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Systematic approaches for the design of mixtures, based on a computer-aided mixture/blend design (CAMbD) framework,
have the potential to deliver better products and processes. In most existing methodologies the number of mixture ingre-
dients is fixed (usually a binary mixture) and the identity of at least one compound is chosen from a given set of candidate
molecules. A novel CAMbD methodology is presented for formulating the general mixture design problem where the num-
ber, identity and composition of mixture constituents are optimized simultaneously. To this end, generalized disjunctive
programming is integrated into the CAMbD framework to formulate the discrete choices. This generic methodology is
applied to a case study to find an optimal solvent mixture that maximizes the solubility of ibuprofen. The best performance
in this case study is obtained with a solvent mixture, showing the benefit of using mixtures instead of pure solvents to
attain enhanced behavior. VC 2016 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American

Institute of Chemical Engineers AIChE J, 62: 1616–1633, 2016
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Introduction

Mixtures play an important role in the process industries and
blends of refrigerants,1–3 polymers,4,5 and solvents6 are used in
a wide range of applications. Solvent mixtures, for example, are
used in separation processes, such as extraction,7,8 absorption,9

and crystallisation,10,11 and in chemical reactions.12,13 In prod-
uct design, the desired performance can often only be achieved
with a mixture or formulation (e.g., pesticide formulation, crude
oils blended into a single product).14,15 The current regulatory
environment is making mixtures increasingly relevant as restric-
tions are placed on the use of a growing number of compounds.
Some common compounds are thus being removed from use as
a result of changing regulations (e.g., REACH regulations16).
Given this context, the formulation of mixtures offers a poten-
tial route to enhanced performance, because mixtures can
exhibit properties that equate or even surpass those of pure
compounds. Some of the benefits of using mixtures have been
demonstrated by Granberg and Rasmuson17 who studied the
solubility of paracetamol in a binary mixture of water and ace-
tone. The results of their study are shown in Figure 1, where it

can be seen that, at 308C, mixtures containing up to 75% water
by mass achieve at least as high a solubility as pure acetone,
with a 30:70 mixture of water and acetone achieving the highest
solubility. A fivefold increase in solubility relative to pure ace-
tone is observed, although paracetamol is poorly water-soluble.
This nonlinear behavior, which is commonly observed in solu-
bility experiments (e.g., the work of Pacheco et al.18), arises
from the nonideal thermodynamics of the ternary mixture.19,20

There is thus a crucial need for identifying mixtures that can
achieve better performance than pure compounds while being
more environmentally benign. Despite the importance of mix-
tures and their direct impact on the performance and sustainabil-
ity of products and processes, the design of optimal mixtures,
which entails the selection of appropriate components and of
their composition, remains challenging. The choice of compo-
nents is often made based on expensive and time-consuming
experiments or database searches,21 using databases that include
thermodynamic property data collections for pure components
and mixtures such as the CAPEC22 database, CHEMSAFE,23

DECHEMA,24 DETHERM,25 DIPPR,26 HSSDS,27 NIST,28

SOLV-DB,29 SSDS,30 TAPP.31 To broaden the search for better
mixtures several more systematic approaches for mixture
design10,11,14,32–34 based on computer-aided mixture/blend design
(CAMbD), have been developed. CAMbD has been defined by
Gani and coworkers10,14,35 as the problem of identifying, from a
set of given molecules, a mixture with desired properties that
optimizes a given performance measure. The general objective of
CAMbD is to design the optimal number, identity and composi-
tions of the components that participate in a mixture that
meets the design criteria. The vast majority of approaches devel-
oped can be used in the context of the hybrid computer-aided
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molecular design (CAMD) methodology for molecule or mixture
design problems proposed by Harper et al.36 It involves a three-
step design process that includes first a predesign phase where
the problem is defined, then a design phase that consists of opti-
mizing a performance index subject to property constraints, and
finally a postdesign phase where verification and analysis of the
results obtained from the design phase take place.

Some studies in the area of CAMbD have been focused on
developing new methodologies for formulating and solving
the mixture design problem. One set of approaches is based on
the use of mixed-integer nonlinear programming (MINLP),
and this has mostly been applied to the design of binary mix-
tures. Such a methodology was presented by Duvedi and
Achenie1 who studied the design of environmentally friendly
refrigerant mixtures. The authors proposed a mathematical
programming problem where the identity of candidate mole-
cules and of the components in the mixture are defined by
binary variables, whereas continuous decision variables are
used to represent mixture properties and composition. This
design methodology was also used by Churi and Achenie2 to
design optimal refrigerant mixtures that have the highest cool-
ing effect in a double-evaporator refrigeration system. In this
study, optimal binary mixtures that can give higher efficien-
cies were identified for a refrigeration cycle with two evapora-
tors operating at two different temperatures. Siougkrou et al.37

investigated the design of binary solvent mixtures as part of
conceptual process design. Their approach focused on the
design of a CO2-expanded solvent and its impact on process
performance. They used enumeration to solve the resulting
MINLP due to the small number of discrete choices.

A general and systematic methodology based on an MINLP
formulation was also proposed by Vaidyanathan and El-Hal-
wagi4 for the design of polymer blends, where binary polymer
mixtures that match a set of target properties were determined.
In the resulting design problem, the identity and the composi-
tions of the components in the mixture were considered as
decision variables. Local solutions of the problem were
obtained with commercial software packages and an example
of small dimensionality was solved globally using an optimi-
zation algorithm based on interval analysis.

Much effort has also been devoted to developing strategies
that can address the complexity of the MINLP mixture design
problem. An interval-analysis based optimization framework
was developed by Sinha et al.38,39 to solve such problems. In
their study, an eight-step interval-based domain reduction

algorithm, LIBRA, was developed and used successfully to
identify the globally optimal binary mixture in the design of

environmentally acceptable blanket wash solvent blend. The
solvents that participate in the mixture were selected from a
list of promising candidates.

Several authors have developed decomposition-based

approaches in which the search space is gradually narrowed. A
decomposition-based computer-aided molecular/mixture
design methodology was proposed by Karunanithi et al.10

Within their framework, the original mixture design problem
is decomposed into the five following nonlinear subproblems:
(1) structural constraints, (2) pure component property con-

straints, (3) mixture property constraints, (4) miscibility con-
straints, and (5) process model constraints and objective
function (MINLP subproblem). In each subproblem, pure

components and/or mixtures that do not satisfy a subset of the
constraints of the original problem are eliminated. This leads

to a smaller final MINLP problem, in which a large portion of
the search region has been eliminated. This decomposition-
based methodology was later applied by the same authors to

the design of crystallization solvents.11 Their study involved
the design of optimal binary solvent mixtures that maximize
the potential recovery of a drug, subject to several property

constraints, such as crystal morphology, solubility, viscosity,
toxicity, normal boiling point and melting point.

Buxton et al.40 proposed a systematic decomposition-based
procedure to select optimal solvent blends for nonreactive,

multicomponent gas absorption processes. Their approach was
based on an extension of the work of Pistikopoulos and Stefa-
nis,9 who considered the design of pure solvents for environ-

mental impact minimization. Within their proposed
framework, process operations that make use of solvents are

identified first and the solvent candidates are then determined
subject to specific property and environmental constraints.
Finally, the performance of the solvents is verified on a plant-

wide basis and the optimal solvent candidate is selected. The
extension of this formulation to the design of binary solvent
mixtures40 requires the inclusion of additional constraints on

the physical properties and the operating conditions.
In the recent work of Papadopoulos et al.,33 a CAMbD

approach was developed as a Multi-Objective Optimization
problem (MOO) for obtaining the optimal binary fluid mixture

for organic Rankine cycles. In this approach, the two com-
pounds and their optimal composition in the mixture are
designed simultaneously using a two-stage methodology. In

the first part, the molecular structure of a pure compound that
matches a set of properties and yields the best performance

measure is designed; this compound is then selected to be the
first component in the binary mixture. The second stage con-
sists of designing a number of feasible molecules for the sec-

ond component in the mixture and defining the optimal
mixture composition. The proposed mixture design methodol-
ogy is followed by a nonlinear sensitivity analysis to evaluate

the effect of the uncertainties arising from the model and in
particular from the use of group contribution methods. A use-
ful feature of this approach is that the first component is guar-

anteed to be a good fluid, so gives good baseline performance,
and the second component is guaranteed to provide a perform-
ance enhancement, regardless of its performance as a pure

compound. In principle, this means that, if this framework was
applied to the design of a solvent mixture that maximizes the
solubility of paracetamol, a binary mixture with the character-

istics of the acetone and water mixture (of Figure 1) could be

Figure 1. Solubility, Cs, of paracetamol in a mixture of
water 1 acetone, at 308C, as a function of the
mass percent of water in the solvent. Units of
solubility: g of paracetamol/kg of solvent.17
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identified. Acetone, which is considered to be a good solvent,
could be identified in the first part of the methodology and

water, which improves the overall performance, could be
determined in the second part.

Only a few methods have been proposed to address the
design of mixtures with more than two components. This issue

was studied systematically by Klein et al.,41 who proposed a
successive regression and linear programming algorithm for the

solution of the nonlinear programming formulation of the prob-
lem. In this work, the objective was to determine the minimum
cost solvent mixture, subject to linear constraints on the solubil-

ity parameters and nonlinear constraints on the density and
boiling-point temperature. The candidate solvents were selected

from a predefined set of molecules.
Recently, Ng et al.42 presented a two-stage methodology for

mixture design in an integrated biorefinery. The first stage
consists of the mixture design framework, where optimal mix-

tures are formulated based on standard CAMbD techniques.
First, the component that performs the main functionality of

the mixture is identified from given products or designed with
respect to physico-chemical properties and structural con-
straints. Next, based on the target properties (product needs),

the number of components to participate in the final mixture is
defined, and suitable additive components that meet these

properties are then designed. In the final part of this stage, the
miscibility of the mixture components is investigated. In the
second stage, the optimal biomass conversion pathways that

produce the optimal mixtures determined in the first stage are
identified using a superstructure optimization approach. The

design methodology was applied to case study for the design
of biofuels from palm-based biomass.

A systematic four-step methodology applicable to more than
two components was proposed recently by Yunus et al.34 for

the design of blended liquid products. The first step consists of
the definition of the problem, where the product needs are iden-

tified and translated into physico-chemical target properties,
and target values for these properties are determined. In the
next step, a set of property models is retrieved from the model

library to allow the prediction of pure component and mixture
target properties. The third step involves the design of multi-

component mixtures based on a decomposition methodology,
where pure components that satisfy the property constraints are
first identified and then a stability analysis is performed to

define possible mixtures. The third step is concluded by opti-
mizing the performance objective subject to the linear and non-
linear property models. The mixture design methodology is

applied to binary and ternary mixtures. In the fourth and final
step, rigorous models are used to verify the mixture property

values, resulting in a set of optimal blends that satisfy all prop-
erty targets. The proposed methodology was applied to two
case studies: (a) designing gasoline blends that can be used in

car engines in hot climates and (b) designing environmentally
friendly base-oil mixtures that have good lubrication properties,

from organic chemicals and mineral oils.
In spite of these advances, there remains significant scope

for further research in this area. Most existing methodologies
are applicable to binary mixtures only,1,2,4,10,11,33,38–40 with

the exception of the work of Klein et al.41 and Yunus et al.34

Furthermore, in many methods1,2,10,34,38,41 the space of possi-

ble components is restricted. In some cases, all components
that participate in a mixture are selected from a given set of
molecules, while in others, one of the mixture ingredients is

defined a priori, and the other compounds (usually one

compound) are designed or selected from a set. In these
methodologies, the number and the identity of one component
(or of all components) are usually chosen in advance, and then
the identities of the remaining molecules in a mixture, their
compositions, and, where relevant, process topology and oper-
ating conditions, are defined. In this sequential approach,
where the desired number of mixture ingredients is specified
and a single compound is selected from a given list, there is a
risk of excluding from the design space molecular structures
which, when combined in a mixture, can lead to better per-
formance. Only a small number of studies are reported in the
literature in which the simultaneous design of all compounds
is considered.33,40 However, these studies refer to problems
where the number of mixture ingredients is fixed to two. In
summary, a reduced version of the general CAMbD problem
has been addressed to date: the number of mixture ingredients
is fixed (usually 2) and the identity of a compound (or in a few
cases, of all compounds) that can participate in a mixture is
chosen from a given set of candidate molecules.

A hurdle in the further development and widespread use of
tools for CAMbD is the complexity of the mathematical pro-
grams that need to be formulated and solved. When modeling
a mixture design problem directly as a MINLP problem, sev-
eral numerical difficulties can arise, related to the nonlinearity
(nonconvexity) of the property models and the large design
space. Solving the optimization problems can be quite chal-
lenging, as these are combinatorial due to the presence of
binary variables, and highly nonlinear due to the expressions
that relate composition, structure and physical properties.12

In view of these challenges, the main purpose of this article is
to create a comprehensive and systematic mathematical program-
ming approach for the formulation and solution of the general
CAMbD problem. To address the difficulties arising from the
complexity of expressing the problem within a mathematical
framework, we adopt a logic-based methodology in which gener-
alized disjunctive programming (GDP)43 is used to formulate the
discrete choices inherent in mixture design problems. In this
framework, we first show how to formulate a design problem in
which the number of components (N) in the mixture is fixed and
these components are selected from a predefined set of molecules.
In working toward the generalized CAMbD problem, we focus on
making N a design variable where at most Nmax compounds are
chosen from a given list. This design methodology is an initial
approach to a more general concept where the simultaneous
design of the number, identity and compositions of mixture ingre-
dients will be considered. Our proposed logic-based approach fits
within the broader framework proposed by Harper et al.36 and
can be used in the second (design) step of such an approach.

This article is organized as follows: first, the background
theory is given, including a brief introduction to the CAMbD
framework, followed by a short description of GDP. The gen-
eral methodology used in this work and a detailed description
of the proposed formulations are presented in the next section.
The concepts are applied to a case study of solvent mixture
design. The optimal solvent mixture that maximizes the solu-
bility of ibuprofen is identified under different scenarios, with
the components being selected from a list of compounds. The
conclusions of this work are summarized in the final section.

Modeling Approaches

Computer-aided mixture/blend design (CAMbD)

The many systematic approaches that have been derived for
the design of compounds that exhibit desirable performance
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are known collectively as CAMD methods. The CAMD con-

cept was initially introduced by Gani and Brignole in 19837

and there has since been significant progress toward this

goal.9,10,14,33,35,36,44–46 In the case of mixture design applica-

tions, a CAMD problem is expanded into computer-aided mix-

ture/blend design (CAMbD) problem, usually by including

additional mixture property constraints in a “standard” MINLP

CAMD problem. Achenie and coworkers10,14,35 defined

CAMbD as follows:

“Given a set of chemicals and a specified set of property

constraints, determine the optimal mixture and/or blend.”

The main objectives of the CAMbD framework focus on

optimizing the physical properties of mixtures or com-

pounds47,48 and/or on optimizing process performance, such as

minimizing process cost49 or maximizing production.50,51

As discussed in the introduction, most existing CAMbD

methods involve formulating and solving a problem using

mathematical programming techniques; usually a MINLP

problem. According to Karunanithi et al.,10 a general CAMbD

problem can be formulated as an MINLP problem as follows)

min
x;y

f ðx; yÞ

subject to

g1ðyÞ � 0

g2ðyÞ � 0

g3ðx; yÞ � 0

g4ðx; yÞ50

x 2 Rn ; y 2 f0; 1gm

(1)

where f is the objective function to be optimized (minimiza-

tion is assumed without loss of generality), subject to struc-

tural constraints (g1ðyÞ), pure component property constraints

(g2ðyÞ), mixture property constraints (g3ðx; yÞ), and process

model constraints (g4ðx; yÞ). The vector x is an n-dimensional

vector of continuous variables denoting operating conditions,

physical properties, or process variables (e.g., flow rate, tem-

perature) and y is an m-dimensional vector of binary variables

related to the functional groups present in the molecules and/

or the identities of the molecules.10,35 While the general form

of a CAMbD problem is relatively simple and similar to that

of a CAMD problem, the formulation of a specific instance of

CAMbD as an MINLP is a challenging task because of the dif-

ferent types of binary or integer variables involved and their

strong interactions with the often-nonlinear physical property

models.

Generalized disjunctive programming

An alternative approach for formulating discrete/continuous

optimization problems, known as GDP, was introduced by

Raman and Grossmann43 and has since been successfully

applied by Grossmann and coworkers in many different con-

texts including complex process networks,43,52 strip-pack-

ing,53 and scheduling problems.43,53,54 GDP is a logic-based

methodology that extends the disjunctive programming pro-

posed by Balas55 and involves Boolean and continuous varia-

bles that are related via disjunctions, algebraic equations, and

logic propositions.56–60

GDP Formulation. The general formulation of a general-

ized disjunctive program can be represented as follows

min
x;Y

f ðxÞ

s:t: gðxÞ � 0

�
j2Jk

Yj;k

hj;kðxÞ � 0

2
4

3
5 k 2 K

Y
j2Jk

Yj;k; k 2 K

XðYÞ5True

x 2 ½xL; xU� � Rn

Yj;k 2 fTrue; Falseg ; j 2 Jk ; k 2 K

(GDP)

where x is a vector of continuous variables, xL and xU are vec-

tors denoting the lower and upper bounds on x, respectively,

and the Yj;k’s are the Boolean variables that indicate whether a

term j in a disjunction k is True or False. The objective func-

tion f(x) depends on the continuous variables, and the logic in

the continuous space is represented by a set of disjunctions.

Each disjunction consists of a number of terms that are joined

by the OR (�) operator. Each term of the disjunction has a

Boolean variable Yj;k and only one of the Boolean variables

can be True in each disjunction (Yj2Jk
Yj;k). K is the index set

for the disjunctions and Jk is the index set of the terms in each

disjunction k 2 K. The function g(x) represents general con-

straints that must hold regardless of the logic, while hj;kðxÞ are

conditional constraints that hold when Yj;k is True. In mixture

design problems the disjunctive constraints are related to the

assignment of compounds and the number of components that

participate in a mixture. XðYÞ represents logic relations for the

Boolean variables expressed as propositional logic.61

It should be mentioned that any MINLP problem can be for-

mulated as a GDP problem and vice versa. It may be beneficial

to adopt a GDP formulation because, when compared with

mixed-integer programming, it provides a more structured

framework for modeling discrete-continuous choices and it

expresses more directly both the quantitative and the qualita-

tive parts of the optimization task.62,63 In an MINLP problem

(Eq. 1) the logic needs to be expressed through the objective

function and algebraic constraints, in the form f(x, y) and g(x,

y), respectively. In GDP, conversely, the logic is captured

inside the disjunctions by relating Boolean variables (Yj;k) to

equations in the continuous form (hj;kðxÞ), whereas the logic

that connects the disjunctive sets is expressed through the rela-

tions XðYÞ.64 To formulate a general mixture design problem

(Eq. 1) as a GDP, several characteristics of the constraints

must be taken into account. The constraints that do not depend

on the logic conditions can be formulated as general con-

straints (g(x)), whereas the constraints that depend on the logic

conditions, such as on the assignment of compounds or on the

number of components in a mixture, are formulated within the

disjunctions as conditional constraints (hj;kðxÞ).

Reformulation of GDP as an MINLP. Once an appropri-

ate GDP formulation has been obtained, it can be converted

into an MINLP problem using different approaches, such as

big-M or hull relaxation, that result in relaxations of varying

strength.54,64,65 The big-M (BM) formulation66 is the simplest

representation of a GDP problem in a mixed-integer form.43,60
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The general reformulation of a GDP as an MINLP via big-M

is given by

min
x;y

f ðxÞ

s:t: gðxÞ � 0

hj;kðxÞ � Mj;kð12yj;kÞ; j 2 Jk; k 2 K

Ay � b

XJk

j51

yj;k51; k 2 K

x 2 ½xL; xU� � Rn; yj;k 2 f0; 1g; j 2 Jk ; k 2 K

(BM)

where y is a vector of binary variables, which has one-to-one

correspondence with the Boolean variable vector, Y, A is an m
3 n matrix, b is an m-dimensional real-valued vector and the

parameter Mj;k is a “sufficiently large” upper bound. The logic

propositions in GDP, XðYÞ5True, have been converted into

linear inequalities, Ay � b.67 The tightest value for Mj;k can be

calculated as52

Mj;k5max fhj;kðxÞ j xL � x � xUg; j 2 Jk; k 2 K (2)

GDP Formulation of the CAMbD Problem

The design methodology proposed in our work integrates

GDP into a computer-aided mixture/blend design (CAMbD)

framework.

Problem definition

The aim of this study involves the generic formulation of

mixture design problems to find the optimal number of mix-

ture ingredients, the optimal identities of the components (cho-

sen from a given list) and their compositions, such that all

given specifications are satisfied and the specified performance

objective is optimized.
The problem formulation is constructed in a systematic way

by considering two problem statements of increasing complex-

ity. The first class of problems involves the formulation of a

restricted model, where a fixed number of components is iden-

tified from a given set of candidate compounds, subject to

property constraints. The design variables are the identity of

the components that participate in the mixture and their com-

positions. After establishing the solution of this restricted

problem, we propose a second, more general, formulation,

where the number of components in the mixture is not fixed

but is bounded by an upper limit. The optimal components are

again selected from a predefined set of compounds. In the gen-

eral problem the decision variables are the number of compo-

nents, their identities, and their compositions.
To develop the formulations, we define several index sets.

The first is the set of components in the mixture,

I5fiji51; . . . ;NCg, where Nc is the total number of compo-

nents. The second set S5fsjs51; . . . ;Nsg defines the list of

compounds from which the mixture components must be cho-

sen, where Ns is the total number of molecules in the list. The

mixture to be designed often contains components that are

known a priori (e.g., solutes in the case of solvent design). We

define N0 as the number of fixed components and N as the

(maximum) number of components to be designed. The total

number of components in the mixture is thus Nc5N1N0. For

clarity, we use the term “components” to refer to the ingre-

dients/molecules in the mixture we are designing and the term

“compounds” to refer to ingredients/molecules in the set S
from which we choose the components. Those components in

the mixture that are not fixed (i.e., components N011 to Nc)

are referred to as the “designed components.”

Formulation for known number Nc of components in

mixture

The discrete choices of the restricted mixture design prob-

lem with a fixed value of N are modeled using GDP. The GDP

formulation of the restricted problem includes disjunctions for

each choice of components and logic propositions that express

the relationships between the disjunctive sets.

Disjunctions for Assignment of Components. In a logic-

based modeling framework, the assignment of component i is

determined through Boolean variable Yis, which is True if a

compound s is assigned to component i in the mixture and

False if it is not, for i5N011; . . . ;Nc and s51; . . . ;Ns. The

disjunctions for the assignment of each component are given

below

�
s2S

Yi;s

hi;sðxÞ � 0

2
4

3
5; i5N011; . . . ;Nc

Y
s2S

Yi;s; i5N011; . . . ;Nc

Yi;s 2 fTrue; Falseg

(R-D)

The vector hi;s in each disjunction represents the constraints

that are active when compound s is assigned to ith component

in a mixture. The expression Ys2SYi;s ensures that only one dis-

junction is active, which means that each component is

assigned exactly one compound. It can be translated into alge-

braic equations by introducing a binary variable yi;s as

follows68 X
s2S

yi;s51; i5N011; . . . ;Nc (3)

Logic Propositions. Logic conditions (XðYÞ5True) are

included to avoid degeneracy by enforcing a specific ordering

of the compounds. Degeneracy can be prevented by the fol-

lowing relations that ensure that the relative position of a com-

pound in the set S is maintained in the mixture (set I) if the

compound is selected

Yi;s ) :Yi0;s0 ; i5N011; . . . ;Nc21 ; s52; . . . ;Ns

i05i11; . . . ;Nc ; s051; . . . ; s
(4)

where the symbol : implies negation (i.e., not Yi0;s0 or

Yi0;s05False). They are translated into algebraic equations as

follows

yi;s1yi0;s0 � 1; j5N011; . . . ;Nc21 ; s52; . . . ;Ns

i05i11; . . . ;Nc ; s051; . . . ; s:
(5)

The constraints in Eq. 5 restrict the feasible space by elimi-

nating identical degenerate solutions. Logic conditions are

also derived to ensure that each candidate compound is

selected at most once

Yi0;s ) : �
i5N011;...;Nc21

i 6¼i0

Yi;s

0
@

1
A; i05N011; . . . ;Nc; s 2 S (6)
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This is equivalent to

XNc

i5N011

yi;s � 1 ; s 2 S (7)

GDP Formulation. The GDP formulation of the restricted

problem is thus written as

min
x;Y

f ðxÞ

s:t: gðxÞ � 0

�
s2S

Yi;s

hi;sðxÞ � 0

2
4

3
5; i5N011; . . . ;Nc

Y
s2S

Yi;s; i5N011; . . . ;Nc

Yi;s ) :Yi0;s0 ; i5N011; . . . ;Nc21 ; s52; . . . ;Ns

i05i11; . . . ;Nc ; s051; . . . ; s

Yi0;s ) : �
i5N011;...;Nc21

i6¼i0

Yi;s

0
@

1
A; i05N011; . . . ;Nc ; s 2 S

xi 2 ½xL
i ; x

U
i � � R; Yi;s 2 fTrue; Falseg; i5N011; . . . ;Nc; s 2 S

(R-GDP)

Reformulation of GDP as an MINLP. The GDP model is
reformulated as an MINLP by replacing the Boolean variables
Yi;s with binary variables yi;s. The conditional constraints, hi;sðxÞ,
are reformulated using the big-M approach, where a large M
parameter is introduced, and the logic conditions, XðYÞ, are con-
verted into linear inequality constraints, following to the method-
ology proposed by Raman and Grossmann.68 The MINLP model
derived by applying the big-M reformulation is written as follows

min
x;y

f ðxÞ

s:t: gðxÞ � 0

hi;sðxÞ � Mhi;s
ð12yi;sÞ; s 2 S; i5N011; . . . ;NcX

s2S

yi;s51; i5N011; . . . ;Nc

yi;s1yi0;s0 � 1; i5N011; . . . ;Nc21 ; s52; . . . ;Ns

i05i11; . . . ;Nc ; s051; . . . ; sXNc

i5N011

yi;s � 1; s51; . . . ;Ns

xi 2 ½xL
i ; x

U
i � � R ; yi;s 2 f0; 1g; i5N011; . . . ;Nc ; s 2 S

(R-BM)

where the binary variable yi;s represents the identity of the
component i in the mixture and takes the value 1 if compound
s is selected as component i and 0 otherwise; the continuous
variable xi represents the mole fraction of component i, while
xL

i and xU
i are the lower and upper bounds on the mole fraction,

respectively. The objective function, f(x), is optimized subject
to general constraints, g(x), and conditional constraints, hi;sðxÞ.
Formulation for unknown number Nc of
components in mixture

The general problem results in a more generic formulation

where in addition to the identities and compositions of the

components in the mixture, the optimal number of mixture

ingredients also needs to be defined. As the number of selected

compounds that can participate in a mixture is not fixed but is

allowed to vary up to a maximum number, Nmax, additional

disjunctions involving property conditions that depend on the
number of components are included in this model. The maxi-
mum total number of mixture ingredients can be expressed as
Nc5Nmax1N0, where N0 is the number of fixed components.
The GDP formulation of the general problem includes disjunc-
tions for the component assignments, disjunctions for the num-
ber of components in the mixture, and logic propositions that
express the relationships between the disjunctive sets.

Disjunctions for Assignment of Components. The same
Boolean variables, Yi;s, as in the restricted problem, are used
to establish the selection of a compound for each component
for i5N011; . . . ;Nc and s51; . . . ;Ns. The disjunctions for
assigning each component are given by the expression (R-D).
In the general formulation at least one designed component
should be present in the mixture (i.e., exactly one Boolean
variable for assigning a compound to the first component is
active). The assignment of exactly one compound to the first
designed component in the mixture is given by

Y
s2S

YN011;s (8)

and its algebraic form isX
s2S

yN011;s51: (9)

The rest of the components are assigned compounds from
the list only if they are participating in the mixture.

Disjunctions for the Number of Components. The number
of components in the mixture is a discrete choice and it is
expressed as a series of disjunctions. A vector ~Yn of Boolean
variables that express the logic in each disjunction is intro-
duced. Property constraints that depend on the number of com-
ponents in the mixture are included in each disjunction and
they are activated when the corresponding Boolean variable
~Yn takes the value of True. The disjunctions for the number of
designed components in the mixture are given by

�
n51;::;Nmax

~Yn

~FnðxÞ � 0

xi � xL
i ; i5N012; . . . ;N01n

xi50 ; 5N01n11; . . . ;Nc

2
666664

3
777775 (G-D)

where ~FnðxÞ is a vector of disjunctive constraints that depend
on the number of components in the mixture and are active if
~Yn5True; xi is the mole fraction of component i in the mixture
and is greater than a threshold value xL

i if the component is
present in the mixture and is zero otherwise. Exactly one dis-
junction for the number of designed components must be
selected, as shown below

Y
n51;::;Nmax

~Yn (10)

and it is transformed into the following constraint

XNmax

n51

~yn51 (11)

where ~yn is a binary variable equivalent to ~Yn.
Logic Propositions. Logic conditions to avoid degeneracy

are also required in the general formulation. A specific order-
ing of the compounds is enforced using the same logic propo-
sitions as were described in the restricted problem, i.e., Eq. 4.
Equation 6 is also used in the general model to ensure that
each candidate compound is selected at most once. Additional
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logic conditions are required to ensure that at most one com-
pound is assigned to components N012 to Nc

Yi;s0 ) : �
s51; . . . ;Ns21

s 6¼s0

Yi;s

0
BB@

1
CCA; s0 2 S ; i5N012; . . . ;Nc: (12)

This is written equivalently asXNs

s51

yi;s � 1 ; i5N012; . . . ;Nc (13)

This differs from the corresponding constraint in the restricted

formulation (Eq. 3) where equality was enforced. Logic proposi-
tions are also derived to relate the Boolean variables for the
number of designed components in the mixture, ~Yn; n51; . . . ;
Nmax to the Boolean variables for the assignment of a compound

to each component, Yi;s; i5N011; . . . ;Nc; s51; ::;Ns. We rep-
resent the number of designed components in the mixture by the
Boolean variables ~Yn (n51; . . . ;Nmax) such that:

~Y1 ) 1 designed component ðN51Þ
~Y2 ) 2 designed components ðN52Þ
�

~YNmax
) Nmax designed components ðN5NmaxÞ

Thus, ~Y1 (1 designed component) implies only YN011;s; s
2 S (assignment of first designed component), but not

(YN012;s; . . . ;YN01Nmax;s),
~Y2 (2 designed components) implies

YN011;s and YN012;s (assignment of first and second designed
component), but not (YN013;s; . . . ;YN01Nmax;s), and soforth.
These relations can be expressed more formally as

~Y1 ) �
s2S

YN011;s

� �
~Y1 ) :YN012;s �. . . . . . . . . :�:YN01Nmax;s; s 2 S

~Y2 ) �
s2S

YN011;s

� �
� �

s2S
YN012;s

� �
~Y2 ) :YN013;s �. . . . . . . . . . . .�:YN01Nmax;s; s 2 S

�

~YNmax
) �

s2S
YN011;s

� �
� �

s2S
YN012;s

� �
� . . . . . . : . . . � �

s2S
YN01Nmax;s

� �

The above expressions are replaced by their equivalent dis-

junctions and the “OR” operator is distributed over the “AND” as

described by Raman and Grossmann.68 As shown in Table 1, the

resulting clauses can then be expressed as a set of linear inequality

constraints by replacing the Boolean variables with binary ones.
GDP Formulation. The GDP formulation of the general

model can be written as

min
x;Y

f ðxÞ

s:t: gðxÞ � 0

�
s2S

Yi;s

hi;sðxÞ � 0

2
4

3
5; i5N011; . . . ;Nc

�
n51;::;Nmax

~Yn

~FnðxÞ � 0

xi � xL
i ; i5N012; . . . ;N01n

xi50; i5N01n11; . . . ;Nc

2
666666664

3
777777775

Y
s51;...;Ns

YN011;s

Y
n51;...;Nmax

~Yn

Yi;s ) :Yi0;s0 ; i5N011; . . . ;Nc21 ; s52; . . . ;Ns

i05i11; . . . ;Nc ; s051; . . . ; s

Yi0;s ) : �
i5N011;...;Nc21

i 6¼i0

Yi;s

0
@

1
A; i05N011; . . . ;Nc ; s 2 S

Yi;s0 ) : �
s51;...;Ns21

s6¼s0

Yi;s

 !
; i5N012; . . . ;Nc ; s0 2 S

X
0 ðYÞ5True

xN011 � xL
N011

xi 2 ½xL
i ; x

U
i � � R; i5N011; . . . ;Nc

Yi;s; ~Yn 2 fTrue; Falseg; i5N011; . . . Nc ; s 2 S ; n51; . . . ; Nmax

(G-GDP)

where X0ðYÞ5True denotes the logic relations in Table 1. As

at least one component should be present in the mixture, the

mole fraction of the first designed component (xN011) has

always a non-zero value.
Reformulation of GDP as an MINLP. Formulation (G-

GDP) can be transformed into an MINLP problem using the

big-M approach as follows

min
x;y

f ðxÞ

s:t: gðxÞ � 0

hi;sðxÞ � Mhi;s
ð12yi;sÞ; s51; . . . ;Ns; i5N011; . . . ;Nc

~FnðxÞ � M ~Fn
ð12~ynÞ; n51; . . . ;Nmax

xi � xL
i ~yn; n51; . . . ;Nmax; i5N012; . . . ;Nc

XNs

s51

yN011;s51

Table 1. Logic Propositions and Algebraic Constraints for

the General Model

Logic Expressions Linear Inequalities

: ~Y 1�ð �
s2S

YN011;sÞ ~y1 �
P
s2S

yN011;s

ð: ~Y 1�:YN012;sÞ; s 2 S ~y11yN012;s � 1; s 2 S

� �
ð: ~Y 1�:YN01Nmax;sÞ; s 2 S ~y11yN01Nmax;s � 1; s 2 S

: ~Y 2�ð �
s2S

YN011;sÞ ~y2 �
P
s2S

yN011;s

: ~Y 2�ð �
s2S

YN012;sÞ ~y2 �
P
s2S

yN012;s

ð: ~Y 2�YN013;sÞ; s 2 S ~y21yN013;s � 1; s 2 S

� �

ð: ~Y 2�:YN01Nmax ;sÞ; s 2 S ~y21yN01Nmax ;s � 1; s 2 S

� �
: ~Y Nmax

�ð �
s2S

YN011;sÞ ~yNmax
�
P
s2S

yN011;s

: ~Y Nmax
�ð �

s2S
YN012;sÞ ~yNmax

�
P
s2S

yN012;s

� �

: ~Y Nmax
�ð �

s2S
YN01Nmax;sÞ ~yNmax

�
P
s2S

yN01Nmax;s
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Table 2. Index and Sets for the Case Study

Description Index Set Value Range

Pure candidate solvents s, s0 S 1; . . . ; 9
Components in mixture i, j I ibu, c1, c2, c3

Functional groups k, m K 1; . . . ; 14
No

5 of solvent molecules
selected

n N 1, 2, 3

XNmax

n51

~yn51

yi;s1yi0;s0 � 1; i5N011; . . . ;Nc21 ; s52; . . . ;Ns

i05i11; . . . ;Nc ; s051; . . . ; s

XNc

i5N011

yi;s � 1; s51; . . . ;Ns

XNs

s51

yi;s � 1; i5N012; . . . ;Nc

Ay � b

xN011 � xL
N011

xi 2 ½xL
i ; x

U
i � � R; i5N011; . . . ;Nc

~yn; yi;s 2 f0; 1g; n51; . . . ;Nmax ; i5N011; . . . ;Nc ; s 2 S

(G-BM)

The logic relations, X0ðYÞ5True, of the GDP model are

converted to a set of algebraic constraints, Ay � b, by replac-

ing the Boolean variables with binary ones, as shown in the

second column of Table 1.
The formulations described in this section are applied to a

solvent mixture design case study presented in the next section.

Case Study: Maximizing the Solubility of
Ibuprofen

Ibuprofen (ibu) is a colorless anti-inflammatory compound

that can be crystallized by cooling crystallisation.69 Solubility

is one of the key properties that determine the performance of

the crystallization process.11,69 Karunanithi et al.11 have

already addressed the problem of identifying appropriate sol-

vents or solvent mixtures that enhance the crystallization pro-

cess of ibuprofen. This well-studied application is, therefore, a

suitable example to investigate the use of the proposed GDP

formulations for CAMbD. The objective of the design problem

considered is to identify an optimal solvent mixture to maxi-

mize the solubility of ibuprofen

max xibu

where xibu is the mole fraction of ibuprofen in the mixture.

The first important set of constraints in formulating the prob-

lem captures the relationship between the solvent mixture and

the solubility of ibuprofen, via solid–liquid equilibrium.

Although phase equilibrium relations involve complex nonlin-

ear functions, in this case study only ibuprofen is at solid–liq-

uid equilibrium, whereas all solvent molecules in the mixture

are in a single liquid phase. Therefore, the solubility, which

depends on the enthalpy of fusion and melting temperature of

the solid and its liquid-phase activity coefficient, is expressed

in terms of ibuprofen and calculated as follows70,71

ln xibu1ln cibu5
DHfus

R

1

Tm
2

1

T

� �
(14)

where cibu is the liquid phase activity coefficient of ibuprofen

at temperature T, composition x and pressure P, R is the gas

constant, DHfus is the enthalpy of fusion of ibuprofen at tem-

perature Tm, and Tm and T are the normal melting point of ibu-

profen and the mixture temperature, respectively. The pressure

is assumed to be atmospheric (P 5 1 atm). The activity coeffi-

cient is evaluated using the UNIFAC70,72 group contribution
method, and it is calculated as the sum of two contributions, a
combinatorial term (superscript C) and a residual term (super-
script R), as shown below

ln cibu5ln cC
ibu1ln cR

ibu: (15)

The UNIFAC model proposed by Smith et al.73 in a form
convenient for implementation is used in this design problem
and the relevant equations are presented in Appendix A for
completeness.

The mutual miscibility of the solvent molecules also needs
to be examined to ensure that the final mixture is in one phase.
However, algebraic relations to describe this constraint are not
available for multicomponent systems and, therefore, in com-
mon with other works,10,11,40 a miscibility constraint for every
binary pair of solvent molecules is used in this case study (i.e.,
each binary pair of solvents must be miscible for the chosen
relative composition, temperature, and pressure)73

@ln ci;j
i

@xi;j
i

" #
T;P

1
1

xi;j
i

� 0 ; i < j

i5N011; . . . ;Nc21

j5i11; . . . ;Nc

(16)

where ci;j
i denotes the activity coefficient of component i in a

binary mixture of i and j at temperature T and pressure P, and
xi;j

i denotes the mole fraction of component i in the mixture of
i and j. It is related to the mole fraction in the multicomponent
mixture by xi;j

i 5 xi

xi1xj
.

Scenarios considered

We consider several instances of the case study, with varying
complexity. In particular, numerical difficulties may arise due
to the highly nonlinear nature of the miscibility function. To
reduce the complexity of the model, two main scenarios are
considered: in the first, simpler, scenario the miscibility con-
straint is not taken into account, whereas in the second scenario
it is included in the model. For both scenarios, the two formula-
tions proposed in the section on the GDP formulation of the
CAMbD problem are applied: the restricted problem, where the
number of components to be selected is fixed and the general
problem, where the number of components in the mixture is
unknown. With the restricted problem formulation, mixtures
with one, two or three solvents are designed (i.e., Nc 5 2, 3, or
4). With the general problem formulation, a mixture with at
most three solvents is identified (i.e., Nmax 5 3). The solvents
are to be selected from a list of nine candidate compounds.

All the design sets used in this case study are shown in
Tables 2 and 3, and the list of candidate solvents is shown in
Table 4. Although a list of promising pure solvents in which
ibuprofen has a high solubility has sometimes been used in
previous work,10,11 a list of common solvents that yield a
range of solubilities is used in this work to investigate mix-
tures where one compound is a poor performer when used on
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its own, but may lead to high solubility values in a mixture.

The solvent molecules in the list were chosen based on their

low toxicity levels and on their liquid range, ensuring that they

are liquid at the chosen conditions of T 5 300 K and P 5 1

atm. A table with experimental data for toxicity, and boiling

and melting points is presented in Appendix B. The candidate

solvents are often used in industrial applications and are also

reported in studies of the solubility of various solid organic

compounds in pure solvents.74 The problem-specific parame-

ters required are the enthalpy of fusion of ibuprofen (25.5 kJ/

mol75) and its normal melting point (347.15 K75). The solvent

molecules and ibuprofen are built from the set of functional

groups given in Table 5. The number of groups of type k in

ibuprofen (vibu;k) and in a solvent s (vs;k) is presented in

Appendix C in Tables C1 and C2, respectively. The group vol-

ume parameters (Rk), the group surface area parameters (Qk)

and the group interaction parameters (ak;m) used in the UNI-

FAC model for the prediction of the activity coefficient are

obtained from Poling et al.76 and listed in Appendix C (Tables

C3–C5) for completeness.

Task 1: Mixture design without miscibility constraints

The formulations of the restricted and general problems,

without the miscibility constraint, are presented in this section.

The objective here is to maximize the solubility of ibuprofen

and the objective function, therefore, consists of the mole frac-

tion of ibuprofen in the mixture (i.e., f ðxÞ5xibu). General con-

straints refer to equations that do not depend on the logic

choices and they include the solubility (Eq. 14) and activity

coefficient (Eq. 15) relations that are expressed in terms of

ibuprofen, as well as some equations of the UNIFAC model

(Eqs. A2–A4, A7–A9, A12, and A13) from Appendix A. Con-

ditional constraints, such as the identities and compositions of

the selected solvent molecules that depend on the assignment

and/or number of solvents in the mixture, are included in the

appropriate disjunctions, as shown in the next paragraphs.

Restricted Problem: Fixed Number of Solvents. This

problem aims to identify the optimal mixture of components

for a fixed number of solvent molecules (i.e., 1, 2, or 3

selected solvents), along with the mixture composition, to

maximize the solubility of ibuprofen. The formulation is pre-

sented for the selection of three solvents but it can readily be

extended to any fixed number of solvents. The disjunctions for

the choice of solvents are shown below

�
s2S

Yi;s

ni;k5vs;k; k 2 K

qi5qs

ri5rs

2
666666664

3
777777775
; i5c1; c2; c3 (R-D1)

where vs;k defines the identity of the solvents, that is, vs;k repre-

sents the number of groups of type k in solvent s; ni;k gives the

identity of designed component i in the mixture, that is, ni;k

represents the number of groups of type k in designed compo-

nent i. The variables ri and qi are the molecular van der Waals

volume and molecular surface area of component i, respec-

tively, while rs and qs are the van der Waals volume and sur-

face area, respectively, for compound s in the solvent list. In

the above disjunctions, only one of the Boolean variables Yi;s

can be selected, which ensures the selection of exactly three

solvents. To express disjunction (R-D1) algebraically, the

identity of component i, ni;k, is defined by the use of the binary

variable yi;s, multiplied by the identities of all available candi-

dates, vs;k. Similarly, qi and ri are expressed as products of yi;s

with qs and rs, respectively, as shown below

ni;k5
X
s2S

vs;kyi;s; i5c1; c2; c3 ; k 2 K

qi5
X
s2S

qsyi;s; i5c1; c2; c3

ri5
X
s2S

rsyi;s; i5c1; c2; c3

These relations force the above variables (ni;k, qi, ri) to

become zero when a solvent is not chosen, avoiding the use of

the big-M parameter in the MINLP reformulation for this sim-

ple case.
The logic conditions discussed in the section on the GDP

formulation of the CAMbD problem (Eqs. 4 and 6) are derived

to avoid selecting a given candidate solvent more than once,

and to avoid degeneracy by ordering the solvents. After

removing the disjunctions (R-D1) and including all the logic

conditions expressed as algebraic equations, the resulting
MINLP reformulation is given by model (R-BM1) in Appen-

dix D.
General Problem: Unknown number of solvents. The for-

mulation is extended to the general case where the number of

mixture constituents is not known in advance. Hence, the

design variables include the number of components in the

mixture, their identities and compositions. As the number of

solvent components present in the mixture is allowed to vary

from one to three solvents, the maximum number of designed

components in the mixture is Nmax 5 3.
The problem includes disjunctions for the assignment of

each candidate solvent and disjunctions for the number of

Table 3. Parameters

N0 N Nmax Nc

Restricted problem 1 1, 2 or 3 – 11N
General problem 1 – 3 11Nmax

Table 4. List of Candidate Solvents

s Compound

1 Acetone
2 Chloroform
3 Ethanol
4 Ethyl-acetate
5 Methanol
6 MIBK
7 2-Propanol
8 Toluene
9 Water

Table 5. List of Functional Groups

k Groups k Groups

1 CH3 8 CH3COO
2 CH2 9 CH3CO
3 CH 10 CH3OH
4 aCH 11 CHCl3
5 aCCH3 12 COOH
6 aCCH2 13 OH
7 aCCH 14 H2O
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selected solvent. The former disjunctions are the same as those
presented in the restricted problem (disjunctions [R-D1]). In
the general problem exactly one of the Boolean variables for
assigning one solvent to the first designed component in the
mixture is active. The disjunctions for the number of compo-
nents include constraints that depend on the number of sol-
vents selected, as shown below

�
n51;2;3

~Yn

~ni;k5ni;k; i 2 IIi ; k 2 K

~qi5qi; i 2 IIi

~ri5ri; i 2 IIi

xi � 0:001; i5c2; c3

xi50; i 62 ðIIi [ fibugÞ

2
666666666664

3
777777777775

(G-D1)

where IIi5fc1g

IIi5fc1; c2g

IIi5fc1; c2; c3g

As mentioned in the section on the GDP formulation of the
CAMbD problem, at least one designed component should be
present in the mixture and, therefore, the mole fraction of the
first solvent component (xc1

) is always strictly greater than
zero. In the general, problem only one disjunction for the num-
ber of solvents is selected. The GDP formulation is converted
into an MINLP model (G-BM1) via the big-M approach as
presented in Appendix D. Variables ~ni;k; ~qi, and ~ri in the
above disjunctions are linked to disjunctions (R-D1) via ni;k,
qi, and ri, which become zero when a solvent is not selected. It
is thus sufficient, for the reformulation of the problem, to
derive big-M equations only for the mole fractions (xi) of
designed components in the mixture, based on the binary vari-
ables for the number of components. A lower bound equal to
0.001 is used to express the mole fraction via big-M approach.
It should be noted that Eqs. A5, A6, and A11 of the UNIFAC
model (Appendix A), also depend on the number, N, of solvent
components in the mixture. These functions, however, can be
placed outside of the disjunctions as the dependence on N can
be captured via xi, qi, and ri, and their formulation does not
lead to numerical difficulties provided that at least one solvent
component is present in the final mixture and has a non-zero
mole fraction. This is achieved by setting a lower bound for
xc1

(the first designed component) of 0.001. We also set xL
i 5

0:001 for i5c2; c3. Following the formulation steps outlined in
the section on the GDP formulation of the CAMbD problem,

logic conditions that establish the relationships between the

disjunctive sets (Eqs. 4, 6, 12, and X0ðYÞ in Table 1) are also

derived. Valid upper bounds can readily be derived for the

big-M parameters (Mhis
and M ~Fn

) using Eq. 2. The upper

bounds used in this case study are relaxed bounds rather than

exact bounds, to avoid numerical difficulties arising from tight

bounds and machine precision.

Task 2: Mixture design with the miscibility constraint

In this task, the introduction of the highly nonlinear and

nonconvex miscibility function increases the complexity of

the formulations and makes their solution quite challenging.
Restricted Problem: Fixed Number of Solvents. The

restricted problem is formulated in the same fashion as for the

first task and it consists of the objective function (xibu), solubil-

ity (Eq. 14), activity coefficient (Eq. 15) and miscibility (Eq.

16) constraints, and the logic relations Eqs. 4 and 6. The mis-

cibility function is calculated for every binary pair of designed

components, that is, for the pairs (c1, c2), (c1, c3), and (c2, c3)

for N 5 3, using the composition of the binary mixture derived

from the overall mixture composition. Specifically, the misci-

bility constraint for a mixture of solvents i and j is given as

dci;j
i 1

1

xi;j
i

� 0; i < j; i5c1; c2; j5c2; c3 (17)

where dci;j
i is the derivative of the natural logarithm of the

activity coefficient of component i with respect to the mole

fraction of i in the binary mixture (i.e., dci;j
i 5

@ln ci;j
i

@xi;j
i

) and it is

calculated from the UNIFAC model (i.e., dci;j
i 5ðdci;j

i Þ
C

1ðdci;j
i Þ

R
). The mole fraction of the solvent i in the binary

mixture (xi;j
i ) is expressed as

xi;j
i 5

xi

xi1xj
; i5c1; c2; j5c2; c3 (18)

where xi and xj are the mole fractions of components i and j,
respectively, in the overall mixture. Because the total number

of components in the mixture is fixed, Eqs. 17 and 18 can be

treated as general equations and included outside the disjunc-

tions. The resulting MINLP formulation is given by model

(R-BM2) in Appendix D.
General Problem: Unknown Number of Solvents. The

more general problem formulation requires further adaptation

to include the miscibility constraints. Recalling that the problem

includes disjunctions for the assignment of the candidate sol-

vents and disjunctions for the number of the solvents selected,

Table 7. Mixture Design Problem Results Obtained from DICOPT with Miscibility Constraint. The Maximum Solubility

Achieved is Shown in Bold Font and Corresponds to a Solvent Mixture with 2 Components

Case xibu c1 xc1
c2 xc2

c3 xc3
CPU(s)

N 5 2 0.33383 Chloroform 0.52292 Methanol 0.14325 4.87
N 5 3 0.33375 Chloroform 0.52263 Methanol 0.14262 Ethanol 0.00100 107.90
N � 3 0.33383 Chloroform 0.52292 Methanol 0.14325 369.06

Table 6. Mixture Design Problem Results Obtained from DICOPT Without Miscibility Constraint. The Maximum Solubility

Achieved is Shown in Bold Font and Corresponds to a Solvent Mixture with 2 Components

Case xibu c1 xc1
c2 xc2

c3 xc3
CPU(s)

N 5 1 0.31833 Chloroform 0.68167 0.35
N 5 2 0.34928 Chloroform 0.49706 Water 0.15366 5.02
N 5 3 0.34915 Chloroform 0.49691 Water 0.15294 Methanol 0.00100 114.49
N � 3 0.34928 Chloroform 0.49706 Water 0.15366 316.92
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we first note that the disjunctions for assigning solvents from
the list to mixture components are unchanged from task 1.

Conversely, the disjunctions for the number of the solvents
selected now include variables and functions that depend on
the number of the components in the mixture, such as the com-
position, the miscibility function and the UNIFAC model equa-
tions for evaluating the solvent properties. These functions and
the relevant variables are placed in the appropriate disjunctions
and are presented as formulation (G-D2) in Appendix D. The
logic propositions used in the general problem of task 1 are
also included in this task. The disjunctions (G-D2) are refor-
mulated via the big-M approach and the resulting MINLP
problem is also given as model (G-BM2) in Appendix D.

Results and Discussion

All models were implemented and solved in GAMS77 version
24.2.3, using DICOPT,78–80 which is a local MINLP solver. The
models were run on a single core of a dual 6 core Intel Xeon
X5675 machine at 3.07 GHz with 48 GB of memory. Due to the
highly nonlinear nature of the equations in the models, multiple
initial guesses were used to identify good solutions. The best sol-
utions obtained in the first task (i.e., without the miscibility con-
straint) and in the second task (i.e., with the miscibility
constraint) are summarized in Tables 6 and 7, respectively. It
can be observed that in the restricted problem for both tasks, the
best solution is yielded by a mixture of two solvents. In the for-
mulations where the miscibility function was not included, a
mixture of chloroform and water was identified as the optimal
solvent mixture, whereas a binary mixture of chloroform and
methanol was identified as optimal when the miscibility con-
straint was added. Indeed, the miscibility constraint is not satis-
fied for the pair of chloroform and water at the optimal
composition of task 1. Chloroform and methanol, conversely,
are fully miscible. The mixtures with three components give
slightly lower solubility than the mixtures with two components.
In these cases, the mole fraction of the third solvent component
is at the lower bound. The results obtained when solving the
general problem, with N unknown, validate the solutions
obtained in solving the three restricted problems, by confirming
that the highest solubility is achieved by a binary mixture, in
which the composition of ibuprofen is 0.34928 and 0.33383 in
the first and second task, respectively. The results of both tasks
show that a higher solubility can be obtained in a mixture of two
or three components rather than in a pure solvent.

The problems of the first task, where the miscibility con-
straint was not included in the formulation, were also solved
globally in GAMS, using BARON81 which is a global MINLP
solver. The results validate the solutions obtained with
DICOPT, by proving that the highest solubility is achieved by
the mixture of chloroform and water, as shown in Table 8. The
slightly different values of mole fraction observed between
DICOPT and BARON are due to the convergence criteria
used in each solver. The problems of the second task, where
the miscibility of the solvents was taken into account, are
more complex and could not be solved to global optimality.

It is instructive to consider the computational requirements of

the different problem formulations. The values of the CPU time

presented in Tables 6–8 correspond to the runs where the best

solutions were found and they are representative of all attempts

with different initial points. For the problems with a fixed num-

ber of mixture components, the CPU time increases rapidly with

the number of components, as a result of the increase in the size

and complexity of the problems. The introduction of the nonlin-

ear miscibility constraints has little effect on the cost of solving

the restricted and general problems locally. Furthermore, enu-

merating all options for the number of components (N 5 1, 2, or

3) appears to be a more effective strategy than the solution of

the general problem from the perspective of computational cost.

Further, computational studies are required to investigate

whether this finding holds for larger number of components.

Conclusions

Computer-aided mixture design is an important tool that has

the potential to improve process and product design, but that

often leads to challenging mixed integer optimization prob-

lems due to nonconvexities in the space of the continuous vari-

ables and a large combinatorial solution space. The number of

interlinked decisions to be considered makes it difficult to for-

mulate the problem in a way which can be easily understood,

modified and solved. A general modeling framework for mix-

ture design problems has been proposed in this work to

address these difficulties. Several problem formulations based

on the GDP formalism have been presented. They provide a

systematic approach to posing CAMbD problems in which the

number of mixture components, the identities of the compo-

nents and their compositions are to be determined. The pro-

posed approach has been applied successfully to a solvent

mixture design problem for maximizing the solubility of ibu-

profen. The methodology adopted in this case study included

two problem formulations: (1) with fixed number of solvents

(restricted problem) and (2) with unknown number of compo-

nents (general problem). Both problems were first solved with-

out taking any miscibility constraint into account in the

problem formulation and then including a miscibility con-

straint for every binary solvent pairs. Logic conditions

between the disjunctive sets were expressed as algebraic con-

straints, whereas disjunctions for the assignment and number

of solvent molecules were transformed into mixed-integer

constraints using the big-M approach. High quality solutions

of all problems were obtained using a local MINLP solver.
The findings from the case study provide evidence of the

usefulness and versatility of a GDP-based approach to optimal

mixture design. Integrating GDP techniques into the CAMbD

framework can facilitate the formulation of the design prob-

lem, making it possible to optimize simultaneously the number,

identities, and compositions of components in the mixture.

Numerical difficulties associated with the absence of compo-

nents in the final mixture, which are a concern when miscibil-

ity constraints are included in the formulation, can be avoided,

Table 8. Mixture Design Problem Results Obtained from BARON Without Miscibility Constraint. The Maximum Solubility

Achieved is Shown in Bold Font and Corresponds to a Solvent Mixture with 2 Components

Case xibu c1 xc1
c2 xc2

c3 xc3
CPU(s)

N 5 1 0.31833 Chloroform 0.68167 8.14
N 5 2 0.34929 Chloroform 0.49662 Water 0.15409 210.25
N 5 3 0.34915 Chloroform 0.49691 Water 0.15294 Methanol 0.00100 4527.36
N � 3 0.34928 Chloroform 0.49793 Water 0.15279 5715.37
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leading to computationally efficient solutions. In the case

study, it was found that mixtures outperform pure solvents.
Future perspectives for this work include developing algo-

rithms to solve these complex design problems globally and

using alternative logic-based optimization techniques. The Big-

M formulation used in this study is the most common relaxa-

tion technique but it is known to give weak lower bounds for a

minimization problem.43,82 Other techniques, such as Hull

Relaxation, can be used. In the case of convex problems, the

resulting bounds are at least as tight or tighter52,65 but the case

of nonconvex problems83,84 presents additional challenges.

Finally, the formulation of the design problems could be

extended to the design of molecules from the basic building

blocks (UNIFAC groups) so that the preselection of promising

molecules to include in the list of candidates can be avoided.

In this way, a comprehensive approach to mixture design prob-

lems can be adopted, where the optimal number of molecules,

their identities and compositions are optimized simultaneously.
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Appendix
A UNIFAC Model

These equations are proposed by Smith et al.73 in a form con-

venient for programming and they are slightly changed to avoid

some numerical difficulties when the activity coefficient of ibu-

profen is calculated.

Activity coefficient

ln cibu5ln cC
ibu1ln cR

ibu (A1)

Combinatorial part of activity coefficient

ln cC
ibu512Jibu1ln Jibu25qibu 12

Jibu

Libu

1ln
Jibu

Libu

� �
(A2)

rs5
X

k

vs;kRk (A3)

qs5
X

k

vs;kQk (A4)
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ribuXNc

i51
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Libu5
qibuXNc

i51
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(A6)

Residual part of activity coefficient

ln cR
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X
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B Solvent Properties

Experimental data for toxicity, and boiling and melting tem-

peratures of the candidate solvents are presented in Table B1.

C Parameters of the UNIFAC Model used in this
Case Study

The number of groups of type k in ibuprofen (vibu;k) and in a

solvent s (vs;k) are presented in Tables C1 and C2, respectively;

the group volume parameters (Rk), the group surface area

parameters (Qk) and the group interaction parameters (ak;m) used

in the UNIFAC model for the prediction of the activity coeffi-

cient are listed in Tables C3–C5, respectively.

D Problem Formulations

For definition of indices and sets see Table 2.

MINLP Formulations for Task 1

Restricted problem (N 5 3)

max xibu

Table B1. Experimental Values for Toxicity,85 Melting and

Boiling Temperatures86 of the Candidate Solvents

Solvents
Toxicity

(2logLC50)

Normal
Melting

Point (K)

Normal
Boiling

Point (K)

Acetone 0.85 179.15 329.15
Chloroform 3.06 210.15 334.15
Ethanol 0.52 159.15 351.15
Ethylacetate 2.58 189.15 350.15
Methanol 0.05 175.15 337.85
MIBK 2.27 193.15 390.65
2-Propanol 0.78 183.65 355.15
Toluene 3.42 180.15 383.65
Water 0 273.15 373.15

largest
value 5 3.42

Mixture
temperature 5 300K

Table C1. vibu;k, Number Each Group k in Ibuprofen

CH3 CH aCH aCCH2 aCCH COOH

vibu;k 3 1 4 1 1 1

Table C2. vs;k, Number Each Group k in a Solvent s

vs;k CH3 CH2 CH aCH aCCH3 CH3OH OH CH3COO CH3CO CHCl3 H2O

Acetone 1 1
Chloroform 1
Ethanol 1 1 1
Ethylacetate 1 1 1
Methanol 1
MIBK 2 1 1 1
2-Propanol 2 1 1
Toluene 5 1
Water 1

Table C3. Rk, Group Volume Parameters
76

Groups Rk

CH3 0.9011
CH2 0.6744
CH 0.4469
aCH 0.5313
aCCH3 1.2663
aCCH2 1.0396
aCCH 0.8121
CH3OH 1.4311
OH 1.0000
CH3COO 1.9031
CH3CO 1.6724
COOOH 1.3013
CHCl3 2.8700
H2O 0.9200

Table C4. Qk, Group Surface Area Parameters
76

Groups Qk

CH3 0.848
CH2 0.540
CH 0.228
aCH 0.400
aCCH3 0.968
aCCH2 0.660
aCCH 0.348
CH3OH 1.432
OH 1.200
CH3COO 1.728
CH3CO 1.488
COOOH 1.224
CHCl3 2.410
H2O 1.400
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Table C5. ak;m, Group Interaction Parameters
76

k/m CH3 CH2 CH aCH aCCH3 aCCH2 aCCH CH3OH OH CH3COO COOH CH3CO CHCl3 H2O

CH3 0 0 0 61.13 76.5 76.5 76.5 986.5 697.2 1318 476.4 232.1 663.5 24.9
CH2 0 0 0 61.13 76.5 76.5 76.5 986.5 697.2 1318 476.4 232.1 663.5 24.9
CH 0 0 0 61.13 76.5 76.5 76.5 986.5 697.2 1318 476.4 232.1 663.5 24.9
aCH 211.12 211.12 211.12 0 167 167 167 636.1 637.4 903.8 25.77 5.994 537.4 2231.9
aCCH3 269.7 269.7 269.7 2146.8 0 0 0 803.2 603.3 5695 252.1 5688 872.3 280.25
aCCH2 269.7 269.7 269.7 2146.8 0 0 0 803.2 603.3 5695 252.1 5688 872.3 280.25
aCCH 269.7 269.7 269.7 2146.8 0 0 0 803.2 603.3 5695 252.1 5688 872.3 280.25
CH3OH 16.51 16.51 16.51 250 244.5 244.5 244.5 249.1 0 2181 23.39 210.72 2202 2139.4
OH 156.4 156.4 156.4 89.6 25.82 25.82 25.82 0 2137.1 353.5 84 101.1 199 298.12
CH3COO 114.8 114.8 114.8 85.84 2170 2170 2170 245.4 249.6 200.8 372.2 0 660.2 2209.7
COOH 315.3 315.3 315.3 62.32 89.86 89.86 89.86 2151 339.8 266.17 2297.8 2256.3 0 39.63
CH3CO 26.76 26.76 26.76 140.1 365.8 365.8 365.8 164.5 108.7 472.5 0 2213.7 669.4 2354.6
CHCl3 36.7 36.7 36.7 288.5 69.9 69.9 69.9 742.1 649.1 826.8 552.1 176.5 504.2 0
H2O 300 300 300 362.3 377.6 377.6 377.6 2229.1 289.6 0 2195.4 72.87 214.09 353.7

subject to

ln xibu1ln cibu5
DHfus

R

1

Tm
2

1

T

� �

ln cibu5ln cC
ibu1ln cR

ibu

ni;k5
X
s2S

vs;kyi;s; i5c1; c2; c3 ; k 2 K

qi5
X
s2S

qsyi;s; i5c1; c2; c3

ri5
X
s2S

rsyi;s; i5c1; c2; c3

X
i2I

xi51

select exactly 3 solvent molecules :X
s2S

yi;s51; i5c1; c2; c3

logic relations :

select each candidate solvent at most once :X
i2I

yi;s � 1; s 2 S; I5fc1; c2; c3g

solvent ordering :

yc1;s1yc2;s0 � 1

yc1;s1yc3;s0 � 1

yc2;s1yc3;s0 � 1

8 s0 < s ; s52; . . . ; 9 ; s051; . . . ; s

0:001 � xi � 1 ; yi;s 2 f0; 1g; i 2 I; s 2 S

(R-BM1)

General problem ðNmax53Þ
max xibu

subject to

ln xibu1ln cibu5
DHfus

R

1

Tm
2

1

T

� �

ln cibu5ln cC
ibu1ln cR

ibu

ni;k5
X
s2S

vs;kyi;s; i5c1; c2; c3; k 2 K

qi5
X
s2S

qsyi;s; i5c1; c2; c3

ri5
X
s2S

rsyi;s; i5c1; c2; c3

X
i2I

xi51

select only one disjunction :

X3

n51

~yn51

select exactly one solvent for the first designed component :X
s2S

yc1;s51

logic relations :

select at most 2 more solvents :X
s2S

yi;s � 1 ; i5c2; c3

select each candidate solvent at most once :X
i2I

yi;s � 1; s 2 S; I5fc1; c2; c3g

solvent ordering :

yc1;s1yc2;s0 � 1

yc1;s1yc3;s0 � 1

yc2;s1yc3;s0 � 1

8 s0 < s ; s52; . . . ; 9 ; s051; . . . ; s

(G-BM1)
using ~yn to control yi;s :

~y11yi;s � 1; s 2 S ; i5c2; c3

~y21yi;s � 1 ; s 2 S ; i5c3

~y2 �
X
s2S

yi;s; i5c2

~y3 �
X
s2S

yi;s ; i5c2; c3

reformulation of the disjunctive constraints via big2M :

0:001ð12~y1Þ � xc2
� 0:999ð12~y1Þ

0:001~y3 � xc3
� 0:999~y3

0:001 � xibu; xc1
� 1

0 � xc2
; xc3
� 1 ; yi;s; ~yn 2 f0; 1g; i 2 I; s 2 S; n 2 N

(R-BM1)
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Disjunctions for Number of Components in the
Mixture for Task 2

General problem (Nmax 5 3)

~Y1

xc2
5xc3

50

~nc1;k5nc1;k

~nc2;k5~nc3;k50

for k 2 K

~qc1
5qc1

~qc2
5~qc3

50

~rc1
5rc1

~rc2
5~rc3

50

bi;k50

for i5c1; c2; c3 ; k 2 K

2
666666666666666666666666666664

3
777777777777777777777777777775

�

~Y2

xc2
� 0:001

xc3
50

~ni;k5ni;k

~nc3;k50

for i5c1; c2; k 2 K

~qi5qi

~qc3
50

for i5c1; c2

~ri5ri

~rc3
50

for i5c1; c2

bc1;k5
X

m

nc1;mQmwm;k ;

bc2;k5bc3;k50

for k 2 K

miscibility :

dcc1;c2
c1

1
1

xc1;c2
c1

� 0

dcc1;c2
c1

5ðdcc1;c2
c1
ÞC1ðdcc1;c2

c1
ÞR

ðdcc1;c2
c1
ÞC5

@ðln cc1;c2
c1
ÞC

@xc1;c2
c1

ðdcc1;c2
c1
ÞR5

@ðln cc1;c2
c1
ÞR

@xc1;c2
c1

xc1;c2
c1

5
xc1

xc1
1xc2

2
6666666666666666666666666666666666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777777777777777777777777777777777775

�

~Y3

xi � 0:001

for i5c2; c3

~ni;k5ni;k

for i5c1; c2; c3; k 2 K

~qi5qi

for i5c1; c2; c3

~ri5ri

for i5c1; c2; c3

bi;k5
X

m

ni;mQmwm;k

bc3;k50

for i5c1; c2; k 2 K

miscibility for i5c1; c2;

j5c2; c3; i < j :

dci;j
i 1

1

xi;j
i

� 0

dci;j
i 5ðdci;j

i Þ
C
1ðdci;j

i Þ
R

ðdci;j
i Þ

C
5
@ðln ci;j

i Þ
C

@xi;j
i

ðdci;j
i Þ

R
5
@ðln ci;j

i Þ
R

@xi;j
i

xi;j
i 5

xi

xi1xj

2
66666666666666666666666666666666666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777777777777777777777777777777777775

(G-D2)

where variable bi;k is used to evaluate the miscibility con-

straint for binary pairs of designed components and it is non-

zero only when a mixture of 2 or 3 solvents is designed.

MINLP Formulations for Task 2

Restricted problem (N 5 3)

max xibu

subject to

ln xibu1ln cibu5
DHfus

R

1

Tm
2

1

T

� �

ln cibu5ln cC
ibu1ln cR

ibu

ni;k5
X
s2S

vs;kyi;s; i5c1; c2; c3 ; k 2 K

qi5
X
s2S

qsyi;s; i5c1; c2; c3

ri5
X
s2S

rsyi;s; i5c1; c2; c3

X
i2I

xi51
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select exactly 3 solvent molecules :X
s2S

yi;s51; i5c1; c2; c3

miscibility constraint :

dci;j
i 1

1

xi;j
i

� 0; i < j ; i5c1; c2 ; j5c2; c3

dci;j
i 5 ðdci;j

i Þ
C

1 ðdci;j
i Þ

R

ðdci;j
i Þ

C
5

@

@xi;j
i

12Ji1lnJi25qi 12
Ji

Li
1ln

Ji

Li

� �� �

ðdci;j
i Þ

R
5

@

@xi;j
i

qi2
X

k

hk
bi;k

xk
2qiek;iln

bi;k

xk

� �" #

xi;j
i 5

xi

xi1xj
; i < j ; i5c1; c2 ; j5c2; c3

(R-BM2)

logic relations :

select each candidate solvent at most once :X
i2I

yi;s � 1 ; s 2 S ; I5fc1; c2; c3g

solvent ordering :

yc1;s1yc2;s0 � 1

yc1;s1yc3;s0 � 1

yc2;s1yc3;s0 � 1

8 s0 < s ; s52; . . . ; 9 ; s051; . . . ; s

0:001 � xi � 1 ; yi;s 2 f0; 1g; i 2 I; s 2 S

General problem (Nmax53)

max xibu

subject to

ln xibu1ln cibu5
DHfus

R

1

Tm
2

1

T

� �

ln cibu5ln cC
ibu1ln cR

ibu

ni;k5
X
s2S

vs;kyi;s; i5c1; c2; c3; k 2 K

qi5
X
s2S

qsyi;s; i5c1; c2; c3

ri5
X
s2S

rsyi;s; i5c1; c2; c3

X
i2I

xi51

select only one disjunction :X3

n51

~yn51

select exactly one solvent for the first designed component :X
s2S

yc1;s51

logic relations :

select at most 2 more solvents :X
s2S

yi;s � 1 ; i5c2; c3

select each candidate solvent at most once :X
i2I

yi;s � 1; s 2 S; I5fc1; c2; c3g (G-BM2)

solvent ordering :
yc1;s1yc2;s0 � 1

yc1;s1yc3;s0 � 1

yc2;s1yc3;s0 � 1

8 s0 < s ; s52; . . . ; 9 ; s051; . . . ; s

using ~yn to control yi;s :

~y11yi;s � 1; s 2 S ; i5c2; c3

~y21yi;s � 1; s 2 S ; i5c3

~y2 �
X
s2S

yi;s; i5c2

~y3 �
X
s2S

yi;s; i5c2; c3

reformulation of the disjunctive constraints via big2M :
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� 0:999ð12~y1Þ
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miscibility for the binary pair ðc1; c3Þ
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miscibility for the binary pair ðc2; c3Þ
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