Model Development, Validation, and Part-Load Optimization of a MEA-Based Post-Combustion CO₂ Capture Process Under Steady-State Flexible Capture Operation

Paul Akula^a, John Eslick^b, Debangsu Bhattacharyya^{a*}, David C. Miller^b

^aDepartment of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA

^bNational Energy Technology Laboratory, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, USA

Supporting Information for Publication

MODEL EQUATIONS FOR PACKED COLUMN

The steady-state molar balance of components in the vapor and liquid phase is given by eqs S1 and S2. In eq S2, superscript 'a' denotes apparent species as the chemical reactions occurring in the liquid phase produce true species that are denoted by superscript 't'.

Molar component balance for the vapor and liquid bulk

$$\frac{\partial \left(u_{V}C_{i,V}\right)}{\partial z} = -N_{i,V}, \qquad \forall i \in \left\{ CO_{2(g)}, H_{2}O_{(g)}, N_{2(g)}, O_{2(g)} \right\}$$
(S1)

$$\frac{\partial \left(u_{L}C_{i,L}^{a}\right)}{\partial z} = -N_{i,L}, \qquad \forall i \in \left\{\mathrm{CO}_{2(\mathrm{aq})}, \mathrm{H}_{2}\mathrm{O}_{(l)}, \mathrm{MEA}_{(\mathrm{aq})}\right\}$$
(S2)

Enthalpy balance for the vapor and liquid phase

The steady-state enthalpy balance over a differential element assuming negligible ambient heat loss and negligible axial dispersion of heat is given by eq S3 for the vapor and eq S4 for the liquid phases.

$$\frac{\partial \left(u_V C_{tot,V} \hat{C}_{p,V} T_V\right)}{\partial z} = Q_V \tag{S3}$$

$$\frac{\partial \left(u_L C_{tot,L} \hat{C}_{p,L} T_L\right)}{\partial z} = Q_L \tag{S4}$$

Transfer rate equations

The heat and mass transfer rates are described by eqs S5 to S13, where Q_v is the vapor film convective heat transfer term as defined in eq S5 and h'_v is the corrected heat transfer coefficient necessary for large mass transfer fluxes (Pandya 1983, Taylor et al. 1993). Q_L is defined as given in eq S6.

$$Q_V = h_V' a_e (T_L - T_V) \tag{S5}$$

$$Q_L = Q_V + N_{\text{CO}_2,V} \Delta H_{abs} - N_{\text{H}_2\text{O},V} \Delta H_{vap}$$
(S6)

$$h'_{V}a_{e} = \frac{\hat{C}_{pCO_{2},V}N_{CO_{2},V} + \hat{C}_{pH_{2}O,V}N_{H_{2}O,V}}{1 - \exp\left(-\frac{\hat{C}_{pCO_{2},V}N_{CO_{2},V} + \hat{C}_{pH_{2}O,V}N_{H_{2}O,V}}{h_{V}a_{e}}\right)}$$
(S7)

$$N_{i,V} = k'_{V,i} a_e P(y_i - y_i^*), \quad k'_{V,i} = \frac{k_{V,i}}{RT_V}, \quad i \in \{CO_2, H_2O\}$$
(S8)

$$y_{\rm H_2O}^* = x_{\rm H_2O}^* \gamma_{\rm H_2O}^* \frac{p_{\rm H_2O}^{sat}}{P} = x_{\rm H_2O}^t \gamma_{\rm H_2O} \frac{p_{\rm H_2O}^{sat}}{P}$$
(S9)

$$y_{CO_{2}}^{*} = \frac{y_{CO_{2}} + \frac{\psi C_{CO_{2},L}^{\prime}}{P}}{1 + \frac{\psi}{He_{CO_{2}}}}, \qquad \psi = \left(\frac{Ek_{L,CO_{2}}}{k_{V,CO_{2}}^{\prime}}\right)$$
(S10)

$$C_{\text{CO}_{2},L}^{*} = \frac{y_{\text{CO}_{2}}^{*}P}{\gamma_{\text{CO}_{2}}He_{\text{CO}_{2}}}$$
(S11)

$$y_i = \frac{C_{i,V}}{C_{tot,V}}, \quad C_{tot,V} = \sum_i C_{i,V} = \rho(T_V, P, y_i) \quad \forall i \in \{CO_2, H_2O, N_2, O_2\}$$
 (S12)

$$x_{i}^{a} = \frac{C_{i,L}^{a}}{C_{tot,L}}, \quad C_{tot,L} = \sum_{i} C_{i,L}^{a} = \rho(T_{L}, P, x_{i}), \quad \forall i \in \{CO_{2}, MEA, H_{2}O\}$$
(S13)

MODEL EQUATIONS: REBOILER

Molar component balance

$$F_{L,reb,in}x_{i,reb,in} - F_{L,reb,out}x_{i,reb,out} - F_{V,reb,out}y_{i,reb,out} = 0$$
(S14)

$$\sum_{i} x_{i,reb,out} = 1, \quad \sum_{i} y_{i,reb,out} = 1$$
(S15)

Energy balance

$$\dot{Q}_{reb} + F_{L,in}H_{L,in} = F_{V,reb,out}H_{V,reb,out} + F_{L,reb,out}H_{L,reb,out}$$
(S16)

$$\dot{Q}_{reb} = U_o A_{reb} \left(T_{steam} - T_{L,reb,out} \right)$$
(S17)

$$\dot{Q}_{reb} = \dot{m}_{steam} \Delta H_{steam}$$
(S18)

MODEL EQUATIONS: CONDENSER

Molar component balance

$$F_{V,cond,in}y_{i,cond,in} - F_{L,cond,out}x_{i,con,out} - F_{V,cond,out}y_{i,cond,out} = 0$$
(S19)

$$\sum_{i} y_{i,cond,out} = 1, \quad \sum_{i} x_{i,cond,out} = 1$$
(S20)

Energy balance

$$\dot{Q}_{cond} + F_{V,in}H_{V,in} = F_{V,cond,out}H_{V,cond,out} + F_{L,cond,out}H_{L,cond,out}$$
(S21)

MODEL EQUATIONS: PLATE HEAT EXCHANGER

While more details can be found in our previous publication (Akula et al., 2019), here is a summary of the equations:

Sub-HX Equations	Hot side(Lean solvent)	Cold side(Rich solvent)	
Energy Balance	$T_{h,out}^{i} = T_{h,in}^{i} - \frac{\varepsilon_{i}\dot{C}_{\min}^{i}\left(T_{h,in}^{i} - T_{c,in}^{i}\right)}{\dot{C}_{h}^{i}}$	$T_{c,out}^{i} = T_{c,in}^{i} + \frac{\varepsilon_{i}\dot{C}_{\min}^{i}\left(T_{h,in}^{i} - T_{c,in}^{i}\right)}{\dot{C}_{c}^{i}}$	
Capacitance rate	$\dot{C}_{h}^{i} = \frac{\dot{m}_{h}C_{p,h}}{NC_{i}}$	$\dot{C}_{c}^{i} = \frac{\dot{m}_{c}C_{p,c}}{NC_{i}}$	
Minimum capacitance	$\dot{C}_{\min}^{i} = \min(\dot{C}_{c}^{i}, \dot{C}_{h}^{i}) \approx 0.5 \bigg(\dot{C}_{c}^{i} + 0.5 \bigg)$	$\dot{\boldsymbol{C}}_{h}^{i} - \left[\left(\dot{\boldsymbol{C}}_{c}^{i} - \dot{\boldsymbol{C}}_{h}^{i} \right)^{2} + \boldsymbol{\delta}_{1} \right]^{0.5} \right)$	
Maximum capacitance	$\dot{C}_{\max}^{i} = \max\left(\dot{C}_{c}^{i}, \dot{C}_{h}^{i}\right) \approx 0.5 \left(\dot{C}_{c}^{i} - \dot{C}_{c}^{i}\right)$	$+\dot{C}_{h}^{i}+\left[\left(\dot{C}_{c}^{i}-\dot{C}_{h}^{i}\right)^{2}+\delta_{2}\right]^{0.5}\right)$	
Capacitance ratio	$\bar{C}_{R,i} = \frac{\dot{C}_{\min}^i}{\dot{C}_{\max}^i}$		
Effectiveness	$\varepsilon_{i} = \begin{cases} \varepsilon_{c,i} \left(P \text{ is EVEN} \right) = \begin{cases} \frac{1 - \exp\left[-NTU_{i} \left(1 - \overline{C}_{R,i} \right) \right]}{1 - \overline{C}_{R,i} \exp\left[-NTU_{i} \left(1 - \overline{C}_{R,i} \right) \right]}, \ \overline{C}_{R_{i}} < 1 \\ \frac{NTU_{i}}{NTU_{i} + 1}, \overline{C}_{R,i} = 1, \end{cases}$ $\varepsilon_{p,i} \left(P \text{ is ODD} \right) = \frac{1 - \exp\left[-NTU_{i} \left(1 + \overline{C}_{R,i} \right) \right]}{1 + \overline{C}_{R,i}}$		
Number of Transfer Units	$NTU_i = \frac{U_i A_p}{\dot{C}_{\min}^i}$		
Change of pass Boundary Condition	$T_{h,out}^{i} = T_{h,in}^{i+1}, \ i = 1,, P-1$	$T_{c,in}^{i} = T_{c,out}^{i+1}, i = 1,, P-1$	
Inlet Boundary conditions	$T_{h,in}^i = T_{h,IN}, i = 1$	$T_{c,in}^i = T_{c,IN}, i = \mathbf{P}$	
Channel mass flow velocities	$G_{c,i}^{h} = \frac{\dot{m}_{h}}{bwNC_{i}}$	$G_{c,i}^{c} = \frac{\dot{m}_{c}}{bwNC_{i}}$	
Port mass flow velocities	$G_{\rm port}^{h} = \frac{4\dot{m}_{h}}{\pi d_{\rm port}^2}$	$G_{\rm port}^c = \frac{4\dot{m}_c}{\pi d_{\rm port}^2}$	
Pressure drop applied to both sides	$\Delta P = \left(\frac{2f\left(L + \overline{d_{\text{port}}}\right)PG_c^2}{\overline{\rho}d_h}\right) + 1.4$	$\left(P\frac{G_{port}^2}{2\bar{\rho}}\right) + \bar{\rho}g\left(L + d_{port}\right)$	

Heat transfer coefficient	$h_i^h = \left(\frac{\lambda_i^h}{d_h}\right) a_1 \left(\operatorname{Re}_i^h\right)^{a_2} \left(\operatorname{Pr}_i^h\right)^{a_3}$	$h_i^C = \left(\frac{\lambda_i^C}{d_h}\right) a_1 \left(\operatorname{Re}_i^C\right)^{a_2} \left(\operatorname{Pr}_i^C\right)^{a_3}$
Overall heat transfer coefficient	$\frac{1}{U_i} = \frac{1}{h_i^h} + \frac{\delta_p}{\lambda_p} + \frac{1}{h_i^C},$	

PROPERTIES OF CO2-MEA-H2O SYSTEM

THERMODYNAMIC PROPERTIES

Molar volume

Vapor phase (ideal)

$$V_{\rm v} = \frac{RT_{\rm v}}{P} \tag{S22}$$

Liquid phase

Pure solvent molar volume (m^3/mol). T is temperature in kelvin.

$$\mathbf{V}_{s}^{\circ} = \frac{M_{s}}{a_{s}T^{2} + b_{s}T + c_{s}}, \quad s \in \{\text{MEA}, \text{H}_{2}\text{O}\}$$
(S23)

Table S1: Pure molar volume parameters (Morgan et al. 2015)

Solvent, s	a_s	b_s	C _s	M_{s}
MEA	-5.35162×10^{-1}	-4.51417×10^{2}	1.19451×10 ⁶	61.08
H ₂ O	-3.2484	1.65×10^{3}	7.93×10 ⁵	18.02

Liquid mixture molar volume

Correlation by Weiland et al. (1998)

$$\mathbf{V}_{L} = x_{\text{MEA}} \mathbf{V}_{\text{MEA}}^{\circ} + x_{\text{H}_{2}\text{O}} \mathbf{V}_{\text{H}_{2}\text{O}}^{\circ} + x_{\text{CO}_{2}} \mathbf{V}_{\text{CO}_{2}} + x_{\text{MEA}} x_{\text{H}_{2}\text{O}} \mathbf{V}^{*}$$
(S24)

Correlation by Morgan et al. (2015)

$$\mathbf{V}_{L} = x_{\text{MEA}} \mathbf{V}_{\text{MEA}}^{\circ} + x_{\text{H}_{2}\text{O}} \mathbf{V}_{\text{H}_{2}\text{O}}^{\circ} + v_{1} x_{\text{CO}_{2}} + \left(v_{2} + v_{3} x_{\text{MEA}}\right) x_{\text{MEA}} x_{\text{H}_{2}\text{O}} + \left(v_{4} + v_{5} x_{\text{MEA}}\right) x_{\text{MEA}} x_{\text{CO}_{2}} \quad (S25)$$

Parameter	Value
$V_{_{CO_2}}$	4.7470×10 ⁻⁸
\mathbf{V}^{*}	-1.8218×10^{-6}
V ₁	1.02074×10^{-5}
v ₂	-2.2642×10^{-6}
<i>v</i> ₃	3.0059×10 ⁻⁶
V ₄	2.0700×10^{-4}
<i>v</i> ₅	-5.6337×10^{-4}

Table S2 : Parameters for Liquid mixture molar volume

Specific Heat capacity

Vapor Phase (J/mol K)

$$C_{p}^{ig} / R = a_0 + a_1 T + a_2 T^{-2}$$
(S26)

T is temperature in kelvin. R is gas constant.

Table S3: Ideal	gas heat	capacity of	vapor pha	ase component	s(Smith 1950)
1 4010 501 1400	0	empment jer	, mp or price		

Component <i>i</i>	a_0	<i>a</i> ₁	<i>a</i> ₂
CO ₂	5.457	1.045×10^{-3}	-1.157×10^{5}
H ₂ O	3.47	1.45×10^{-3}	1.21×10^{4}
N ₂	3.28	5.93×10 ⁻⁴	4.0×10^{3}
O ₂	3.639	5.06×10 ⁻⁴	-2.27×10^{4}

Liquid Phase (J/mol K)

$$C_{p,i}^{L} = M_{i} \left(C_{1} + C_{2}t + C_{3}t^{2} + C_{4}t^{3} + C_{5}t^{4} \right), \quad i \in \{\text{MEA}, \text{H}_{2}\text{O}\}$$
(S27)

Where t is the temperature in degree Celsius and M is the molecular weight in g/mol.

solvent	M_{i}	C1	C2	Сз	C 4	C 5
MEA	61.08	2.6161	3.706×10 ⁻³	3.787×10^{-6}	0.0	0.0
H ₂ O	18.02	4.2107	-1.696×10^{-3}	2.568×10^{-5}	-1.095×10^{-7}	3.038×10^{-10}

Table S4: Specific heat capacity of solvent species (Hilliard 2008)

Heat of vaporization of water

$$\Delta_{vap} H_{H_{2}O} = c_1 \left(1 - T_r \right)^{\left(c_2 + c_3 T_r + c_4 T_r^2 \right)} \qquad T_r = \frac{T}{T_c}; \quad T_c = 647.096 \text{ K}$$
(S28)

where T is temperature in kelvin.

Table S5: Parameters for heat of vaporization of water (J/mol K	Table S5:Par	ameters for	heat of	vaporizatio	on of water	(J/mo	1 K
---	--------------	-------------	---------	-------------	-------------	-------	-----

C ₁	C_2	C ₃	C_4
5.66×10 ⁴	0.61204	-0.6257	0.3988

Heat of absorption

A constant heat of absorption and desorption is assumed in the absorber and stripper respectively.

$$\Delta H_{absorption} = -84 \text{ kJ/mol}, \quad \Delta H_{desorption} = -97 \text{ kJ/mol}$$
(S29)

Vapor Pressure

$$\ln(p_{i}^{\nu}) = A + \frac{B}{T_{L}} + C \ln T_{L} + DT_{L}^{2} \qquad i \in \{ H_{2}O \}$$
(S30)

Table S6: Vapor pressure parameters for water (Pa)

	А	В	С	D
H ₂ O	72.55	-7206.7	-7.1385	4.05×10^{-06}

Henry's constant

Henry's constant $(He_{CO_2} \text{ in } Pa \cdot m^3/mol)$ using N₂O analogy (Jiru et al. 2012)

$$He_{CO_{2}} = \exp\left(w_{MEA}\ln(He_{CO_{2},MEA}) + w_{H_{2}O}\ln(He_{CO_{2},H_{2}O}) + w_{MEA}w_{H_{2}O}\alpha_{MW}\right)$$

$$\alpha_{MW} = 1.70981 + 0.03972(T_{L} - 273.15) - 4.3 \times 10^{-4} (T_{L} - 273.15)^{2} - 2.20377w_{H_{2}O}$$

$$w_{MEA} = \frac{x_{MEA}M_{MEA}}{x_{MEA}M_{MEA} + x_{H_{2}O}M_{H_{2}O}}, w_{H_{2}O} = 1 - w_{MEA}$$

$$He_{CO_{2},MEA} = He_{N_{2}O,MEA}\left(\frac{He_{CO_{2},H_{2}O}}{He_{N_{2}O,H_{2}O}}\right)$$

$$He_{N_{2}O,MEA} = 2.448 \times 10^{5} \exp\left(\frac{-1348}{T_{L}}\right)$$

$$He_{CO_{2},H_{2}O} = 3.52 \times 10^{6} \exp\left(-\frac{2113}{T_{L}}\right)$$

$$He_{N_{2}O,H_{2}O} = 8.449 \times 10^{6} \exp\left(-\frac{2283}{T_{L}}\right)$$
(S31)

Henry's constant $(H_{CO_2} \text{ in Pa})$ using activity coefficient model

$$\ln\left(\frac{H_{i}}{\gamma_{i}^{\infty}}\right) = \sum_{s} \ln\left(\frac{H_{is}}{\gamma_{is}^{\infty}}\right) \frac{x_{s}(V_{is'}^{\infty})^{2/3}}{\sum_{s'} x_{s'}(V_{is'}^{\infty})^{2/3}} \qquad s = s' \in \{\text{MEA}, \text{H}_{2}\text{O}\}$$
$$\ln H_{is} = a_{is} + \frac{b_{is}}{T} + c_{is} \ln(T) + d_{is}T, \qquad i = \text{CO}_{2}, \quad s = \text{H}_{2}\text{O}$$
$$H_{is} = 6.6434 \times 10^{8} \exp(\frac{-896.5}{\text{T}}), \qquad i = \text{CO}_{2}, \quad s = \text{MEA}$$

Table S7: solute -solvent pair parameters of Henry's constant

Component i	CO ₂
Component s	H ₂ O
Temperature units	Κ
a _{is}	170.7126
b_{is}	-8477.711
C _{is}	-21.95743
d_{is}	0.0057807

 $V_{is'}^{\infty}$ is calculated from the Brelvi-O'Connel model

$$V_{is}^{\infty} = \frac{1 - C_{is}}{\rho_{s}k_{s}},$$

$$C_{is} = -\left(\frac{v_{i}}{v_{s}}\right)^{0.62} \exp\left(-2.4467 + 2.12074\rho_{s}^{r}\right), \quad 2.0 \le \rho_{s=H_{2}O}^{r} \le 2.785$$

$$C_{is} = -\left(\frac{v_{i}}{v_{s}}\right)^{0.62} \exp\left(3.02214 - 1.87085\rho_{s}^{r} + 0.71955(\rho_{s}^{r})^{2}\right), \quad 2.785 \le \rho_{s=MEA}^{r}$$

$$k_{s} = \exp\left\{\rho_{s}^{r}\left[A + \rho_{s}^{r}(B - C\rho_{s}^{r})\right]\right\} - 1, \quad A = -0.42704, \quad B = 2.089, \quad C = 0.42367$$

$$\rho_{s}^{r} = \rho_{s}v_{s}, \quad \rho_{s}^{r} = \rho_{s}^{r} - 1$$

$$v_{i} = v_{1,i}^{BO} + v_{2,i}^{BO}, \quad i = CO_{2}, \text{MEA}, \text{H}_{2}O$$
(S33)

The Brelvi-O'Connell characteristic volume parameters are given in Table S8. ρ_s is the molar density in mol/cm³, hence the characteristic volume should be converted to similar units to compute the reduced density, ρ_s^r . The molar density of the pure solvent is obtained from the molar volume, V_s°

 $v_{1,i}^{BO}$ $v^{BO}_{2,i}$ Species Source H_2O 0.0464 0.0 Brelvi et al. (1972) MEA 0.225 0.0 Zhang et al. (2011) CO_2 0.177 -3.42e-4 Yan et al. (2010)

Table S8: Characteristic volume parameters (m³/kmol)

 γ_i^{∞} is the infinite dilution activity coefficient of molecular solute *i* in the mixed solvent. γ_{is}^{∞} is the infinite dilution activity coefficient of molecular solute *i* in the pure solvent and x'_s is solute free mole fraction of the solvents.

