict, improvement in

expectation (i.e.,  ζ½ �ADR > ζ½ �QDR ), while in Case Study II, the two

equally-robust solutions where the same. For a general model, there is

no a-priori indicator to predict whether the invocation of quadratic

DR will or will not improve the results derived with affine

DR. Certainly, as one considers hierarchies of DR (e.g., going from

affine to quadratic to cubic, or even, to quartic polynomials),

diminishing returns are expected due to the closure of the two-stage

adaptivity gap, and the modeler has an incentive to empirically investi-

gate that. This in fact strengthens the need for an algorithm like

GRCS, which can consider different DR functions in a modular man-

ner, enabling the modeler to perform such investigations.

One should also keep in mind that the GRCS algorithm also

admits non-polynomial rules, which cannot be hierarchically compared

to those tested here; those non-polynomial rules may prove to per-

form particularly well in certain models. We should also highlight that

there generally exist opportunities to employ the more involved DR

forms only for a carefully select subset of second-stage decisions,

leaving the remaining ones to be decided based on simpler recourse

policies (e.g., static approximation). Whereas at the interest of brevity

such strategy was not explored in this work, anyone wishing to apply

the GRCS algorithm presented here can readily do so.

Finally, any potential savings in terms of second-stage costs have

to be viewed in light of the computational burden associated with

choosing more involved DR functions, as the complexity of solving

the resulting optimization subproblems is expected to increase, in

general. For example, in cases when variables z and y as well as

TABLE 11 Expected values and SDs of second-stage control and
other key second-stage variables, and second-stage costs, for the CO2

capture flow sheet model

Static approx. Affine DR

 Qreb½ ��σ Qreb½ � (MW) 18.57 ± 0.55 19.27 ± 4.42

 Qcon½ ��σ Qcon½ � (MW) −0.94 ± 1.36 −1.86 ± 4.87

 ηCO2

� ��σ ηCO2

� �
0.85 ± 0.00 0.86 ± 0.03

 α½ ��σ α½ � mol CO2
mol MEA

� �
0.24 ± 0.03 0.24 ± 0.03

 Finreg,liq

h i
�σ Finreg,liq

h i
kg=sð Þ 83.63 ± 0.51 83.87 ± 1.52

 Finmix,MEA

h i
�σ Finmix,MEA

h i
kg=sð Þ 0.03 ± 0.00 0.03 ± 0.00

 Finmix,H2O

h i
�σ Finmix,H2O

h i
kg=sð Þ 5.89 ± 0.34 5.79 ± 0.27

 f2½ ��σ f2½ � (MM$/year) 5.51 ± 1.38 5.63 ± 0.78

Abbreviation: DR, decision rules.

TABLE 12 Total number of iterations and CPU time spent within
the GRCS algorithm when addressing the CO2 capture flow sheet
model

Static approx. Affine DR

# of GRCS iterations 5 5

Total CPU time (s) 1,030.0 1,543.4

% spent on master problems 19.4 16.2

% spent on separation 48.6 51.2

% overhead time 32.0 32.6

Note: The total time includes the time to execute the algorithm and

subordinate solver calls. The percentage of time spent on master and

separation problems only includes the total execution time for the

respective subordinate solvers.

Abbreviations: DR, decision rules; GRCS, generalized robust cutting-set.
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parameters q participate linearly in the deterministic model, and the

uncertainty set is polyhedral, quadratic DR may not be preferable,

since they will change the class of the underlying separation problems

from linear to nonlinear. In contrast, if the deterministic model is

already nonlinear, as is often the case in the process systems engi-

neering context, then quadratic DR are a plausible option. Whether or

not the additional nonlinearities from the quadratic DR lead to

exceedingly difficult numerical issues when paired with a particular

model and solver would need to be explored in each case. Eventually,

the practitioner must empirically determine the trade-off between

solution quality and tractability, recognizing that employing higher

order polynomial DR will come at a computational cost, in general.

6 | CONCLUSIONS

In this work, we proposed a GRCS algorithm for identifying robust

feasible solutions to two-stage, non-convex process systems models

under uncertainty. Starting from a given deterministic process optimi-

zation problem of interest, we formalize elements of the latter as first-

and second-stage costs, first-stage design variables, second-stage

control variables, irremovable state variables and state equations,

uncertain parameters, as well as inequality constraints on system per-

formance. With this information, and utilizing a suitable recourse pol-

icy, including affine or quadratic DR, to handle second-stage control

variables, the GRCS algorithm was shown to be able to achieve robust

feasible solutions. We demonstrated the overall algorithm via three

case studies, including one very comprehensive, full-flow sheet model

of a post-combustion carbon capture process. Through these case

studies, we showed that flexibility in recourse is inversely related to

total costs, notably demonstrating the use of nonlinear DR toward

this. To conclude, our work builds upon existing literature by applying

general, model-agnostic RO methodologies to process systems engi-

neering models. With this capability, practitioners of process design

under uncertainty can readily identify risk-averse solutions that are

explicitly robust against user-defined uncertainty sets.

NOTATION

Sets
ℐ set of performance constraints

J set of state equations

K set of algorithm iterations

Q uncertainty set

Variables
x�X⊆ℝm first-stage design variables

z � ℝn second-stage control variables

y � ℝa state variables

d � ℝp decision rule variables

(a) (b) (c)

(d) (e)

F IGURE 8 Evolution during the generalized robust cutting-set (GRCS) algorithm of the robust feasibility of the MEA-based CO2 capture flow
sheet using the static approximation policy [Color figure can be viewed at wileyonlinelibrary.com]
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q�Q uncertain parameters

q0 � ℝw nominal uncertain parameter values

ζ � ℝ objective function value

Functions
g inequality constraints

h equality constraints

f1 first-stage costs

f2 second-stage costs

v decision rule function

 �ð Þ expectation of

σ(�) standard deviation of

ACKNOWLEDGMENTS

This research was conducted as part of the Institute for the Design of

Advanced Energy Systems (IDAES) with funding from the Simulation-

Based Engineering, Crosscutting Research Program of the

U.S. Department of Energy's Office of Fossil Energy. Natalie Isenberg

is also grateful for support from a U.S. Department of Energy, Office

of Science Graduate Student Research award.

AUTHOR CONTRIBUTIONS

Natalie Isenberg: Data curation; formal analysis; investigation; meth-

odology; software; visualization; writing-original draft. Paul Akula:

Data curation; validation. John Eslick: Software. Debangsu

Bhattacharyya: Validation; writing-review and editing. David Miller:

Funding acquisition; writing-review and editing. Chrysanthos

Gounaris: Conceptualization; funding acquisition; methodology; pro-

ject administration; resources; supervision; writing-review and editing.

DISCLAIMER

This paper was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily

constitute or imply its endorsement, recommendation, or favoring by

the United States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof.

CONFLICT OF INTEREST

None are to be reported.

ENDNOTES
* This unique mapping from (x, z, q) to y is a reasonable assumption for

most process models. If this assumption does not hold, however, the

offending elements of vector y should be regarded as flexible, second-

stage variables and handled in the same way as the z variables.

† In the case of a quadratic decision rule function, it holds by construction

that p:= 1 + w + w(w + 1)/2.
‡ Since ζ* is the minimal objective value of the master problem, requiring

that the objective of the polishing problem attains a value no greater

than ζ* is equivalent to requiring that its solution corresponds to one of

the equivalently optimal solutions of the master problem.
§ We remark that the chosen scenarios may be samples from within the

uncertainty set, that is, qs∈Q, or may be out-of-sample scenarios.
¶ We remark that the first-stage costs would not vary depending on the

scenario qs, since the design variables, x*, are kept fixed in this analysis.

** For example, the nominal realization q0 is used as early as the first mas-

ter problem to initialize the GRCS algorithm, and hence every master

problem solution is explicitly robust against the nominal point.
†† Note that we made use of the Underwood formula50 to approximate

ΔTln, which was found to be helpful in avoiding numerical issues with

the NLP solvers.
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