Conference Papers

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2

Conference Papers

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Modelling and optimal control analysis of Lassa fever disease
    (Elsevier BV, 2020) Olumuyiwa James Peter; Adesoye Idowu Abioye; Festus Abiodun Oguntolu; Titilayo Abimbola Owolabi; Michael Oyelami Ajisope; Abdullaziz Glabe Zakari; Timilehin Gideon Shaba
    Lassa fever is a severe hemorrhagic viral infection whose agents belong to Mastomys natelensis. Generally, humans contract Lassa virus through exposure to food or household products that have been contaminated with the excreta of the infected rodents. Lassa fever is endemic in some West African countries including Nigeria. A basic model is proposed to examine the transmission of the disease. The proposed model is subjected to qualitative study via the theory of differential equations and the threshold quantity that denotes the dominant eigenvalue was derived using next-generation matrix approach. The basic model is further extended to an optimal control model with four controls namely, the fumigation of the environment with pesticide, the use of condom to prevent human to human transmission during sexual activities, early treatment and the use of indoor residual spray. The theory of optimal control was explored to establish the necessary conditions for curtailing the transmission of Lassa fever. Numerical simulation was conducted and the results showed that if the Lassa fever transmission and spread were to be reduced significantly in the endemic region, all the control measures must be taken with all seriousness.
  • Item
    Mathematical model of COVID-19 in Nigeria with optimal control
    (Elsevier BV, 2021-09) Adesoye Idowu Abioye; Olumuyiwa James Peter; Hammed Abiodun Ogunseye; Festus Abiodun Oguntolu; Kayode Oshinubi; Abdullahi Adinoyi Ibrahim; Ilyas Khan
    The novel Coronavirus Disease 2019 (COVID-19) is a highly infectious disease caused by a new strain of severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). In this work, we proposed a mathematical model of COVID-19. We carried out the qualitative analysis along with an epidemic indicator which is the basic reproduction number () of this model, stability analysis of COVID-19 free equilibrium (CFE) and Endemic equilibrium (EE) using Lyaponuv function are considered. We extended the basic model into optimal control system by incorporating three control strategies. These are; use of face-mask and hand sanitizer along with social distancing; treatment of COVID-19 patients and active screening with testing and the third control is prevention against recurrence and reinfection of humans who have recovered from COVID-19. Daily data given by Nigeria Center for Disease Control (NCDC) in Nigeria is used for simulation of the proposed COVID-19 model to see the effects of the control measures. The biological interpretation of this findings is that, COVID-19 can be effectively managed or eliminated in Nigeria if the control measures implemented are capable of taking or sustaining the basic reproductive number to a value below unity. If the three control strategies are well managed by the government namely; NCDC, Presidential Task Force (PTF) and Federal Ministry of Health (FMOH) or policymakers, then COVID-19 in Nigeria will be eradicated.