School of Infrastructure Process Engineering and Technology (SIPET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/27
School of Infrastructure Process Engineering and Technology (SIPET)
Browse
Item A Comparative Analysis of Grillage Method and Beam line Analysis of a Reinforced Concrete Waffle Brifge Deck(Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2022-01-23) Adamu, H. N.; Abbas, B. A.; