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Abstract: The need for dense and accurate gravity data cannot be overemphasised in

the development of a precise gravimetric geoid model. Unfortunately, the field observa-

tions required are costly, and labour-intensive hence the need to ascertain via numerical

simulations the appropriate field specifications before embarking on them. This paper

presents an experimental study on the gravimetric data specifications (spatial resolution

and data accuracy) required for achieving decimetre-level accuracy geoid using the conven-

tional Stokes’ Remove Compute Restore (RCR) method in Nigeria. A two-step solution

approach was used in this study. The steps were determination of the (i) effect of data

spacing by a comparative assessment of computation results obtained by using gravity

data at four user determined intervals and (ii) effect of observation accuracy by numerical

simulation using error propagation analysis. The data intervals (3′× 3′, 5′× 5′, 10′× 10′

and 20′× 20′) were selected from a combination of 1815 terrestrial FA anomaly points

merged with EGM2008 derived FA anomaly covering the study area. Also, observational

errors investigated were 0mGal, 0.1 mGal, 0.5 mGal, 1 mGal and 5mGal. The study was

conducted in Nigeria having a total land area of approximately 923,768km2 . The study es-

tablished that gravimetric geoid accuracy improves substantially as the spatial resolution

and accuracy of the gravity data improves. Also, the study identified that data spacing

contributes more to the overall geoid error than data accuracy. In addition, the study

observed that hilly regions should have denser data spacing than plain areas. Within the

test region, a data spacing of 3′× 3′ with gravity observational errors 5 mGal was found

to produce an acceptable gravimetric geoid. The produced gravimetric geoid had a pre-fit

Root Mean Square Error (RMSE) of 15.6cm when compared with GNSS-Levelling data at

27 stations located evenly across the study area. This large value obtained as the pre-fit

RMSE can be attributed to the parametric inconsistencies in the Nigerian height system.
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1. Introduction

The theory and study of geoid modelling is a long-term problem in geodesy
with many methods and techniques resulting from the different research at-
tempts. Among the several methods of geoid computation, the gravimetric
method is, theoretically, the most preferred method since the geoid is actu-
ally an equi-potential surface of the Earth’s gravity field (Ojinnaka, 2007;
Sansò and Sideris, 2013).

Since the Stokes method of geoid modelling evolved in 1849, several mod-
ifications have been adopted for the implementation of gravimetric geoid
model in order to improve the accuracy of the computed geoid. Some of
these modifications include the Helmert’s RCR technique which was modi-
fied after the conventional Stokes RCR method, Stokes-Helmert’s method,
the KTH Least squares modification of Stokes method (LSMC) with addi-
tive correction (AC) (Nsombo, 1996; Sjöberg and Featherstone, 2004) and
the fast Fourier transform (FFT) approach (Akib and Aziz, 1996; Abd-
Elmotaal, 2011). Notwithstanding the computational modification adopted,
earlier studies have revealed that the overall geoid accuracy depends on the
availability of a dense network of gravity data (Jekeli, 2012). Studies on
seven national geoid models as presented in Table 1, confirm that the ac-
curacy of the developed gravimetric geoid model depends largely on the
amount of the gravity data used.

Aside from the data spacing, another important parameter in gravimetric
geoid modelling is the accuracy of the gravity data. The effects of these two
parameters (gravity data spacing and quality) on the overall geoid accuracy
have been studied by some earlier researchers. Novák (2000) identified that
a geoid accuracy of several centimetres could be achieved with 9 km data
spacing (approx. 4.86′× 4.86′) if the data were error-free. Hong et al. (2009)
studied the effects of gravity data quality and spacing on the accuracy of
the computed geoid in the Helmert’s RCR technique using simulated gravity
data over South Korea. In the study, the geoid error was analysed and cal-
culated by controlling the gravity data quality and spacing artificially. The
results obtained were then compared with a reference geoid. The analysis
performed show that geoid errors are mainly caused by the distribution of
gravity data rather than by the noise in the data. He posited that gravity
spacing smaller than 2 km is required to achieve a 5-cm level of geoid accu-
racy.
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Table 1. Data spacing used for some regional geoid models (Odumosu, 2019).

S/N Continent Country Adopted No. of grav. Approx. Accuracy Source
geoid data points data of geoid

spacing

1 Africa Tanzania TZG08 TD = 39,677 1 point/ RMSE Ulotu
(East) MD = 57,722 9.73 km2 = 27 cm (2009)

2 Africa Ghana Ghanan- TD = 10,081 1 point/ RMSE Klu
(West) ian geoid 24 km2 = 49.7 cm (2015)

3 Africa Egypt TD = 13,566 1 point/ mean Abd-
(North) MD = 121,480 55 km2 residual Elmotaal

(FFT) (2011)
= 1.52 m
mean
residual
(RCR)
= 1.05 m

4 Africa South Not specified 1 point/ RMSE Chandler
(South) Africa 6 km2 = 22 cm and Merry

(2010)

5 United Canada 2.1 million 1 point/ RMSE Wang et
States of terrestrial 0.86 km2 = 4– 8 cm al. (2012)
America points

6 Asia Japan Japan TD = 290,025 1 point/ RMSE Matsuo et
geoid MD = 580,000 6 km2 = 7.8 cm al. (2016)

7 Australia New NZ geoid TD = 40,737 1 point/ RMSE Amos
Zealand 2009 MD = 1,300,266 9.9 km2 = 58 cm (2010)

TD = Terrestrial data
MD = Marine data

Huang et al. (2007) used variance component estimation (VCE) approach
to estimate the geoid error in the Canadian gravimetric geoid. From the
study, he identified total geoid error ranging from 1 cm to 32 cm across the
Canadian land mass, when gravity data spacing of 2′× 2′ was used. Ågren
and Sjöberg (2012) investigated the gravity data requirement to compute
the Swedish gravimetric geoid to an accuracy of 5mm using the KTH LSMS
with AC. The analysis was done by propagation of the errors in the terres-
trial gravity observations and the EGM (Earth Gravitational Model) using
variance-covariance model in the spectral domain and LSC (Least Squares
Collocation). It was revealed that a minimum data spacing of 5km without
data gaps with a data noise between 0.1–0.5 mGal is suitable to achieve
5 mm geoid accuracy using the KTH method.
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Farahani et al. (2017) assessed the surface gravity data requirements for
a 5-mm quasi-geoid model considering the omission and commission errors.
The study identified the relationship between omission error and data res-
olution as well as commission error and data accuracy. It was concluded
that 3.5 km data spacing with an accuracy of 1.5 mGal is needed to achieve
a 5 mm quasi-geoid model over the Netherlands. Foroughi et al. (2019)
tested the possibility of achieving sub-centimetre accuracy in gravimetric
geoid computation using the Stokes-Helmert’s by spherical approximations
of the UNB (University of New Brunswick) approach. As a means of test-
ing the accuracy of the proposed method, the uncertainties in the com-
puted geoid were computed with respect to uncertainties in the downward
continuation vis-à-vis the near zone (NZ) contribution, far zone (FZ) con-
tribution, reference spheroid and transformation of the co-geoid back to the
real space. The study discovered that maximum uncertainty was obtained
from the downward continuation process with a value of 6 cm while the
uncertainty of the topographic density was next being 5.6 cm. Overall, a
mean shift of 13.3cm was obtained when the computed geoid was compared
with GNSS/Levelling geoid at 75 control points regularly spaced around the
study area.

Oršulić et al. (2019) affirmed that sub-centimetre accuracy geoid could
be achieved not only by refinement in computational method but also by
increasing the density (spacing) of the gravity data. The work utilized sim-
ulated data to demonstrate that improved RMSE (Root Mean Square Er-
ror) could be obtained in geoid modelling irrespective of the computational
technique with increment in gravity data spacing. Also, Goli et al. (2019)
investigated the effects of noise, spatial distribution and interpolation of
ground gravity data on uncertainties of estimated geoid heights using the
Stokes-Helmert approach. The study identified that randomly distributed
(scattered) gravity points could not yield a 1-cm geoid if the average angu-
lar distance between scattered gravity points is larger than 1′. The study
concluded that data noise of ≤ 1 mGal is the most appropriate if a 1-cm
geoid is required.

The previous studies have examined the data requirements for accurate
geoid modelling in different countries with emphasis on different geoid com-
putation methods. This paper presents a similar study in Nigeria using the
Stokes RCR technique with emphasis on achieving geoid accuracy ≤ 10 cm.
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This is achieved by determining the effects of gravity data spacing and ac-
curacy in gravimetric geoid computation across the study area.

