Conference Papers

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2

Conference Papers

Browse

Search Results

Now showing 1 - 10 of 20
  • Item
    Design of A Composite Traffic Control System at Kpakungu Roundabout Minna, Niger State.
    (Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2016-08-10) Kolo S.S; Adeleke O. O; Ayeni S. J; Akinmade T; Abubakar M.; YUSUF, Abdulazeez
    A composite traffic control method is proposed to control traffic and ease congestion especially during peak periods at Kpakungu roundabout in Minna, Niger state. Reconnaissance survey of the roundabout was carried out to note predominant directions of traffic flow from each approach to the roundabout; manual counting of traffic for five working days was done between 7:00 am to 12 noon and 3:00 – 7:00 pm daily. The result of the survey shows that congestion occurs at the roundabout between 7:45 - 9:30 am and between 5:00 - 6:30 pm every day. Results also show that the peak hourly traffic flow rate occurs between 8:00 and 9:00 am, and 5:00 to 6:00 pm daily. The result of the traffic count was then forecasted for 2-years using data on annual vehicle registration in Minna for 2011 to 2015 obtained from the Niger State Board of Internal Revenue Service. The Webster method of signal timing was used to design traffic signals that will optimally allocate right of way time to conflicting traffic streams. A 5–phase signalization of 90 and 97 seconds cycle lengths were proposed for morning and evening peak periods, respectively.
  • Item
    Statistical Model for Predicting Slump and Strength of Concrete Containing Date Seeds
    (Covenant Journal of Engineering Technology (CJET), 2021-06-10) YUSUF, Abdulazeez; Jamal, J. O.; Abubakar, M.; Aminulai, H. O.
    Incorporating agro-based waste in concrete can reduce environmental pollution and lead to preserving the ecosystem. In order to reduce trial and error in achieving desired slump and compressive strength of concrete containing Date Seed (DS), this paper examines the slump and compressive strength of concrete using date seeds as a partial replacement for crushed granite. Preliminary tests were conducted on the aggregates to ascertain their suitability for concrete production. Concrete with DS-crushed granite ratios of 0:100, 5:95, 10:90, 15:85, and 20:80 were prepared using a mix ratio of 1:2:4 and a water-cement ratio of 0.5. Slump loss was used to estimate the workability of the fresh concrete. The freshly prepared concrete was cast in 150 x 150 x 150 mm and the compressive strength was determined after curing by full immersion in water for 7, 14, 21 and 28 days. Results showed that the slump of concrete increased with an increase in the content of date seed. The compressive strength was inversely proportional to the date seed content with a DS crushed granite ratio of 20:80 recording the lowest compressive strength (20N/mm2). Linear regression models for slump and compressive strength were developed and found to be sufficient in explaining the experimental data based on a Mean Square Error (MSE) of 0.37 and 0.029 and R2 of 88% and 99% obtained for slump and compressive strength respectively. The study has concluded that DS can be used as a partial replacement for crushed granite in concrete and a linear model is sufficient in predicting the slump and strength of concrete containing date seeds.
  • Item
    Mechanical Properties of Concrete using Bida Natural Aggregate as Coarse Aggregates
    (Journal of Research Information in Civil Engineering, 2020-10-10) YUSUF, Abdulazeez; M. Abdullahi; S. Sadiku; J. I. Aguwa
    Significant volume of concrete is occupied by aggregates. Most of these are obtained from rock fragment which depletes natural resources and thereby distorting the ecosystem. The use of alternative aggregate has the potential of reducing this menace. This paper investigates the slump and strength properties of concrete made by varying Bida Natural Aggregate to total aggregate ratio (BNA/TA). Nine different mixes were prepared for three Water to Cement (W/C) ratios and three BNA/TA ratios while Total Aggregate to Cement ratio (TA/C) was kept constant. Properties of the aggregates were determined and found to be satisfactory for concrete production. Three 150x150x150 mm concrete cubes, three 100x100x500 mm concrete prisms and three 100x200 mm concrete cylinders were produced for W/C of 0.4, 0.5 and 0.6 and BNA/TA of 0.55, 0.6 and 0.65. The compressive strength, flexural strength and splitting tensile strength of the specimens were determined at 28 days curing duration. Test results indicates that the higher the BNA /TA content, the lower the slump of concrete. A combination of BNA/TA of 0.55, W/C of 0.4 and TA/C ratio of 3 gave maximum compressive, flexural and splitting tensile strength of 44.30 N/mm2, 7.60 N/mm2 and 3.42 N/mm2 respectively. It was concluded that BNA can be used in place of crushed granite in concrete production.
  • Item
    Analysis of Statically Determinate Trusses using Exact Method (Joint Resolution Method) and Matrix Stiffness Method
    (USEP: Journal of Research Information in Civil Engineering, 2017-10-10) A. Abdullah; I. T. Yusuf; M. Abubakar; H. O. Aminulai; YUSUF, Abdulazeez; B. Alhaji
    Matrix Stiffness Method (MSM) as a tool for static analysis of structures is premised on the principle of Finite Element Method (FEM), which in itself is a numerical/approximate method capable of giving only approximate results. However, Joint Resolution Method (JRM) is one of the most popular classical/exact methods of static analysis capable of giving exact results. This paper presents an analysis of a statically determinate 2-D truss using Exact/Joint Resolution Method (JRM) and Matric Stiffness Method (MSM) to ascertain the validity of the latter against the former. In the JRM, the support reactions and internal member forces were obtained from considerations of the equilibrium conditions of the entire truss and isolated joints respectively. On the other hand, a computer program was written in MATLAB 7.8.0 (R2009a) based on the principles of MSM for ease of computation and increased accuracy to solve for member forces and reactions of the same truss. The element properties were obtained and employed to calculate the element stiffness matrices, these were then assembled into the global stiffness matrix, from which the unknown displacements, member forces and support reactions were calculated. The results obtained from using both JRM and MSM were found to be exactly the same or very close, with percentage errors ranging between 0% and 3%. Hence MSM results as compared to JRM have 97% accuracy and above, and can therefore be relied upon.
  • Item
    Stabilization characteristics of cemented lateritic soil produced with selected cement types
    (Elsevier, 2025-01-10) A.A. Amadi; S.S. Kolo; YUSUF, Abdulazeez; F.E. Eze; U. Salih
    It is recognized that different cements have different properties and stabilization effectiveness for different ap plications. The challenge of using the right type of cement should be a concern for practitioners in civil engi neering construction. In this study, an experimental testing programme was conducted to evaluate and compare the stabilizing effects of CEM I 42.5 N, CEM II/B-L 42.5 N and CEM III/A 42.5 N types of cement on some physical and mechanical properties of lateritic soil. Laboratory tests performed on soil mixtures containing the selected cements added to constitute 0, 3, 6, 9 and 12 % of the dry weight of the composite materials include the con sistency and compaction tests determined on the basis of fresh mixtures. In addition, unconfined compressive strength (UCS) test on specimens compacted at optimum moisture conditions with the British Standard Light (BSL) compaction effort and cured for 7, 28 and 90 days was performed. In equal proportions, soil mixtures prepared with the different types of cements yielded comparable results in terms of reducing the plasticity index (PI) from values as high as 60 % in untreated state to 5.05 %, 7.05 % and 8.2 % respectively for CEM I, CEM II and CEM III at 12 % cement content. Addition of cement also increased both the maximum dry unit weight (γ dmax ) and optimummoisture content (OMC) of the soil with CEM I cement having the greatest effect while CEM III cement affected the γ dmax γ dmax 3 =1.95 kN/m of the soil the least. For example, when compacted with BSH effort, CEM I achieved 3 and OMC =25 %,while for CEM III, γ γ dmax 3 of 1.53 kN/m dmax =1.63 kN/m and OMC =22.6 % compared to and OMC of 21.1 % for the untreated soil. Regardless of the cement type, there was an overall improvement in the strength properties of the lateritic soil represented by a range of 11– 14 times for UCS and31-62folds for E 50 at 12 %cementafter 90 days curing duration in comparison with the untreated soil. While strength gain was higher in CEM I based mixtures at early (7 day) age (1635.44, 1622.85 and 1599.55 kN/ m2 for CEM I, CEM II and CEM III respectively at 12 % cement content), CEM III provided superior strength improvement at the long term (90 day) curing period (2566.25 compared to 2444.58 and 2465.77 kN/m α 2 respectively for CEM I and CEM II at 12 % cement content). Using the variance analysis (ANOVA) at a signifi cance level ( ) of 0.05, the influence of cement type was statistically confirmed for the liquid limit, optimum moisture content and UCS at 28 and 90 days curing ages.
  • Item
    Strength Properties of Concrete Using Terrazzo Waste as Partial Replacement for Cement
    (Epistemics in Science, Engineering and Technology, 2020-04-10) YUSUF, Abdulazeez; H. O. Aminulai; B. E. Mfon
    Cement is regarded as the most expensive concrete ingredient. Reducing the quantity of cement used in concrete with Terrazzo Waste (TW), will reduce the cost of concrete and solve disposal and environmental challenges posed by TW. The effect of partial replacement of cement with TW in concrete was studied. The specific gravity, sieve analysis, water absorption, bulk density and moisture content tests were carried out on the aggregates. A terrazzo waste replacement of 0%, 10%, 20%, 30%, 40% and 50% by weight of cement was used to cast 150 x 150 x 150 mm concrete cubes as well as 500 x 100 x 100 mm concrete prisms. A mix ratio of 1:1.8:2.51 designed for an M30 concrete with water-cement ratio of 0.50 was used for all mixes. The weight of concrete increased with corresponding increase in the content of TW. Compressive and flexural strength tests were conducted on thirty-six (36) cubes and thirty-six (36) prisms after curing by full immersion for 7 and 28 days. The values of compressive strength ranged between 19.88 N/mm² to 37.63 N/m² while the flexural strength obtained range between 3.12 N/mm² and 4.52 N/mm² at 28days of curing. Different percentage replacement of TW satisfied different concrete grade requirement for structural design except for 50% replacement which recorded compressive strength of 19.88 N/mm². An optimum replacement level of %10 was recorded and the concrete is applicable for structural elements in buildings. Second order polynomial equations were developed for predicting compressive and flexural strength of concrete containing TW. Terrazzo waste was therefore recommended for use as a partial replacement for cement in concrete production.
  • Item
    DEVELOPMENT OF AN ANDROID BASED MOBILE APPLICATION FOR THE DESIGN AND DETAILING OF ISOLATED PAD FOUNDATIONS ACCORDING TO EUROCODE 2
    (i-manager’s Journal o Mobile Applications & Technologies, 2019-01-10) YUSUF, Abdulazeez; H. O. AMINULAI; A. ISIAKA; A. ABDULLAHI; M. ABUBAKAR; T. A. ALAYANDE
    In a building construction project, it is the responsibility of the structural engineer to come up with a complete design of all structural elements. When this is done manually it is tasking, time consuming, and produces errors with inconsistent results. However, the design can be done using computer software, but this also comes with some downside; it is expensive and complex to use. Thus, this research developed an android based mobile application for the design of pad foundations to Eurocode 2 to put these challenges in check when designing pad footings. The mobile application designs isolated Axially loaded-only and Axially loaded with bending pad footing to Eurocode 2 accurately, with consistent results and in a timely manner. The application was tested using typical test parameters and results are compared to the manual computations. There was no significant difference in the steel sections provided for both methods. All checks that must be satisfactory in design were all checked and found to be satisfactory.
  • Item
    POTENTIALS OF DEKINA CASSAVA PEEL ASH IN CONCRETE PRODUCTION
    (3RD INTERNATIONAL CIVIL ENGINEERING CONFERENCE, 2024-02-28) Ismail, S. P; Kolo, D. N; YUSUF, Abdulazeez
    Basic conventional building materials like cement and aggregates are becoming increasingly expensive due to high cost incurred in their processes, production and transportation. The utilization of locally available materials such as cassava peel ash that can either reduce or replace the conventional ones is being considered. Following review paper summarizes the mechanical and durability characteristics of cassava peel ash compared with ordinary Portland cement. The cassava peel ash was obtained by calcinations of cassava peel to 7000 c temperature. The sample was investigated using XRS-FP Analysis, for evaluating the concentration of each component such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, K2O Na2O, LoI, the phase composition, mechanical and durability properties evolution. From this review is obvious that significant analytical techniques have been successfully carried out and a significant concentration of 81.14% was obtained. These analyses have shown that natural pozzolan based geopolymer has potential to be used as sustainable building materials. It was discovered that the cassava peel ash contains all the main chemical constituents of cement though in lower percentage compared with OPC which shows that it can serve as a suitable replacement if the right percentage is used. However, its durability and sulphuric acid resistance improved considerably at greater replacement of cement with cassava peel ash. The study recommends that concrete made with cassava peel ash can be used for light construction works where high strength is not major requirement but where durability is a major concern.
  • Item
    OPTIMIZATION OF COMPRESSIVE STRENGTH OF PERIWINKLE SHELL CONCRETE USING SCHEFFE’S MODEL
    (3RD INTERNATIONAL CIVIL ENGINEERING CONFERENCE, 2025-02-28) Ibrahim A; Abbas., B.A; YUSUF, Abdulazeez
    This study investigates the application of scheffe’s model in compressive strength optimization of periwinkle shell-coarse aggregate (PSCA) concrete. Physical properties of the aggregates such as specific gravity, bulk density, sieve analysis and workability of concrete were determined. Specific gravities of fine and coarse aggregates were 2.62 and 2.68 respectively, Moisture content for aggregate for fine and coarse aggregate were 7.08 and 3.03 respectively. The bulk densities were 1612.82kg/m3 and 1394.64kg/m3 respectively. From the sieve analysis test, the sand belonged to zone 2 and well graded with coefficient of gradation of 1.04. Ninety 150mm x150mm x 150mm cube specimens were produced for the compressive strength test. Model was fitted to data obtained on the compressive strength and mathematical model was developed based on Scheffe’s model. The formulated model was tested for adequacy at 95% level of confidence using t-statistic. The compressive strength of concrete was observed to decrease with increase in the percentage replacement of periwinkle shells (PS). The reduced value of the compressive strength may be due to lower specific gravity, water absorption capacity value of periwinkle shell compared to that of crushed granite. The blending of the two materials caused a reduction in strength value of the end product since specific gravity is strength related. The reduced compressive strength value may also be due to the fact that periwinkle shell has fewer binding properties compared to crushed granite. After 28 days of water curing, the concrete gave an average optimum compressive strength value of 25.78N/mm2 corresponding to a mix proportion of 1, 0.1, 1, 1.9 (cement, periwinkle shell, sand, granite) at a water-cement ratio of 0.4. This compressive strength value obtained at 5% replacement is within the recommended value required for plain concrete works, lean concrete, simple foundations, masonry walls and other simple construction works in low- cost housing constructions
  • Item
    Development of a Smartphone Application for Classifying Soils Based on AASHTO Classification System
    (2nd International Civil Engineering Conference (ICEC 2020), 2020-10-15) Chukwuemeka, I. V.; YUSUF, Abdulazeez; Ezekiel, Z.
    Engineering soils are classified using charts and tables so as to have first-hand knowledge of their engineering properties. Majority of the mobile application used to classify soils are based on the USCS, USDA and ASTM system. Thus, this research is focused on the development of a mobile application for classifying soils based on AASHTO classification system. The mobile application was written in Java programming language using the android studio environment. Two cases of Liquid Limit (LL), Plasticity Index (PL) and percentage of soil passing sieve number 200 used to validate the mobile application was 39.45%, 26.52. and 38 % as well as 19%, 19%, and 35% termed case I and II respectively. Results obtained using AASHTO classification charts were the same as that obtained using the mobile application developed. The mobile application classified case I as A-6 soil consisting of clayey particles with a poor rating while case II was classified as A-2-4 silty or clayey gravel having a good rating. The study concluded that the mobile application can be used to classify soils based on the AASHTO classification system to save time.