Mathematical model for the control of infectious disease
dc.contributor.author | O. J. Peter | |
dc.contributor.author | O. B. Akinduko | |
dc.contributor.author | F. A. Oguntolu | |
dc.contributor.author | C. Y. Ishola | |
dc.date.accessioned | 2025-05-05T13:15:31Z | |
dc.date.issued | 2018-05-03 | |
dc.description.abstract | We proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population. | |
dc.identifier.citation | O. J. Peter, O. B. Akinduko, F. A. Oguntolu & C. Y. Ishola. (2018): Mathematical Model for the Control of Infectious Disease. Journal of Applied Sciences and Environmental Management. (22)4 :447-451 http://dx.doi.org/10.4314/jasem.v22i4.1 | |
dc.identifier.doi | 10.4314/jasem.v22i4.1 | |
dc.identifier.issn | 1119-8362 | |
dc.identifier.uri | http://repository.futminna.edu.ng:4000/handle/123456789/1874 | |
dc.language.iso | en | |
dc.publisher | African Journals Online (AJOL) | |
dc.relation.ispartof | Journal of Applied Sciences and Environmental Management | |
dc.subject | Infectious Disease | |
dc.subject | Equilibrium States | |
dc.subject | Basic Reproduction Number | |
dc.title | Mathematical model for the control of infectious disease | |
dc.type | journal-article | |
oaire.citation.issue | 4 | |
oaire.citation.volume | 22 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- O. J. Peter, et. al., Mathematical Model for the Control of Infectious Disease.pdf
- Size:
- 219.54 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: