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Abstract 
In this paper, we propose two new explicit Almost Runge-Kutta (ARK) methods, ARK3 (a three 
stage third order method, i.e., s = p = 3) and ARK34 (a four-stage third-order method, i.e., s = 4, p = 
3), for the numerical solution of initial value problems (IVPs). The methods are derived through 
the application of order and stability conditions normally associated with Runge-Kutta methods; 
the derived methods are further tested for consistency and stability, a necessary requirement for 
convergence of any numerical scheme; they are shown to satisfy the criteria for both consistency 
and stability; hence their convergence is guaranteed. Numerical experiments carried out further 
justified the efficiency of the methods. 
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1. Introduction 
According to [1] the s-stage Runge-Kutta method for solving the initial value problem 

( ) ( )0 0, , ,y f x y y x y′ = =                                 (1) 

is defined by 
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and 

1
1, 2,3, ,, .
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i ij
j

c a i s
=

= =∑                                   (4) 

Alternative forms of the above equations are: 

( )1
1

, ,
s

n n i n i i
i

y y h b f x c h Y+
=

= + +∑                               (5) 

where 

( )
1

, , 1, , .
s

i n ij n j j
j

Y y h a f x c h Y i s
=

= + + =∑                            (6) 

The two forms of Equations (2) and (5) are equivalent by making the interpretation 

( ), , 1, ,i n i ik f x c h Y i s= + =                                 (7) 

where iY  is the inner stages that tend to estimate the solutions at some points; s is the number of stages and ic  
is the points where the function f is computed for a step. ARK methods are a special class of RK methods that 
arose out of the quest to develop efficient and accurate methods that have advantages over the traditional me-
thods by retaining the simple stability function of RK methods, allowing minimal information to be passed be-
tween steps and adjusting stepsize easily. Since the introduction of ARK methods in by [2], other researchers 
who have made their input toward the development of this method include [3]-[7]. 

2. Materials and Methods 
2.1. Method ARK3 (s = p = 3) 
The general third order three stages Almost Runge-Kutta scheme is of the form: 

2
1 1

2
21 2 21 2 21 1

1 2 0

1 2 0

1 2 3 0

10 0 0 1
2

10 0 1
2

.0 1 0
0 1 0

0 0 1 0 0 0
0 0

c c

a c a c a c
A U

b b bB V
b b b

β β β β

 
 
 
 − −  
 = 
   
 
 
 
  

                     (8) 

We represent the abscissa vector [ ] [ ] [ ]T T T
1 2 1 2 1 2 3, ,1 , , , 0 , , ,c c c b b b β β β β= = = . 

The order conditions for order three ARK schemes are derived through the standard rooted tree approach used 
for Runge-Kutta methods [8]. 

T
0 0 1 2

T
1 1 2 2

T 2 2 2
1 1 2 2

1 1
1 1 .
2 2
1 1
3 3

b b e b b b

b c b c b c

b c b c b c

 
 + = + + =
 
 = ⇒ + = 
 
 = + =  

                             (9) 

The conditions of Runge-Kutta stability for 3rd order, 3 stages are: 

( )T T
3 3 3I A eβ β β+ =                                  (10) 
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T
3 1

1 11
2 6

c b Acβ + = 
 

                                 (11) 

( )
( )

3 3
1

3 2 3

2exp
c

exp
β

β β
−

= −
−

                                  (12) 

where ( )
2 3

1
2 3! !

n

n
x x xexp x x

n
= + + + + + . 

Acquiring order 2 estimation with respect to 2nd scaled derivative for the 3rd outgoing solution, we need: 
T

0 0.eβ β+ =                                       (13) 

T 1.cβ =                                           (14a) 

From Equation (12) we have, 

2 3
3 3 3

1
2

3 3 3

1 12 1
2 6 .

11
2

c
β β β

β β β

 − + − 
 = −

 − + 
 

                            (14b) 

Solving Equation (9) we obtain 

( )
2

1
1 2 1

3 2 .
6

cb
c c c

−
=

−
                                      (15) 

( )
1

2
2 2 1

3 2 .
6

cb
c c c

−
= −

−
                                    (16) 

1 2 1 2
0

1 2

6 3 3 2 .
6

c c c cb
c c

− − +
=                                 (17) 

And from Equation (11), we obtain  

( )21
2 1 3 1

1 .
3 2

a
b c cβ

=
+

                                   (18) 

Evaluating both sides of Equation (10) we obtain 

( ) ( )3 2 2
1 21 2 3 1 3 2 2 3 3 3, , 0,0, .a b b bβ β β β β β β− + + =                       (19) 

This implies that 
3 2

1 21 2 3 1 3

2
2 2 3

3 3

0
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a b b

b

β β β

β β

β β

− + =
+ = 


= 

                                (20) 

Thus Equation (13) becomes 

0 1 2 3.β β β β= − − −                                    (21) 

Two free parameters, 3β  and 2c  are required for an order three scheme. Thus T 8 1, ,1
15 2

c  =   
; and after  

calculating the members of the U matrix we obtain the a scheme for method 3s p= = . 
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8 320 0 0 1
15 225

25 313 40 0 1
576 576 27
75 54 0 1 0

.16 16
75 54 0 1 0
16 16
0 0 1 0 0 0
75 336 3 0 0
2 2

A U
B V

 
 
 
 − 
 
   −

=   
    

 −
 
 
 
 − −  

                         (22) 

2.2. Method ARK34 (s = 4, p = 3) 
The third order four stages scheme has the general form: 

2
1 1

2
21 2 21 2 21 1

2
31 32 3 31 32 3 31 1 31 2

1 2 3 0

1 2 3 4 0

1 2 3 4 0

10 0 0 0 1
2

10 0 0 1
2
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0 0 0 1 0 0 0

0 0

c c

a c a c a c

A U a a c a a c a c a c
B V

b b b b
b b b b b

β β β β β

 
 
 
 − − 
 

   − − − −=       
 
 
 
 
  

           (23) 

Its stability function is expressed as 

( )
2 3

41 .
2! 3!
z zR z z Kz= + + + +                               (24) 

The order conditions are derived using the standard rooted tree approach used for Runge-Kutta methods [8]. 

T 1 .
2

b c =                                        (25) 

T 2 1 .
3

b c =                                       (26) 

T
0 1 .b b e= −                                     (27) 

T
0 eβ β= −                                      (28) 

( ) ( )T 2
4 4 4 .e I A I A Aβ θ β θ+ = +∅ +                         (29) 

32
4 1 3 4 4 1 1

1 11 1 .
2 2 2! 3!

K c c ααβ θα α β α    − = + + + +        
                 (30) 

The iα  values are obtained by expanding 
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Also, 
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( )T T 21 .
6

b Ac b A c Kθ− = −                            (32) 

( ) ( )T 2 T 2
4 4

1 .
2

b Ac K b A c Kβ β − = −∅ − 
 

                     (33) 

There is also the additional condition 
T 3b c L=                                     (34) 

1 2 3 4, , , , ,c c c β θ∅  and L will be assumed to be the free parameters, where 1
4

L −  is the error coefficient com-

parable to the bushy tree. From Equations (25)-(27) together with Equation (34) we have 

1 1 2 2 3 3

2 2 2
1 1 2 2 3 3

3 3 3
1 1 2 2 3 3

0 1 2 3

1
2
1

.3

1

b c b c b c

b c b c b c

b c b c b c L
b b b b

+ + = 

+ + = 


+ + = 
+ + + = 

                              (35) 

Thus 

( ) ( )
2 3 2 3

1
3 1 2 1 1

3 6 2 2 .
6
c c L c cb

c c c c c
+ − −

=
− −

                                       (36) 

( ) ( )
1 3 1 3

2
2 2 1 3 2

6 2 2 .
6
Bc c L c cb
c c c c c

+ −
= −

− −                                       (37) 

( )
1 2 1 2

3 2
3 1 2 1 3 2 3 3

3 6 2 2 .
6

c c L c cb
c c c c c c c c

− −
=

− − +                                    (38) 

1 2 3 1 2 1 3 2 3 1 2 3
0

1 2 3

6 3 3 3 6 2 2 21 .
6

c c c c c c c c c L c c cb
c c c

 − + + + + − − −
= −  

 
          (39) 

From Equation (30) we obtain 

32
4 1 1

4 1 3 4

11 1
2 2! 3! .1

2

c
K

c

ααβ α

β θα α

  + + + +    =
−

                         (40) 

Evaluating the stability matrix of a four stage third order method, we arrive at 

( )3Tr .BA U K=                                    (41) 

where Tr is the trace of a matrix and 

( )

( )

( )

3 T 3 T 3 T 2

3 3 T 3 T 3 T 2

3 T 3 T 3 T 2

1
2
1 .
2
1
2

s s s

A b e A c Ae A b c Ac

BA U A e A e c Ae A e c Ac

A e A c Ae A c Ac

β

β β β

  − −    
  = − −  

  
  − −  

  

                   (42) 

Hence, 
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( ) ( )3 T 3 T 3 T 3 21Tr .
2sBA U b A e e A c Ae A c Acβ  = + − + − 

 
               (43) 

( )T 3 T 3 T 3 21 .
2sb A e e A c Ae A c Ac Kβ  + − + − = 

 
                      (44) 

And it follows that: 

T 2 T 3 2 T 41 .
2

b A c A c A c Kβ β+ − =                              (45) 

Since 4 0A =  we obtain 

T 2
4 1

11 .
2

b A c c Kβ + = 
 

                                (46) 

We introduce T 2
1K b A c= , T

2K b Ac=  and T 2
3K b Ac= . Thus from Equation (46) we arrived at 

1

1 4

.11
2

KK
c β

=
+

                                     (47) 

And from Equations (32) and (33) we obtain respectively 

( )2 1
1 .
6

K K Kθ= + −                                   (48) 

( )3 1
4

2 2 1 .K K K K
β

 ∅
= − − − 

 
                              (49) 

Further simplification produces the following results 

( )
( )

2 2 1 1
21

1 3 1 2

.
c c c K

a
c K c K

∗
−∗
−∗

∗
=                                  (50) 

1
32

3 21 1

.Ka
b a c

=                                          (51) 

2 2
3 2 21 1 3 32 1

31 2
3 1

.K b a c b a ca
b c

− −
=                               (52) 

Setting 4β θ∅ = +  and substituted this into Equation (29), we obtain 

( ) ( )T T 2
4 4 4 .e I A I A Aβ θ β θ β θ+ = + +                          (53) 

( ) ( ) ( )T T
4 4 4 .e I A I A I Aβ θ β β θ+ = + +                         (54) 

( ) ( )
( )

T
4T

4 4 .
I A I A

e
I A

β β θ
β

θ
+ +

=
+                               (55) 

( )T T
4 4 4 .e I Aβ β β= +                                       (56) 

Thus 
3 3 4 2

1 31 3 4 21 2 4 21 32 3 4 1 4 .a b a b a a b bβ β β β β= + − −                       (57) 
2 2

2 32 3 4 2 4 .a b bβ β β= −                                        (58) 
2

3 3 4 .bβ β= −                                               (59) 

4 4.β β=                                                  (60) 
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And the proposed ARK34 with T 1 1, ,1,1
4 2

c  =   
 is 

1 10 0 0 0 1
4 32

8 7 70 0 0 1
9 18 72
2 1 7 50 0 1
3 2 6 12

.2 1 10 0 1 0
3 6 6
2 1 10 0 1 0
3 6 6

0 0 0 1 0 0 0
8 2 40 2 0 0
9 3 9

A U
B V

 
 
 
 − − 
 
 −
    =       
 
 
 
 
 
 − − −
  

                   (61) 

3. Convergence Analysis 
For the method ARK3 represented by Equation (24), the matrix 

51 0
16

0 0 0 ,
30 0
2

V

 
 
 

=  
 

− 
 

                               (62) 

must have bounded powers for the method to be stable. 
The characteristic polynomial of V is given as 

( ) ( )3 3det .I V I Vρ λ λ λ= − = −                           (63) 

( ) 3 2

51 0
16

0 0 .
0 1

λ

ρ λ λ λ λ
λ

− −

= = −                          (64) 

Thus ( ) ( )1 2 3, , 1,0,0 .λ λ λ =  
Applying Cayley-Hamilton theorem to matrix V 

( ) 3 2 0.V V Vρ = − =                                (65) 

5 51 0 1 0 0 0 016 16
0 0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 0

   
     
     − =     
         
   

                     (66) 

This implies that 
3 2.V V=                                     (67) 

Similarly, 
4 2 5 2 20, 0, , nV V V V V V− = − = =

                        (68) 
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for every n greater than 2. It implies nV  is bounded, which shows that the method is stable. It is known that 
methods of order at least one are always consistent; hence the method is consistent since the order of the method 
is 3 1p = > . Therefore, Hence the proposed scheme ARK3 is convergent due to the fact that it is both stable 
and consistent. 

Similarly, for the ARK34 method of Equation (61), the matrix 
11 0
6

0 0 0 .
40 0
9

V

 
 
 

=  
 

− 
 

                                 (69) 

( ) ( ) ( ) 3 2
3det det .nI V I Vρ λ λ λ λ λ= − = − = −                     (70) 

And the eigenvalues are evaluated to be ( ) ( )1 2 3, , 1,0,0λ λ λ = . 
Thus, 

( ) 3 2 0.V V Vρ = − =                                 (71) 

And similarly, it implies that 3 2 4 2 5 2 2, 0, 0, , nV V V V V V V V= − = − = = , for every n greater than 2. It in-
dicates that nV  is bounded which shows that the method is stable. Also, the method is consistent since it is of 
order 3, i.e., 3 1p = > . Hence the proposed scheme (ARK34) is convergent due to the fact that it is both stable 
and consistent. 

4. Numerical Examples 
Considering the problem below: 

( ) ( ) ( ) ( )

[ ]

( ) 1
4

1 , 0 1
4 20

steplength equals 0.1, 0, 2
20Analytical solution :

1 1

.

9e
E

x

y x y x
y x y

x

y x −

 ′ = −






= 
 

=
+






∈                        (72) 

Source: Rattenbury [3]. 
Problem (72) is solved using the proposed ARK34 method. The results are obtained and compared with simi-

lar ARK34 methods of [3] and [5] respectively and presented in Figure 1. 
 

 
Figure 1. Comparison of ARK34 with other methods (h = 0.1).      
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From Figure 1 it is evident that our Proposed ARK34 method performed better than the methods of [3] and [5] 
since it exhibits lesser error than the errors of the existing methods. 

5. Conclusion 
Two ARK methods are proposed, ARK3 ( )3s p= =  and ARK34 ( )4, 3s p= = . The methods have been 
proven to be consistent and stable, thereby guaranteeing their convergence. This is further illustrated by com-
paring the performance of one of the methods with other methods of similar order. The proposed method 
ARK34 is shown to perform better than the existing methods. 
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