Conference Papers
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2
Conference Papers
Browse
4 results
Search Results
Item Effect of Partial Replacement of Fine Aggregate with Crumb Rubber in Concrete Made with Bida Gravel(4th International Engineering Conference (IEC 2022), 2023-10-22) Mohammed T. A.; Abbas B. A; YUSUF, Abdulazeez; Oritola S. F.The availability of sand at cheap rates for use as fine aggregate in concrete production is ever becoming unfeasible and this, in addition to environmental sustainability, places a huge need to search for an alternative source of fine aggregate materials. Crumb rubber made from waste automobile tires, can be used to complement sand as fine aggregate in concrete production. This study seeks to investigate the effect of partially replacing fine aggregate with crumb rubber in concrete made with Bida natural stones. Crumb rubber gotten from waste automobile tires was used to replace fine aggregate in the concrete at 0%, 5%, 10%, 15%, 20%, and 25%. The particle size distribution, workability, and compressive strength of these concrete specimens were extensively studied. Curing was done for the period of 7, 14, and 21 days. A mix ratio of 1: 1.65: 2.42 was used for cement content, fine aggregates, and Bida natural stones, respectively, at a water-to-cement ratio of 0.45. Results from the workability test performed showed that a higher percentage replacement of crumb rubber gives a corresponding decrease in the workability of the concrete. In addition, the results obtained from each concrete mix for all cases of curing ages revealed that flexural and compressive strengths decrease with an increasing percentage replacement of crumb rubber in the concrete mix. The flexural strength of the concrete mix was observed to be 6.08N/mm2 at 5% crumb rubber replacement. While at 25% crumb rubber replacement, a flexural strength of 3.08N/mm2 was observed. Similarly, the compressive strength of the concrete mix at 5% crumb rubber replacement was noticed to be 20.88N/mm2 and 11.89N/mm2 at 25% crumb rubber replacement. This implies that concrete made using crumb rubber as a partial replacement for fine aggregate can be used for structural applications such as in the construction of reinforced concrete slabs, beams, columns, and foundations where high strength is not required.Item Partial Replacement of Sand with Sawdust in Concrete Production(3rd Biennial Engineering Conference, Federal University of Technology, Minna, May, 2013, 2013) Abdullahi, A.; Abubakar, Mahmud; Afolayan, A.The rising costs of building construction in developing countries have been a source of concern to government and private developers. This study investigated the use of sawdust as partial replacement for fine aggregates in concrete production. Sawdust was used to replace fine aggregates from 0% to 50% in steps of 10%. Concrete cubes measuring 150 x 150 x 150mm were cast and their compressive strengths evaluated at 7, 14, 21 and 28 days. Increase in percentage of sawdust in concrete cubes led to a corresponding reduction in compressive strength values. From the results, the optimum sawdust content was obtained at 10% and its corresponding compressive strength at 28 days is 7.41 N/mm2 which falls within the characteristic strength of plain concrete (7 – 10 N/mm2). This concrete cannot be used for structural applications.Item Modelling the Slump, Compressive Strength and Density of Concrete Containing Coconut Shell as Partial Replacement for Crushed Granite(USEP: Journal of Research Information in Civil Engineering, 2017) Abdullahi, M.; Aminulai, H. O.; Alhaji, B.; Abubakar, MahmudIn this research, crushed coconut shell was used to partially replace crushed granite as coarse aggregate in the production of concrete. Tests were conducted on the physical properties of crushed coconut shell and crushed granite. Thirty one random mixes were generated using Mini Tab 14 statistical software package. A total of 108 cubes were cast and cured for 28 days and then crushed to determine their compressive strength. The results were used to develop empirical models for the slump, compressive strength and density of the concrete. The concrete developed in this work has slump ranging from 0 – 135 mm, compressive strength ranging from 8.94 N/mm2 – 27.11 N/mm2 and density ranging from 1757.04 kg/m3 to 2198.52 kg/m3 respectively. This implies that concrete made using coconut shell as partial replacement for crushed granite can be used for structural application such as in the construction of reinforced concrete slabs, beams, columns and foundations. Polynomial model was developed with the capability of explaining the under-laying relationship of 93.8%, 83.6% and 72.3% for slump, compressive strength and density respectively.Item Optimization of Cement-Based Mortar Containing Oily Sludge Ash byResponse Surface Methodology(Materials, MDPI, 2021) Kankia, Mubarak Usman; Baloo, Lavania; Danlami, Nasiru; Samahani, Wan Nurliyana; Mohammed, Bashar S.; Haruna, Sani; Jagaba, Ahmad Hussaini; Abubakar, Mahmud; Effa, Affiana Ishak; Khalid, Sayed; Zawawi, Noor Amila Bt WanIn the industries of petroleum extraction, a large volume of oily sludge is being generated. This waste is usually considered difficult to dispose of, causing environmental and economic issues. This study presented the novel experimental method of manufacturing mortar used in civil construction by cement and oily sludge ash (OSA). The defined method was described with a logical experimental study conducted to examine a feasible manufacturing method for casting cement-based mortars by partially replacing cement with OSA. Replacement concentrations for OSA ranged from 0 to 20 percent by cement weight, while the water-to-cement (w/c) ratio was varied from 0.4 to 0.8, and the amount of sand was kept constant. The strengths and absorption rate of the mortar were monitored for 28 days. The OSA contains a crystalline structure with packs of angular grains. Because of OSA in the cement-based mortar mixtures and water-to-cement ratios, the mechanical strength was improved significantly. However, the water absorption trend increased linearly. Using variance analysis, the influence of OSA and w/c ratio on the behavior of mortar was acquired. The developed models were significant for all p-value reactions of <5%. Numerical optimization results showed that the best mixture can be obtained by replacing 8.19 percent cement with OSA and 0.52 as a ratio of w/c.