2. Error Propagation in gravimetric geoid computation

Recall the conventional Stokes function as given in Hofmann-Wellenhof and
Moritz (2005, p. 104) in Eq. (1a):

N(ϕ,λ) =
R

4πγ

∫ ∫
S(ψ) ·Δg(ϕ′,λ′) dσ

′, (1a)

where:

S(ψ) =

{
cosec

(
ψ

2

)
− 6 sin

(
ψ

2

)
+ 1− 5 cosψ−

− 3 cosψ ln

[
sin

(
ψ

2

)
+ sin2

(
ψ

2

)]}
,

(1b)

cosψ = sinϕ sinϕ′ + cosϕ cosϕ′ cos (λ′ − λ) , (1c)

ψ = cos−1[sinϕ sinϕ′ + cosϕ cosϕ′ cos (λ′ − λ)
]
, inverse cosine formula

ϕ = latitude of computation point,
ϕ′ = latitude of dummy point,
λ = longitude of computation point,
λ′ = longitude of dummy point,
R = mean radius of the Earth.

Direct substitution of (1b) into (1a) yields Eq. (1d):
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(1d)

In order to propagate for the error in the gravimetric geoid computation
based on the quality of the gravity anomalies, Eq. (1d) could be re-written
as Eq. (2), such that, Eq. (3) is the partial derivatives of the computed geoid
with respect to the accuracy of the gravity anomaly:
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By the Law of propagation of errors, the covariance matrix of adjusted
parameters is as given in Eq. (4):∑

zz = A σ0
2AT , (4)

where:
A = the Jacobian matrix of partials with respect to the gravity anomaly

Eq. (3)),∑
zz = co-variance matrix

σ0
2 = variance of observations.

Eq. (3) shows the contribution of the gravity data quality to the com-
puted geoid if there is no noise in the observed gravity data. However, if
the gravity data is not errorless as often is the case, the observational noise
is included in the computation of the co-variance matrix by the inclusion of
variance of observations into Eq. (4). Therefore, the standard deviation of
the computed gravimetric geoid is as shown in Eq. (5):

σN =

√(
δN

δΔg
· σΔg

)2

, (5)

σN = standard deviation of gravimetric geoid,
σΔg = standard error of the observed gravity data.

Eq. (5) is used to propagate for the effects of gravity data noise on com-
puted gravimetric geoid by propagating for errors in the resulting gravimet-
ric geoid at various levels of observational accuracy of the given data (σΔg).
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3. Study area

This study was conducted using Nigeria as the test region. Nigeria has an
approximate area of 923,768 km2 and a perimeter of about 4,000 km. The
longest east-west line measures about 1,200 km (from Kebbi state to Bornu
state) and the longest north-southern stretch is about 1150 km (from Akwa
Ibom state to Bornu state). The longest diagonal line stretches from Lagos
State to Bornu State with a linear distance of about 1,400 km. Given the
vast spatial extent, Nigeria is a highly undulating country that is composed
both of planes, low-lands, deltas, plateaus and hills as shown in the digital
terrain model of the country (Fig. 1). The highest trigonometric station in
the country (N10) is located in Jos plateau with an orthometric height of
1396.075 m above MSL. An administrative map of the study area is shown
in Fig. 2.

Fig. 1. Digital Elevation Model illustrating topography of the study area.
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4. Materials

The gravity data used for this study were obtained by merging 1815 Free
Air (FA) anomaly gravity data points randomly distributed across the study
area with EGM2008-derived FA anomaly. In order to ensure consistency be-
tween both datasets, corrections for omission error, commission error and
atmospheric effects as recommended in earlier literature (Yahaya and Az-
zab, 2019; Bomfim et al., 2013; Ellmann et al., 2009) were applied to the
EGM2008 FA anomalies before merging them with the 1815 nation-wide
adjusted gravity stations. The 1815 FA anomaly points comprise of 62
points of the National Gravity Standardization Network (NGSN), 3 Inter-
national Gravity Standardization Network (IGSN) stations (Osazuwa, 1995)
and 1750 stations observed by multiple gravity missions across the country
but had been uniformly adjusted by ordinary least squares (Odumosu, 2019).

Fig. 2. Administrative map of Nigeria (study area) showing the spatial distribution of
terrestrial gravity stations and merged FA anomaly variation.
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Table 2. Comparison of predicted gravity data at specified data interval with terrestrial
data.

S/N Data interval No. of predicted Max Min
Terrestrial data

[minutes] gravity points [mGal] [mGal] Max Min
[mGal] [mGal]

1 3′× 3′ 52426 146.83 −98.06

157.26 −47.54
2 5′× 5′ 15568 142.04 −98.53

3 10′× 10′ 4545 129.85 −93.42

4 20′× 20′ 1230 110.93 −86.10

After merging the terrestrial and EGM2008-derived FA anomalies, least
squares collocation was used to determine gravity anomaly values at stip-
ulated data intervals. Four data intervals were used in this study. Based
on the utilized intervals, gravity values were predicted as shown in Table 2.
Graphical description of the spatial pattern of the obtained FA anomaly
after merging the datasets is shown in Fig. 2 with the 1815 gravity data
superimposed on it.

5. Methods

This experimental study was conducted by using the steps presented in
Fig. 3. The steps were sequentially followed in order to limit computational
errors in the determined geoid. The study methodology can generally be
summarized as follows:

a) The effects of data spacing was determined by a comparative assessment
of computation results obtained by using gravity data at four (4) user
determined intervals while,

b) The effect of data noise was numerically simulated by error propagation
analysis.

The data reduction was carried out using the complete Bouguer reduction
method as presented in Eqs. (6)–(7). The complete Bouguer reduction was
chosen because it produces smooth gravity anomalies that are easy and
accurate to predict (Bajracharya, 2003):

ΔgFA = gobs − γ − δgB + TC , (6)
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Fig. 3. Work flow diagram describing the RCR method as implemented in this study.

Δgres = ΔgFA −ΔgGGM , (7)

where:
Δgres = residual FA gravity anomaly,
Δgbouguer = free air anomaly,
gobs = observed gravity values,
γ = normal gravity,
δgB = complete Bouguer reduction (free air correction + Bouguer correc-

tion),
TC = terrain correction.
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In order to satisfy the theoretical assumption that all masses must be
compressed beneath the geoid and given the high topographic undulation
across the study area, a terrain correction (TC ) was applied to the complete
Bouguer reduction. The Hammer chart method of a terrain correction was
used with inner and outer zone distances of 1 km and 166 km, respectively.
This was done using the QCtool software with topographic data obtained
from a 1 arc seconds SRTM – DTM of the study area.

As a result of the very sparse gravity data, the data voids were filled using
EGM2008-derived FA anomalies. In order to ensure consistency between the
EGM2008 anomalies and the terrestrial anomalies, corrections for omission
error, commission error and atmospheric effects were applied to the EGM
data before merging them, Although other data merging methods such as
the padding and spectral method exist, this data merger procedure is pre-
ferred based on recommendations from some earlier literature (Yahaya and
Azzab, 2019; Elmann et al., 2009).

The long wavelength contribution on the gravity anomaly was then re-
moved from the merged gravity anomaly. The long wavelength contributions
were computed by evaluating Eq. (10) using the EGM96 (Earth’s Gravity
Model of 1996) parameters. The choice of EGM96 model was based on pre-
liminary comparative analysis of the suitability of EGM96 and EGM2008
over Nigeria (Odumosu, 2019):

ΔgGGM =
GM

R2

m∑
n=1

(
a

R

)2
(n − 1)×

×
n∑

m=0

[Cnm cos (mλ) + Snm sin (mλ)]Pnm(cos (θ)) ,

(8)

ΔgGGM = long wavelength portion of the gravity anomaly,
GM = gravity-mass constant of Earth gravity model (EGM96) 1996,
a = equatorial scale factor of EGM96,
n = degree of harmonic expansion,
m = order of harmonic expansion of EGM96,
λ = longitude of computation station,
R = mean radius of the Earth,
Pnm = fully-normalized Legendre function,
Cnm, Snm = fully-normalised coefficients of EGM96 to degree and order 360.
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The least squares collocation (LSC) approach was used for residual anom-
aly prediction across the study area at the required interval. Given the pre-
dicted gravity values at desired intervals as shown in Table 2, residual geoid
was repetitively computed using Eq. (1d). After computing the residual
geoid, the indirect effect of topography on the geoid is computed as well
as the long wavelength effects of the geoid using Eqs. (9) and (10), respec-
tively. These are then restored to the residual geoid to give the final geoid
as mathematically expressed in Eq. (11):

Nind (P ) =
−πGρH2

P

γ
− GρR2

6γ

∫
σ

H3 −H3
P

l3
dσ, (9)

where:
Nind = primary indirect topographic effect,
G = gravitational constant,
ρ = topographic density,
H2

P = orthometric height at station P .
R = radius of the Earth,
dσ = element of volume,
l = distance between point on the Earth surface and the geoid,
γ = normal gravity.

NGGM =
GM

rγ

m∑
n=2

(
a

r

)n
×

×
n∑

m=0

[
C̄nm cos (mλ) + S̄nm sin (mλ)

]
Pnm(cos (θ)) ,

(10)

where:
NGGM = long wavelength contributions to the geoid,

N = Nres +Nind +NNGG . (11)

In order to determine the effect of gravity data quality on the computed
geoid, error propagation analysis was performed using Eq. (5).

6. Results and discussion

Results obtained in this study were used to infer the effects of gravity data
spacing/interval and accuracy on gravimetric geoid computation using the
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Stokes’ RCR method.

6.1. Effect of data spacing on gravimetric geoid computation

Fig. 4 shows the gravimetric geoid model of the study area computed with
gravity data at 3′ by 3′, 5′ by 5′, 10′ by 10′ and 20′ by 20′ data interval.
Although, similar pattern is observed in the spatial characteristics of the
computed geoid at all the specified data intervals as seen in Fig. 4; signifi-
cant amount of details are lost with a decrease in spatial resolution of the
gravity data used for the geoid computation. In all cases, the largest geoid
values are noticed around the South western to the North central regions of
the country while the lowest values occur near the extreme Northern region.
The similarity in the trend suggests that irrespective of the data spacing,

Fig. 4. Geoid heights across Nigeria at (upper left) 20′× 20′, (upper right) 10′× 10′, (lower
left) 5′× 5′ and (lower right) 3′× 3′ gravity data interval.
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approximate models of a regional geoid could be obtained especially for ap-
plications that do not require high geoid accuracies (Bruton, 2000).

Fig. 5 presents a graphical assessment of the difference between the four
models which may not be obvious by visual examination. Since the 3′ by 3′

data spacing is the finest data grid available, the result obtained from it is
taken as the reference geoid from which the other models were subtracted.
This was achieved by converting the computed geoid values into raster maps
as shown in Fig. 4 using the Quantum GIS software. Thereafter, the raster
calculator was used to perform the spatial algebraic operation as seen in
Fig. 5.

Assessment of the spatial pattern of the differences in the geoid height
as shown in Fig. 5 indicates that the differences are randomly distributed.
Further to this, comparison of these differences with the topography of the

Fig. 5. Geoidal differences between model obtained from 3′× 3′ data interval and (upper
left) 5′× 5′, (upper right) 10′× 10′ and (lower left) 20′× 20′ gravity data interval.
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study area (Fig. 1) shows that the large differences are seen in mountainous
regions as the spatial interval increases from 5′× 5′ to 20′× 20′. This result
conforms to the findings of Oršulić et al. (2019), which recommends denser
grids in high elevation areas.

Similarly, it is observed that the range of differences increases as the
data interval used in computation increases from 5′× 5′ to 20′× 20′. The
pie charts shown in Fig. 6 indicate that as the spatial resolution of gravity
data get poorer, the error in geoid height obtained increases. This is further
ascertained by comparing the computed geoid models with GNSS-Levelling
data at 27 stations across Nigeria (Fig. 7). The RMSE obtained by com-
paring gravimetric results at the various intervals with GNSS-Levelling data
indicate that geoid accuracy decreases as data resolution reduces (Table 3).
This is inferred as the RMSE increases from 15.6 cm when gravity data

Fig. 6. Range and spread of differences in geoid height computed from data at 3′× 3′ and
(upper left) 5′× 5′, (upper right) 10′× 10′, (lower left) 20′× 20′ interval.
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Fig. 7. Overlay plot of GNSS-Levelling values and gravimetric geoid values at GNSS-
Levelling stations.

Table 3. Statistics of pre-fit difference between gravimetric geoid and GNSS/Levelling
geoid.

Statistics 3′3′×× 3′3′ 5′5′×× 5′5′ 10′10′×× 10′10′ 20′20′×× 20′20′

Max diff 1.684 1.614 1.630 1.644

Check of gravimetric geoid at Min diff −1.598 −2.994 −5.555 −5.223
27 GNSS/Leveling stations [m] Std dev 0.797 0.981 1.316 1.356

RMSE 0.156 0.194 0.267 0.281

with 3′× 3′ grid interval is used to 28.1cm when data with 20′× 20′ interval is
used for the computation. This result also conforms to earlier studies which
infer that the accuracy of geoid models increases as data spacing/interval
becomes denser and regular (Goli et al., 2019; Hong et al., 2009).

Furthermore, the pie charts show that as the data spacing increases, large
error-range would be observed at more locations within the study area. This
is why while 84% of the study area had differences between −37 to 14 cm
when the 5′× 5′ interval is used, 66% of the study area had differences of
similar range (−14 to 21 cm) when the 10′× 10′ interval was used.
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6.2. Effect of data quality on gravimetric geoid computation

The results presented in section 6.1 are based on the assumption that there
are no errors in the gravity data used for the gravimetric geoid compu-
tation. However, since it is practically impossible to achieve an errorless
gravity observation, the effects of the gravimetric data quality on the com-
puted geoid is herein investigated. This is done by using the theory of
random error propagation to numerically simulate the effects of data noise
on the accuracy of the computed geoid. At each data interval, error prop-
agation analysis was done based on assumptions that the gravity data had
the standard errors of 0.1 mGal, 0.5 mGal, 1mGal and 5mGal. The results
obtained (Tables 4a-d) indicate that the effect of data noise on computed
geoid increases as data spacing also increases.

Table 4a shows that data noise of ±0.1mGal contributes less than 0.1cm
error in gravimetric geoid irrespective of the data spacing. Similarly, Ta-
ble 4b shows that the maximum error contribution from data noise of
0.5 mGal is ±0.7 cm, ±1.5 cm, ±2.3 cm and ±2.3 cm at 3′, 5′, 10′ and
20′ data spacing, respectively. It also tells that the minimum error contri-
bution from data noise would range from ±0.1 mm at 3′× 3′ data interval
to ±1 mm at 20′× 20′ data interval. On the average, the error contribution
of 0.5 mGal data noise range from ±1 mm to ±3 cm. From Table 4d, it is
seen that the maximum error obtainable in gravimetric geoid computation
as a result of data noise of 5 mGal are 72 cm, 1.59 m, 2.34 m and 2.34 m at
3′, 5′, 10′ and 20′ data spacing respectively within the study area.

Generally, the accuracy obtainable in the gravimetric geoid reduces as
the data noise increases from 0.1mGal to 5mGal. It should also be observed
that the effect of data noise increases when data spacing is large. This trend
of a decreasing accuracy in computed gravimetric geoid with decrease in ob-
servational accuracy and spatial resolution validates earlier studies that a
dense gravity network is essential for an accurate gravimetric geoid mod-
elling (Oršulić et al., 2019). Table 5 presents a summary of the average
error contribution of data noise on computed gravimetric geoid based on
the simulated observational accuracies at the investigated data intervals.

From the summary of the results of the error propagation analysis as
presented in Table 5, data noise of 0.1–5 mGal are permissible for deci-
metre-level (≤ 10 cm) accuracy in geoid modelling provided that the data
spacing does not exceed 3′× 3′. However, with a spatial resolution of 5′× 5′,
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Table 4a. Statistics of geoid accuracy (σN) assuming observational standard deviation is
0.1 mGal.

Simulation
Statistics 3′3′×× 3′3′ 5′5′×× 5′5′ 10′10′×× 10′10′ 20′20′×× 20′20′

assumptions

gravity obs accuracy
min [m] 0.0001 0.0001 0.0001 0.0001

= 0.1 mGal
max [m] 0.0003 0.0006 0.0008 0.0009

average [m] 0.0001 0.0001 0.0002 0.0002

Table 4b. Statistics of geoid accuracy (σN ) assuming observational standard deviation is
0.5 mGal.

Simulation
Statistics 3′3′×× 3′3′ 5′5′×× 5′5′ 10′10′×× 10′10′ 20′20′×× 20′20′

assumptions

gravity obs accuracy
min [m] 0.0001 0.0002 0.0004 0.0005

= 0.5 mGal
max [m] 0.0073 0.0158 0.0234 0.0234

average [m] 0.0006 0.0017 0.0290 0.0300

Table 4c. Statistics of geoid accuracy (σN ) assuming observational standard deviation is
1 mGal.

