Mathematical model for the control of infectious disease

dc.contributor.authorO. J. Peter
dc.contributor.authorO. B. Akinduko
dc.contributor.authorF. A. Oguntolu
dc.contributor.authorC. Y. Ishola
dc.date.accessioned2025-05-05T13:15:31Z
dc.date.issued2018-05-03
dc.description.abstractWe proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population.
dc.identifier.citationO. J. Peter, O. B. Akinduko, F. A. Oguntolu & C. Y. Ishola. (2018): Mathematical Model for the Control of Infectious Disease. Journal of Applied Sciences and Environmental Management. (22)4 :447-451 http://dx.doi.org/10.4314/jasem.v22i4.1
dc.identifier.doi10.4314/jasem.v22i4.1
dc.identifier.issn1119-8362
dc.identifier.urihttp://repository.futminna.edu.ng:4000/handle/123456789/1874
dc.language.isoen
dc.publisherAfrican Journals Online (AJOL)
dc.relation.ispartofJournal of Applied Sciences and Environmental Management
dc.subjectInfectious Disease
dc.subjectEquilibrium States
dc.subjectBasic Reproduction Number
dc.titleMathematical model for the control of infectious disease
dc.typejournal-article
oaire.citation.issue4
oaire.citation.volume22

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
O. J. Peter, et. al., Mathematical Model for the Control of Infectious Disease.pdf
Size:
219.54 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: