Conference Papers

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2

Conference Papers

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Mathematical model of measles transmission dynamics using real data from Nigeria
    (Informa UK Limited, 2022-05-25) Olumuyiwa James Peter; Mayowa M. Ojo; Ratchada Viriyapong; Festus Abiodun Oguntolu
    Measles is a highly contagious and life-threatening disease caused by a virus called morbillivirus, despite the availability of a safe and cost-effective vaccine, it remains a leading cause of death, especially in children. Measles spreads easily from person to person via infected people's coughs and sneezes. It can also be transmitted through direct contact with the mouth or contaminated surfaces. To have a better knowledge of measles epidemiology in Nigeria, we develop a deterministic mathematical model to study the transmission dynamics of the disease in the population. The boundary of the model solution is performed, both equilibrium points are calculated, and the basic reproduction number ℛ0 is determined. We have proved that when ℛ0<1, the disease-free equilibrium point is both locally and globally stable. When ℛ0>1, the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. We demonstrate the model's effectiveness by using a real-life application of the disease spread in Nigeria. We fit the proposed model using available data from Nigeria Center for Disease Control (NCDC) from January to December 2020 to obtain the best fit, this help us to determine the accuracy of the proposed model's representation to the real-world data. We investigate the impact of vaccination rate and hospitalization of infected individuals on the dynamics of measles in the population. The result shows that the combined control strategies reduce the peak of infection faster than the single control strategy.
  • Item
    Modeling and optimal control of monkeypox with cost-effective strategies
    (Springer Science and Business Media LLC, 2022-11-22) Olumuyiwa James Peter; Chinwendu E. Madubueze; Mayowa M. Ojo; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola
    In this work, we develop and analyze a deterministic mathematical model to investigate the dynamics of monkeypox. We examine the local and global stability of the basic model without control variables. The outcome demonstrates that when the reproduction number , the model’s disease-free equilibrium would be locally and globally asymptotically stable. We further analyze the effective control of monkeypox in a given population by formulating and analyzing an optimal control problem. We extend the basic model to include four control variables, namely preventive strategies for transmission from rodents to humans, prevention of infection from human to human, isolation of infected individuals, and treatment of isolated individuals. We established the necessary conditions for the existence of optimal control using Pontryagin’s maximal principle. To illustrate the impact of different control combinations on the spread of monkeypox, we use the fourth-order Runge–Kutta forward–backward sweep approach to simulate the optimality system. A cost-effectiveness study is conducted to educate the public about the most cost-effective method among various control combinations. The results suggest that, of all the combinations considered in this study, implementing preventive strategies for transmission from rodents to humans is the most economical and effective among all competing strategies.