Activity coefficient (NRTL model)

$$\ln \gamma_{i} = \frac{\sum_{j} x_{j} \tau_{ji} G_{ji}}{\sum_{k} x_{k} G_{ki}} + \sum_{j} \frac{x_{j} G_{ij}}{\sum_{k} x_{k} G_{kj}} \left(\tau_{ij} - \frac{\sum_{m} x_{m} \tau_{mj} G_{mj}}{\sum_{k} x_{k} G_{kj}} \right)$$

$$G_{ij} = \exp(-\alpha_{ij} \tau_{ij}), \quad G_{ii} = 1$$

$$\tau_{ij} = a_{ij} + \frac{b_{ij}}{T}, \qquad \tau_{ii} = 0$$
(S34)

Table S9: NRTL binary Parameters

Component i	H ₂ O	H ₂ O
Component j	MEA	CO ₂
a_{ij}	4.33838	0
a_{ji}	3.25515	69.38507
b_{ij}	-2197.53	0
b_{ji}	0	0
$lpha_{_{ij}}$	0.3	0.3

Concentration-based Equilibrium constant

$$K_i\left(\mathrm{m}^3/\mathrm{kmol}\right) = \exp\left(a_i + \frac{b_i}{T_L} + c_i \ln T_L\right)$$
(S35)

Table S10: Equilibrium constants

constant	a_i	b_i	C _i
K_1	233.4	-3410	-36.8
K_2	176.72	-2909	-28.46

TRANSPORT PROPERTIES

Viscosity

Vapor phase

Pure component

Sutherland equation is used for CO₂, N₂ and O₂.

$$\mu_{V,i} \left(\text{Pa.s} \right) = \frac{\mu_{V,i0}}{1000} \left(\frac{0.555T_{i0} + C_i^*}{0.555(T + 459.67) + C_i^*} \right) \left((T + 459.67) / T_{i0} \right)^{3/2}$$
(S36)

Where T is temperature in kelvin.

Lucas method of corresponding states is used for water vapor(Reid et al. 1987).

Table S11:Sutherland's parameters

	$\mu_{\!_{V,i0}}$	T_{i0}	C_i^*
CO ₂	0.01480	527.67	240
N_2	0.01781	540.99	111
O_2	0.02018	526.05	127

Viscosity of vapor mixture(Wilke 1950)

$$\mu_{V} (Pa.s) = \sum_{i} \frac{\mu_{V,i}}{\left(1 + \frac{1}{y_{i}} \sum_{\substack{j=1 \ j \neq i}}^{j=n} y_{i} \phi_{ij}\right)}$$

$$\phi_{ij} = \frac{\left[1 + \left(\mu_{i,V} / \mu_{j,V}\right)^{1/2} \left(MW_{j} / MW_{i}\right)^{1/4}\right]^{2}}{\left(2\sqrt{2}\right) \left[1 + \left(MW_{i} / MW_{j}\right)\right]^{1/2}}$$
(S37)

Liquid phase

$$\mu_{L} (\text{Pa s}) = \frac{\mu_{H_{2}O}}{1000} \exp\left(\frac{\left[\left(a_{\mu}\Omega + b_{\mu}\right)T_{L} + c_{\mu}\Omega + d_{\mu}\right]\left[\alpha\left(e_{\mu}\Omega + f_{\mu}T + g_{\mu}\right) + 1\right]\Omega}{T_{L}^{2}}\right)$$

$$\mu_{H_{2}O} (\text{mPa s}) = 1.002 \times 10^{\frac{1.3272\left[293.15 - T_{L} - 0.001053(T_{L} - 293.15)^{2}\right]}{T_{L} - 168.15}}$$

$$\Omega = 100r, \text{ where } r = \left[\frac{MW_{\text{MEA}}x_{\text{MEA}}}{MW_{\text{MEA}}x_{\text{MEA}} + MW_{\text{H}_{2}O}x_{\text{H}_{2}O}}\right]$$

$$\alpha\left(\frac{\text{mol CO}_{2}}{\text{mol MEA}}\right) = \frac{x_{\text{CO}_{2}}}{x_{\text{MEA}}}$$
(S38)

Table S12: Liquid viscosity parameters (Morgan et al. 2015)

a_{μ}	b_{μ}	c_{μ}	d_{μ}	e_{μ}	f_{μ}	g_{μ}
-0.0838	2.8817	33.651	1817	0.00847	0.0103	-2.3890

Surface Tension

Pure component

$$\sigma_{i}\left(N/m\right) = c_{1,i}^{\sigma} \left(1 - \frac{T_{L}}{T_{c,i}}\right)^{c_{2,i}^{\sigma} + c_{3,i}^{\sigma}(T_{L}/T_{c,i}) + c_{4,i}^{\sigma}(T_{L}/T_{c,i})^{2}} \quad i \in \{MEA, H_{2}O\}$$

$$\sigma_{CO_{2}}\left(N/m\right) = S_{1}r^{2} + S_{2}r + S_{3} + T\left(S_{4}r^{2} + S_{5}r + S_{6}\right)$$
(S39)

Table S13:: Parameters for pure component surface tension

(Asprion 2005)	$c_{1,i}^{\sigma}$	$c^{\sigma}_{2,i}$	$c^{\sigma}_{3,i}$	$c_{4,i}^{\sigma}$	$T_{c,i}(\mathbf{K})$	
MEA	0.09945	1.067	0	0	614.45	
H ₂ O	0.18548	2.717	-3.554	-2.047	647.13	
(Morgan et al. 2015)	S_1	S_{2}	S ₃	S_4	S_5	S_6
CO ₂	-5.987	3.7699	-0.43164	0.018155	-0.01207	0.002119

Liquid solution

$$\sigma_{L} (N/m) = \sigma_{H_{2}O} + (\sigma_{CO_{2}} - \sigma_{H_{2}O}) F_{\sigma_{CO_{2}}} x_{cO_{2}} + (\sigma_{MEA} - \sigma_{H_{2}O}) F_{\sigma_{MEA}} x_{MEA}$$

$$F_{\sigma_{CO_{2}}} = a_{\sigma} + b_{\sigma}\alpha + c_{\sigma}\alpha^{2} + d_{\sigma}r + e_{\sigma}r^{2}$$

$$F_{\sigma_{MEA}} = f_{\sigma} + g_{\sigma}\alpha + h_{\sigma}\alpha^{2} + i_{\sigma}r + j_{\sigma}r^{2}$$
(S40)

Table S14: Surface tension parameters(Morgan et al. 2015)

a_{σ}	b_{σ}	C_{σ}	d_{σ}	e_{σ}
2.4558	-1.5311	3.4994	-5.6398	10.2109
f_{σ}	g_{σ}	h_{σ}	i_{σ}	j_{σ}
2.3122	4.5608	-2.3924	5.3324	-12.0494

Diffusivity

Vapor phase

$$D_{ij}\left(m^{2}/s\right) = 1.013 \times 10^{-2} T_{V}^{1.75} \frac{\sqrt{\left(M_{i} + M_{j}\right) / M_{i}M_{j}}}{P\left(\sqrt[3]{V_{Di}} + \sqrt[3]{V_{Dj}}\right)^{2}}$$
(S41)

Table S15:Diffusion Volumes in Fuller-Schettler-Giddings Correlation

MEA	H ₂ O	CO ₂	N ₂	O ₂
58.62	13.1	26.7	18.5	16.3

Effective or pseudo binary diffusivity (Wilke et al. 1955)

$$D_{V,i}\left(m^{2}/s\right) = \frac{1 - y_{i}}{\sum_{\substack{j=1\\j \neq i}}^{n} \frac{y_{j}}{D_{ij}}}$$
(S42)

Liquid phase

 $\rm CO_2$

$$D_{L,CO_2}\left(\mathrm{m}^2/\mathrm{s}\right) = \left(a_0 + a_1 C_{MEA,L} + a_2 C_{MEA,L}^2\right) \exp\left(\frac{b_0 + b_1 C_{MEA,L}}{T_L}\right)$$
(S43)

Where $C_{MEA,L}$ is the concentration of MEA in the liquid and T is temperature in kelvin.

Table S16: Ying and Eimer (2012) diffusivity parameters for CO2 in aqueous MEA mixture

Parameters	<i>a</i> ₀	a_1	<i>a</i> ₂	b_0	b_1
Values	2.35×10 ⁻⁶	2.9837×10^{-8}	-9.7078×10^{-9}	-2119	-20.1320

MEA

(Snijder et al. 1993)

$$D_{L,\text{MEA}}\left(\text{m}^{2}/\text{s}\right) = \exp\left(-13.275 - \frac{2198.3}{T_{L}} - 7.8142 \times 10^{-5} C_{\text{MEA},L}\right)$$
(S44)

MEACOO-

(Hoff et al. 2004)

$$D_{L,\text{MEACOO}^{-}} = \exp\left(-22.64 - \frac{1000}{T_L} - 0.7 \ln \mu_L\right)$$
(S45)

CORRELATIONS FOR TRANSFER RATES, COLUMN HYDRAULICS AND KINETICS

Mass transfer coefficients

Chinen et al. (2018) have reported that the mass transfer correlations by Billet and Schultes (1999) and the interfacial area model of Tsai (2010) provide good estimates for MEA-CO2-H2O system. The values of C_V and C_L obtained from their integrated approach of simultaneously regressing the mass transfer and interfacial area model parameters are used in this work.

$$k_{V,i} \cdot a_{e} = C_{V} \frac{1}{\left(\varepsilon_{p} - \varepsilon_{L}\right)^{1/2}} \frac{a^{3/2}}{d_{h}^{1/2}} D_{V,i} \left(\frac{u_{V}}{av_{V}}\right)^{3/4} \left(\frac{\mu_{V}}{\rho_{V} D_{V,i}}\right)^{1/3} \left(\frac{a_{e}}{a}\right); \quad C_{V} = 0.35$$

$$k_{L,CO_{2}} \cdot a_{e} = C_{L} \cdot 12^{1/6} \left(\frac{u_{L}}{\varepsilon_{L}}\right)^{1/2} \left(\frac{D_{L,CO_{2}}}{d_{h}}\right)^{1/2} a \left(\frac{a_{e}}{a}\right); \quad C_{L} = 0.203 \quad (S46)$$

$$d_{h} = 4 \frac{\varepsilon_{P}}{a_{p}} \qquad \varepsilon_{P} = 0.97; a_{p} = 250 \text{ m}^{2} \text{m}^{-3}$$

Interfacial area model

The regressed interfacial area model of Tsai (2010) by Chinen et al. (2018)

$$\frac{a_e}{a_p} = 1.42 \left[\frac{\rho_L}{\sigma_L} g^{\frac{1}{3}} \left(\frac{u_L A}{L_p} \right)^{\frac{4}{3}} \right]^{0.12}$$
(S47)

Vapor phase heat transfer coefficient

The convective heat transfer coefficient in the vapor phase is calculated using the Chilton-Colburn analogy

$$h_{VL} = k_{V,CO_2} C_{p,V} \rho_V \left(\frac{\lambda_V}{C_{p,V} \rho_V D_{V,CO_2}}\right)^{2/3}$$
(S48)

Second order rate constant

$$k_{rx}(m^{3}/\text{kmol} \cdot s) = k_{\text{MEA}}C_{\text{MEA}} + k_{\text{H}_{2}\text{O}}C_{\text{H}_{2}\text{O}}$$

$$k_{\text{MEA}}(m^{6}/\text{kmol}^{2} \cdot s) = 2.003 \times 10^{10} \exp\left(-\frac{4742}{T_{L}}\right)$$

$$k_{\text{H}_{2}\text{O}}(m^{6}/\text{kmol}^{2} \cdot s) = 4.147 \times 10^{6} \exp\left(-\frac{3110}{T_{L}}\right)$$
(S49)

