Properties of Some Distributions Using Chebyshev’s Inequality Approach

dc.contributor.authorK. Rauf
dc.contributor.authorF. A. Oguntolu
dc.contributor.authorA. Isah
dc.contributor.authorU. Y. Abubakar
dc.date.accessioned2025-05-14T17:29:56Z
dc.date.issued2014-08
dc.description.abstractIn this article, we give a simpler proof of Chebyshev inequality and use the result to obtain some properties of Binomial, Poisson and Geometric distributions. Furthermore, analysis of the results has shown that Chebyshev inequality is effective for determining convergence bound of the distributions. Some recent sharpened results are complemented.2010 Mathematics Subject Classification, 41A50.
dc.identifier.citationK. Rauf, F. A. Oguntolu, A. Isah, U. Y. Abubakar & L. A. Nafiu. (2014): Properties of Some Distributions Using Chebyshev’s Inequality Approach. Journal of Science, Technology, Mathematics and Education (JOSTMED) 10(3), 79-89.
dc.identifier.urihttp://repository.futminna.edu.ng:4000/handle/123456789/1972
dc.language.isoen
dc.publisherJournal of Science, Technology, Mathematics and Education
dc.subjectChebyshev Inequality
dc.subjectProbability Distributions
dc.subjectConvergence Bound
dc.subjectMeasure Space and Sharp
dc.titleProperties of Some Distributions Using Chebyshev’s Inequality Approach
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
K. Rauf, et. al., Properties of Some Distributions Using Chebyshev’s Inequality Approach.pdf
Size:
130.31 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: