Conference Papers
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2
Conference Papers
Browse
15 results
Search Results
Item Partial Replacement of Fine Aggregate With Waste Glass in Concrete Made From Bida Natural Aggregate(3rd International Engineering Conference (IEC 2019) Federal University of Technology, Minna, Nigeria, 2019) Alhaji, B.; Kolo, D. N.; Abubakar, Mahmud; Yusuf, A.; Abdullahi, A.; Shehu, M.This study reports the experimental investigation on the suitability of waste glass as partial replacement for fine aggregate in concrete made using Bida natural aggregates (BNA). Glass is widely used in our daily lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. It is an ideal material for recycling. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. Mix ratio of 1:2:4 batched by weight with water - cement ratio of 0.55 was used. The percentage replacement varied from 0% to 40% at 5% intervals. Slump test was conducted to assess the workability of the fresh concrete. The compressive strengths and densities of cured concrete cubes of sizes 150mm x 150mm x 150mm were evaluated at 7, 21 and 28days. A total of 81 concrete cubes were cast and tested. It was observed that an increase in the percentage replacement of fine aggregate with waste glass reduces workability, density and compressive strength. The compressive strength and density vary with days of curing. The findings of this study indicated that the optimum replacement percentage of waste glass with conventional fine aggregate was 20%. However, waste glass can effectively be used as fine aggregate replacement (up to40%) without substantial change in concrete strength.Item Influence Of Roadcem Content on Mechanical Properties of Lateritic Soil for Pavement Applications(Proceedings of the Third International Civil Engineering Conference (ICEC, 2024), 2025) Illo, N. A.; Abubakar, Mahmud; Abdulrahman, H. S.; Kolo, D. N.Studies on lateritic soil had been carried by numerous researchers across the globe with a view of improving it for the purposes of road pavement and other civil engineering constructions. The main aim of this paper is to examine the impact of varying Roadcem (RC) content on the mechanical properties of lateritic soil for pavement applications which was found to be an A-7-5 soil according to AASHTO. The soil sample was treated with RC at 0, 1,2,3,4, and 5%. Laboratory test such as particles size distribution, unconfined compressive strength (UCS) test for the treated and untreated samples was carried out. Three samples on each dosage were compacted and molded in cylindrical molds and cured two of each sample for 7 days, one each for 28 days. X-ray Diffraction Analysis (XRD), was also carried out on the two samples to reveals their crystalline phases and shows high intensity of CaO and Quartz on the two samples respectively. The UCS results shows insignificant variations in the dosage of RC even at 28 days. The study concluded that A-7-5 soils does not respond to treatment with RC beyond 1% due to its high plasticity and poorly graded and therefore recommend the use of the RC as an additive, at lesser percentage, or on cohesionless soils like sand for road pavement applications.Item Development of Models for Prediction of Soil Cohesion Using Machine Learning Algorithms(Department of Civil Engineering, FUT Minna, 2024-12-12) Muhammed, R. O.,; Adejumo, T. E.; Alhaji, M. M.; Kolo, D. N.; Eze, F. E.Accurate prediction of soil cohesion is crucial for the safe and economical design of geotechnical structures. This study employed five machine learning models—Artificial Neural Network (ANN), Random Forest (RF), Support Vector Regression (SVR), Gradient Boosting (GB), and Decision Tree (DT)—to predict cohesion (c) using a laboratory dataset of 233 samples. The dataset, augmented to 5000 samples using Getel, was split into 70% training and 30% testing sets. Model performance was evaluated using R-squared and Mean Squared Error (MSE). Results showed that Random Forest outperformed other models, achieving the highest R-squared score of 0.622 and the lowest MSE of 56.74, indicating excellent model fit and high predictive accuracy. Feature importance analysis revealed that plasticity, primarily influenced by Liquid Limit (LL) with an importance score of 0.879606, and Plasticity Index (PI) with an importance score of 1.441646, significantly impacts cohesion. Natural Moisture Content (NMC) also showed significant influence with a score of 0.670434. Particle Size Distribution and Specific Gravity (Gs) also contributed to the predictions. This study demonstrates the potential of machine learning