THE ORDER AND ERROR CONSTANT OF A RUNGE-KUTTA TYPE METHOD FOR THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEM

dc.contributor.authorMuhammad R
dc.date.accessioned2025-04-13T01:22:24Z
dc.date.issued2020-06
dc.descriptionFUDMA Journal of Sciences (FJS) https://d oi.org/10.33003/fjs-2020-0402-256
dc.description.abstractIn this paper, we examine in details how to obtain the order, error constant, consistency and convergence of a Runge-Kutta Type method (RKTM) when the step number 𝑘 = 2. Analysis of the order, error constant, consistency and convergence will help in determining an effective Runge- Kutta Method (RKM) to use. Due to the loss of linearity in Runge –Kutta Methods and the fact that the general Runge –Kutta Method makes no mention of the differential equation makes it impossible to define the order of the method independently of the differential equation.
dc.identifier.issn2616-1370
dc.identifier.issn2645 - 2944
dc.identifier.urihttp://repository.futminna.edu.ng:4000/handle/123456789/597
dc.language.isoen
dc.publisherFederal University Dutsin MA Journal of Sciences (FJS)
dc.subjectConvergence
dc.subjectinitial value problems
dc.subjectstep number
dc.subjectdifferential equation
dc.titleTHE ORDER AND ERROR CONSTANT OF A RUNGE-KUTTA TYPE METHOD FOR THE NUMERICAL SOLUTION OF INITIAL VALUE PROBLEM
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
R MUHD FJS 2020.pdf
Size:
735.7 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections