Conference Papers
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2
Conference Papers
Browse
2 results
Search Results
Item A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics(Elsevier BV, 2023-12) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola; Asimiyu Olalekan OladapoThis study proposes a fractional-order mathematical model for malaria and COVID-19 co-infection using the Atangana–Baleanu Derivative. We explain the various stages of the diseases together in humans and mosquitoes, and we also establish the existence and uniqueness of the fractional order co-infection model solution using the fixed point theorem. We conduct the qualitative analysis along with an epidemic indicator, the basic reproduction number R0 of this model. We investigate the global stability at the disease and endemic free equilibrium of the malaria-only, COVID-19-only, and co-infection models. We run different simulations of the fractional-order co-infection model using a two-step Lagrange interpolation polynomial approximate method with the aid of the Maple software package. The results reveal that reducing the risk of malaria and COVID-19 by taking preventive measures will reduce the risk factor for getting COVID-19 after contracting malaria and will also reduce the risk factor for getting malaria after contracting COVID-19 even to the point of extinction.Item A non-linear differential equation model of COVID-19 and seasonal influenza co-infection dynamics under vaccination strategy and immunity waning(Elsevier BV, 2023-12) Rabiu Musa; Olumuyiwa James Peter; Festus Abiodun OguntoluThis study presents a mathematical model of the transmission dynamics of COVID-19 and influenza co-infection. The potential impacts of the influenza vaccine only on the co-infection dynamics and the potential impacts of both vaccines on the co-infection dynamics are thoroughly studied. The basic reproduction number for the two diseases using the next-generation matrix approach and the stability of the sub-model is examined. The model assessed the scenario whereby both diseases’ waning immunity occurs concurrently to check the epidemic peaks. The numerical simulation results show that the diseases would continue to be endemic in the population if the immunity waning rates increase. The epidemic peak can be reduced by increasing vaccination and vaccine efficacy rates. The results show that the COVID-19 contact rate significantly increases the epidemic level more than the co-infection contact rate. A similar result was obtained when it was observed that the COVID-19 post-recovery waning rate has more significant effects on the epidemic peak than the co-infection post-recovery waning rate. A possible reason for this counter-intuitive occurrence is that two infections cannot have the same viral load nor the same within-host competitiveness. This means an infectious co-infected person will transmit the infection with the highest within-host competitiveness. Here, it is suspected that COVID-19 has a within-host competitive advantage over influenza in the co-dynamics.