Simulation
Statistics 3′3′×× 3′3′ 5′5′×× 5′5′ 10′10′×× 10′10′ 20′20′×× 20′20′

assumptions

gravity obs accuracy
min [m] 0.0003 0.0007 0.0017 0.0019

= 1 mGal
max [m] 0.0292 0.0634 0.0937 0.0937

average [m] 0.0024 0.0067 0.0114 0.0119

Table 4d. Statistics of geoid accuracy (σN ) assuming observational standard deviation is
5 mGal.

Simulation
Statistics 3′3′×× 3′3′ 5′5′×× 5′5′ 10′10′×× 10′10′ 20′20′×× 20′20′

assumptions

gravity obs accuracy
min [m] 0.0066 0.0177 0.0417 0.0469

= 5 mGal
max [m] 0.7289 1.5849 2.3420 2.3420

average [m] 0.0604 0.1664 0.8520 0.9283

the maximum allowable data noise is 1mGal. In datasets with spatial inter-
val that exceed 10′× 10′ observational accuracies not greater than 0.1mGal
is required if decimetre-level accuracy gravimetric geoid is to be achieved.
Furthermore, comparing the values in Table 5 to the error contributions
obtained from data spacing (Fig. 6), we conclude that data spacing has
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Table 5. Average error contribution of different noise levels to computed gravimetric geoid
at investigated data intervals.

Assumed accuracy of
3′3′×× 3′3′ 5′5′×× 5′5′ 10′10′×× 10′10′ 20′20′×× 20′20′

gravity observations

0.1 [mGal] 0.0001 0.0001 0.0002 0.0002

0.5 [mGal] 0.0006 0.0017 0.0290 0.0300

1 [mGal] 0.0024 0.0067 0.0114 0.0119

5 [mGal] 0.0604 0.1664 0.8520 0.9283

greater effects on gravimetric geoid computation than data quality (Jekeli
et al., 2009; Hong et al., 2009).

Consequently, upon the significant improvement in the accuracy of the
computed gravimetric geoid with enhancement in spatial resolution and ob-
servational accuracy of the gravity data, it is suggested that 10 cm geoid
could be achieved by the Stokes RCR method within the study area pro-
vided that the gravity data has a dense spatial resolution (≤ 3′× 3′) and
observational noise of less than 5 mGal. Also, given the importance of to-
pography to geoid modelling, it should be emphasized that these accuracy
measures can only be guaranteed in areas with topographic range that do
not exceed 1,396 m above MSL as found within the study area. Hence,
in more hilly terrain, denser data spacing and better observational accu-
racy might be required for centimetre level accuracy with the Stokes RCR
method.

7. Conclusion

The gravity data requirements for decimetre-level accuracy geoid have been
evaluated in this study. This has been achieved by a combination of a com-
parative assessment of repetitive computation at user-specified resolutions
and error propagation analysis. Obtained results confirm the reliability of
the conventional Stokes RCR method to achieve decimetre-level accuracy
geoid provided that the appropriate gravity data requirements are given.
The study further affirms that a dense data grid is more crucial for an ac-
curate geoid modelling rather than data observation accuracy i.e. the effect
of the gravity data spatial resolution on the geoid accuracy is more impor-
tant than the data noise. It was also identified that high elevation areas
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require denser data grids than low elevation areas. For the test region, a
data spacing of 3′× 3′ with gravity observational errors ≤ 5mGal was found
to produce an acceptable gravimetric geoid. The study also identified that
the error contribution of data noise is lesser than that of the data spacing.
Given the difficulty in achieving high accuracy in gravity data observation
(especially on large expanse), this study recommends that a dense data in-
terval of less than 3′× 3′ should be considered for field observations. This
dense data grid would compensate for the observational errors incurred dur-
ing the field observation as long as the errors are within 5mGal. Therefore,
it is recommended that if high observational accuracy cannot be guaran-
teed, then a denser data network would be required.

The produced geoid had a pre-fit RMSE of 15.6 cm when compared with
GNSS-Levelling geoid at 27 GNSS-Levelling stations distributed well across
the country. The pre-fit RMSE is considered acceptable due to some para-
metric distortions inherent in the Nigerian height system as discussed by
Isioye et al. (2010) and Odumosu et al. (2018). Hence, achieving a pre-
fit accuracy of 15.6 cm suggests that the developed gravimetric geoid is
reliable.
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