models to enhance the accuracy and efficiency of soil characterization and geotechnical engineering design in predicting soil cohesion.Item Artificial Intelligence and Structural Reliability Analysis in Nigeria: A Review(Department of Civil Engineering, FUT Minna, 2024-12-12) Olorunpomi, M. D; Kolo, D. N.; Abdullahi, A.; Agbese, E. O.Reliability is a probabilistic measure of structural safety. In Structural Reliability Analysis (SRA), both loads and resistances are modelled as probabilistic variables, and the failure of structure occurs when the total applied load is larger than the total resistance of the structure. This review presents the recent advances in using Artificial Intelligence (AI) in SRA; it explores the application of Artificial Intelligence (AI) in assessing the structural reliability of structures, particularly focusing on the integration of machine learning models, predictive analytics, and data-driven approaches. AI-based tools can enhance accuracy, speed, and efficiency in structural assessments, offering a potential solution to Nigeria's infrastructure challenges. Machine learning-based techniques have been introduced to SRA problems to deal with its huge computational cost and increase accuracy. ANNs and SVMs are two popularly used tools in the ML-based SRA literature. They have been widely used for the SRA because of their adaptability to different well-known reliability calculation methods such as MCS, FORM, and SORM. While these technologies have been successfully implemented in other parts of the world, its application in Nigeria faces challenges related to data availability, infrastructure, and expertise. Nonetheless, with the increasing adoption of digital technologies in Nigeria’s construction industry, AI offers a compelling opportunity for improving the safety and sustainability of concrete structures.Item Modal Analysis of Barikin Saleh Bridge Deck Using Finite Element Software Simulation Method(Department of Civil Engineering, FUT Minna, 2024-12-12) Rasaq, O. O.; Yusuf, A.; Kolo, D. N.; Abdulrahman, H. S.The increase in traffic along Barikin Saleh area of Minna Niger State calls for the analysis of the bridge deck due to the increasing and fluctuating traffic volume. In this paper, the modal analysis of the Barikin Saleh bridge deck based on finite element software simulation method was studied. The simulation was carried out to determine natural frequencies and the corresponding mode shapes of the bridge deck using ANSYS workbench software. The parameters of the bridge used in the simulation were Length,16m; Width, 10.75m; Second moment of inertia I, 4.16m4; Area A, .56m2; Young’s modulus E, 35300MPa; Density p, 2600 kg/m3, and Concrete Grade G, 50MPa. Based on the simulation output, the bridge exhibited six (6) clear mode shapes and corresponding natural frequencies of 0.299Hz,20.436Hz, 22.875Hz, 25.087Hz, 30.003Hz, and 35.205Hz. The highest natural frequency for the bridge was 35.205Hz, at the bridge deck mid-span. The implication of this is that the lifespan of the bridge might be reduced due to fatigue damage that can occur as a result of repeated loading and unloading of the bridge deck at this frequency. The findings from this study provide valuable insights into the dynamic behavior of Barikin Saleh bridge deck, which can be useful for its maintenance, repair and retrofitting.Item PARTIAL REPLACEMENT OF FINE AGGREGATE WITH WASTE GLASS IN CONCRETE MADE FROM BIDA NATURAL AGGREGATE(3rd International Engineering Conference (IEC 2019), 2019-09-22) Alhaji B.; Kolo, D. N.; Abubakar M.; YUSUF, Abdulazeez; Abdullahi, A.; Shehu, M.This study reports the experimental investigation on the suitability of waste glass as partial replacement for fine aggregate in concrete made using Bida natural aggregates (BNA). Glass is widely used in our daily lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. It is an ideal material for recycling. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. Mix ratio of 1:2:4 batched by weight with water – cement ratio of 0.55 was used. The percentage replacement varied from 0% to 40% at 5% intervals. Slump test was conducted to assess the workability of the fresh concrete. The compressive strengths and densities of cured concrete cubes of sizes 150mm x 150mm x 150mm were evaluated at 7, 21 and 28days. A total of 81 concrete cubes were cast and tested. It was observed that an increase in the percentage replacement of fine aggregate with waste glass reduces workability, density and compressive strength. The compressive strength and density vary with days of curing. The findings of this study indicated that the optimum replacement percentage of waste glass with conventional fine aggregate was 20%. However waste glass can effectively be used as fine aggregate replacement (up to 40%) without substantial change in concrete strength.Item EFFECT OF PARTIAL REPLACEMENT OF FINE AGGREGATE WITH SAWDUST IN LIGHT WEIGHT CONCRETE PRODUCTION USING BIDA NATURAL STONE AS COARSE AGGREGATE(3rd International Engineering Conference, Federal University of Technology, Minna, Nigeria, 2019) Alhaji, Bala; Abubakar, Mahmud; Yusuf, A.; Oritola, S. F.; Mohammed, S.; Kolo, D. N.This study investigated the effect of sawdust as partial replacement for Fine Aggregate in light weight concrete production. Sawdust was used to replace Fine Aggregate from 0% to 40% in steps of 5%. 150 x 150 x 150mm concrete cubes were cast for each replacement level, the concrete was cured and the compressive strengths were determined at 7, 21 and 28days curing period respectively. Increase in percentage of sawdust in concrete led to a constant reduction in the compressive strength values with a corresponding reduction in weight. From the result obtained, 5% replacement of Fine Aggregate with sawdust gave a maximum compressive strength 13.11 N/mm2. It was however concluded that the optimum replacement level of 5% can be used as plain concrete for blinding works.Item A Comparative Analysis of Grillage Method and Beam line Analysis of a Reinforced Concrete Waffle Brifge Deck(Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2022-01-23) Adamu, H. N.; Abbas, B. A.; Abubakar, M.; Yusuf, A.; Kolo, D. N.; Shehu, M.The analysis of reinforced concrete waffle bridge deck using Chanchaga bridge as a case study was carried out with the aid of computer program written in MATLAB. The bridge deck which is a beam bridge was idealized to be a waffle slab. A mathematical model of the bridge was developed using the method of grillages because very complex shapes of problem domain with prescribed conditions can be handled easily using the method. The bridge deck was modelled as interconnection of grid elements. The analysis was carried out using direct stiffness matrix method. The nodal displacements and the resulting static internal forces; shear forces, bending moments and twisting moments of each grid element were determined using the matrix. The results obtained using the method of grillages were then compared with beam line analysis and the former method gave a 10% decrease in forces which will result in the reduction of overall design and materials by 10%.Item Effect of Partial Replacement of Cement with Cow Dung Ash Using Bida Natural Coarse Aggregate(2023-02-04) Abbas, B. A.; Yusuf, A.; Kolo, D. N.; Aboje, A. A.; Mahmud, M. B.; Ndaiji, A. U.The research investigates the effect of partial replacement of cement with cow dung ash (CDA) in concrete production using Bida natural coarse aggregate. Water to cement ratio and mix ratio of 0.6 and 1:2:4 was adopted respectively. The aggregates used were characterized and the cow dung was calcined at a temperature between 400-500oC. Concrete was produced using CDA as cement replacement at 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40%. Slump of the freshly produced concrete was determined and the compressive strength of the hardened concrete was determined at 7, 21 and 28 days of curing. The sum of SiO2, Al2O3 and Fe2O3 in CDA exceeds the 70% minimum specified by ASTMC 618-12. The slump of the fresh concrete ranges from 0 – 40 mm while the compressive strength at 28 days curing duration ranges from 12.59N/mm2 19.29N/mm2 and density was 2323.95kg/m3 – 2554.59kg/m3 respectively. The test results revealed that the compressive strength decrease with increase in CDA content and increase with curing age. The strength results indicate that there was no much significant difference between the control specimen with 0% CDA and that containing 5% CDA. This implies that concrete made using CDA as partial replacement for cement can be used for structural applications such as in the construction of reinforced concrete slabs, beams, columns and foundations. The study concluded that CDA has pozzolanic properties and can be used to replace up to 10% cement in concrete produced using Bida natural coarse aggregate.Item Effectiveness of Locust Bean Epicarp Extract on Re-vibrated Concrete Using Pebbles from Bida Environs as Coarse Aggregate(Proceedings of the Sustainable Education and Development Research Conference, University of Environment and Sustainable Development, Somanya, Ghana, 2023-01-02) Abbas, B. A.; Mohammed, T. A.; Yusuf, A.; Kolo, D. N.; Abubakar, M.; Abdullahi, A.