Reconstitution of apparent species from true species

(Asprion 2004)

In the aqueous phase of the MEA-CO₂-H₂O system, the following no. of reactions(R=2) are considered,

 $2\text{MEA} + \text{CO}_2 \quad \overleftarrow{\underset{k_{-1}}{\longleftarrow}} \quad \text{MEAH}^+ + \text{MEACOO}^ \text{MEA} + \text{CO}_2 + \text{H}_2\text{O} \quad \overleftarrow{\underset{k_{-2}}{\longleftarrow}} \quad \text{MEAH}^+ + \text{HCO}_3^-$

STEP 1: order all species in a vector such that the apparent species appear first.

$$S = \left\{ H_2^{S_1} O, CO_2^{S_2}, MEA, HCO_3^{-}, MEACOO^{-}, MEAH^{+} \right\}^{T_1}$$

Step 2: Create the matrix of stoichiometric coefficients of dimensions $R \times S$ using the ordering in step 1.

$$(v_{i,k}) = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ 0 & -1 & -2 & 0 & 1 & 1 \\ -1 & -1 & -1 & 1 & 0 & 1 \end{pmatrix} R_1 R_2$$

Step 3: create two vectors of mole numbers $\overline{\mathbf{n}}$ and $\overline{\overline{\mathbf{n}}}$ such that, $\overline{\mathbf{n}}$ contains the first S-R elements as ordered in step 1 and $\overline{\overline{\mathbf{n}}}$ contains the remaining elements. Then, split the matrix, $(v_{i,k})$ accordingly into \overline{v} and $\overline{\overline{v}}$.

$$\overline{\mathbf{n}} = \begin{pmatrix} n_{\mathrm{H}_{2}\mathrm{O}} \\ n_{\mathrm{CO}_{2}} \\ n_{\mathrm{MEA}} \\ n_{\mathrm{HCO}_{3}^{-}} \end{pmatrix}, \quad \overline{\overline{\mathbf{n}}} = \begin{pmatrix} n_{\mathrm{MEACOO^{-}}} \\ n_{\mathrm{MEAH^{+}}} \end{pmatrix}, \quad \overline{v} = \begin{pmatrix} 0 & -1 & -2 & 0 \\ -1 & -1 & -1 & 1 \end{pmatrix}, \quad \overline{\overline{v}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Step 4: reconstitute the apparent species using initial no. of mols, $\overline{\mathbf{n}}^0$ defined as: $\overline{\mathbf{n}}^0 = \overline{\mathbf{n}} - \overline{v}^T \left(\overline{\overline{v}}^{-1}\right)^T \left(\overline{\overline{\mathbf{n}}}\right)$

$$\overline{v}^{\mathrm{T}} \left(\overline{\overline{v}}^{-1}\right)^{\mathrm{T}} = \begin{pmatrix} 1 & -1 \\ 0 & -1 \\ -1 & -1 \\ -1 & 1 \end{pmatrix} \implies \overline{v}^{\mathrm{T}} \left(\overline{\overline{v}}^{-1}\right)^{\mathrm{T}} \left(\overline{\overline{\mathbf{n}}}\right) = \begin{pmatrix} n_{\mathrm{MEACOO^{-}}} - n_{\mathrm{MEAH^{+}}} \\ -n_{\mathrm{MEACO^{-}}} - n_{\mathrm{MEAH^{+}}} \\ -n_{\mathrm{MEACOO^{-}}} - n_{\mathrm{MEAH^{+}}} \\ -n_{\mathrm{MEACOO^{-}}} + n_{\mathrm{MEAH^{+}}} \end{pmatrix}$$

$$\overline{n}_{H_{2}O}^{0} = n_{H_{2}O} - n_{MEACOO^{-}} + n_{MEAH^{+}} \quad (H_{2}O \text{ balance})$$

$$\overline{n}_{CO_{2}}^{0} = n_{CO_{2}} + n_{MEAH^{+}} \quad (CO_{2} \text{ balance})$$

$$\overline{n}_{MEA}^{0} = n_{MEA} + n_{MEACOO^{-}} + n_{MEAH^{+}} \quad (MEA \text{ balance})$$

$$\overline{n}_{HCO_{3}}^{0} = n_{HCO_{3}} + n_{MEACOO^{-}} - n_{MEAH^{+}} \quad (Charge \text{ balance})$$

$$\overline{n}_{MEA}^{0} = n_{MEA} + n_{MEACOO^{-}} - n_{MEAH^{+}} \quad (Charge \text{ balance})$$

 $\overline{n}_{\rm HCO_3^-}^0 = 0$, initial number of moles of non-apparent species is zero.

CASES	1	2	3	4	5	6	7
Lean solvent absorber flowrate (kg/hr)	6804	11794	3175	6804	6804	11643	3175
Lean solvent absorber loading (mol CO ₂ /MEA)	0.145	0.247	0.083	0.108	0.347	0.154	0.239
Lean solvent MEA composition (g MEA/MEA+H ₂ O)	0.298	0.312	0.31	0.306	0.307	0.285	0.311
Lean solvent absorber inlet temperature (°C)	40.97	40.52	46.72	41.57	40.87	40.57	42.66
Rich solvent absorber flowrate (kg/hr)	7242	12284	3343	7212	7063	12043	3337
Rich solvent absorber loading (mol CO_2 /MEA)	0.384	0.385	0.47	0.295	0.469	0.275	0.474
Rich solvent MEA composition (g MEA/MEA+ H ₂ O)	0.3	0.314	0.328	0.308	0.309	0.289	0.318
Flue gas flowrate (kg/hr)	2266	2261	2261	2253	2255	2255	2250
Flue gas CO ₂ weight fraction	0.1731	0.1718	0.1724	0.1395	0.1381	0.1393	0.1401
Flue gas H ₂ O weight fraction	0.0462	0.053	0.0525	0.0505	0.0464	0.0466	0.0533
Flue gas N ₂ weight fraction	0.7116	0.7066	0.7072	0.7152	0.7183	0.7193	0.7134
Flue gas O ₂ weight fraction	0.069	0.0686	0.0678	0.0948	0.0971	0.0948	0.0932
Flue gas inlet temperature (°C)	42.48	44.94	44.73	43.78	42.18	42.47	44.87
Absorber pressure (kPa)	108.82	107.06	107.65	106.94	107.1	107.26	107.49

Table S17 : Absorber flow streams -NCCC Steady-State data	,	Table S17 : Absort	ber flow stream	s -NCCC Stead	v-State data
---	---	--------------------	-----------------	---------------	--------------

CASES	1	2	3	4	5	6	7
Intercooler 1 flowrate (kg/hr)	7364.83	12340.85	3848.86	7357.23	7539.09	11634.52	3832.25
Intercooler 1 return temperature (°C)	40.13	40.19	43.34	41.15	43.39	39.99	43.31
Intercooler 2 flowrate (kg/hr)	7421.57	12261.52	2429.55	7180.54	7179.52	11504.64	2335.07
Intercooler 2 return temperature (°C)	43.32	43.32	43.33	43.36	43.26	40.39	40.03
Number of absorber beds/ intercoolers	3/2	3/2	3/2	3/2	3/2	3/2	3/2

Table S18 : Absorber intercoolers between the packed beds -NCCC Steady-State data

Table S19: Stripper, reboiler and heat exchanger (HX) NCCC steady state data

CASES	1	2	3	4	5	6	7
Stripper pressure (kPa)	183.87	182.06	184.15	183.43	179.88	183.45	182.84
Rich solvent stripper inlet temperature (°C)	104.8	104.8	97.6	109	95.7	110.1	98.4
Stripper solvent exit temperature (°C)	120.18	117.43	122.53	121.68	110.21	120.35	117.69
Reboiler duty (kW)	431	430	427	677	171	677	166
Lean solvent HX flowrate (kg/hr)	6811.2	11804.4	2998.8	6811.2	6811.2	3178.8	6811.2
Lean solvent HX temperature, inlet/exit (°C)	119.3/57.5	116.6/63.8	103.3/51.6	120.8/58.5	109.5/50.5	119.7/61.7	116.7/51.9
Rich solvent HX flowrate (kg/hr)	7246.8	12294.0	3344.4	7218.0	7070.4	3340.8	7246.8
Rich solvent HX temperature, inlet/exit (°C)	53.4/111.8	59.3/110.1	46.6/97.4	56.1/110.5	45.8/103.0	57.7/111.8	48.4/108.9

Flue gas supply rate (Sm ³ /h))	59430
Flue gas supply temperature	29.8	
Flue gas supply pressure (ba	0.01	
Flue gas supply CO ₂ concer	ntration (vol%)	3.7
Flue gas supply O ₂ concentr	ration (vol%)	14.6
Flue gas supply water conte	nt (vol%)	3.7
Lean amine supply flow rate	e (kg/h)	57434
Lean MEA concentration (v	vt%)	31
Lean CO ₂ loading (mol CO ₂	₂ /mol MEA)	0.2
Active absorber packing hei	ight (m)	24
Lean amine supply temperat	ture (°C)	37
Absorber Beds	Height (m)	Temperature (°C)
	23.5	47.4
	22.5	51.7
Upper Absorber Red	21.5	51.6
Opper Absorber Bed	20.5	50.5
	19.5	49.9
	18.5	48.9
	17.5	47.2
	16.5	46.0
Middle Absorber Ded	15.5	44.4
Middle Absorber Bed	14.5	43.1
	13.5	42.2
	12.5	40.9
	11.5	40.6
	10.5	41.6
	9.5	37.4
	8.5	37.1
	7.5	35.9
Lower Absorber Bed	6.5	34.3
Lower Absorber Bed	5.5	34.1
	4.5	33.8
	3.5	32.9
	2.5	33.2
	1.5	32.5
	0.5	32.4

Table S20 : TCM absorber 2015 baseline data from Faramarzi et al. (2017).

Stripper overhead pressure (barg)		0.91
Stripping section packing height (m)		8
Rich solution supply temperature (°C)		110.7
Stripper Bed	Height (m)	Temperature (°C)
Stripper Packing	7	102.7
	6	103.1
	5	104.5
	4	107.7
	3	112.1
	2	114.7
	1	119.4
Stripper sump temperature (°C)		121.0

Table S21: TCM Stripper 2015 baseline data from Faramarzi et al. (2017).

Gas-side % capture =
$$\frac{\text{flowrate}_{CO_2,IN}^{\text{absorber,gas}} - \text{flowrate}_{CO_2,OUT}^{\text{absorber,gas}} \times 100,$$

flowrate_{CO_2,IN}^{\text{absorber,gas}} \times 100,
Liquid-side % capture =
$$\frac{\text{flowrate}_{CO_2,OUT}^{\text{absorber,liquid}} - \text{flowrate}_{CO_2,IN}^{\text{absorber,liquid}} \times 100$$

flowrate^{absorber,gas}

(S50)