Conference Papers
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2
Conference Papers
Browse
2 results
Search Results
Item Modelling and optimal control analysis of Lassa fever disease(Elsevier BV, 2020) Olumuyiwa James Peter; Adesoye Idowu Abioye; Festus Abiodun Oguntolu; Titilayo Abimbola Owolabi; Michael Oyelami Ajisope; Abdullaziz Glabe Zakari; Timilehin Gideon ShabaLassa fever is a severe hemorrhagic viral infection whose agents belong to Mastomys natelensis. Generally, humans contract Lassa virus through exposure to food or household products that have been contaminated with the excreta of the infected rodents. Lassa fever is endemic in some West African countries including Nigeria. A basic model is proposed to examine the transmission of the disease. The proposed model is subjected to qualitative study via the theory of differential equations and the threshold quantity that denotes the dominant eigenvalue was derived using next-generation matrix approach. The basic model is further extended to an optimal control model with four controls namely, the fumigation of the environment with pesticide, the use of condom to prevent human to human transmission during sexual activities, early treatment and the use of indoor residual spray. The theory of optimal control was explored to establish the necessary conditions for curtailing the transmission of Lassa fever. Numerical simulation was conducted and the results showed that if the Lassa fever transmission and spread were to be reduced significantly in the endemic region, all the control measures must be taken with all seriousness.Item Homotopy Perturbation Analysis of the Spread and Control of Lassa Fever(Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Tsado, D.; Oguntolu, F. A.; Somma, Samuel AbuLassa fever, a viral infection transmitted by rodents, has emerged as a significant global health concern in recent times. It continues to garner significant attention daily basis owing to its rapid transmission and deadly nature. In this study, the Homotopy Perturbation Analysis was conducted to examine the spread and control of Lassa fever. The human population was categorized into susceptible, exposed, infected, and recovered compartments, while the rodent population was divided into susceptible and infected recovered compartments. By applying the Homotopy Perturbation Analysis to the nonlinear differential equations associated with these compartments, we were able to obtain the analytical solution for the spread and control of Lassa fever. The nonlinear differential equations were integrated into the Homotopy Perturbation framework and solved to form a power series solution. Finally, the final approximate solutions were obtained and simulation results were generated from the general solution graphically.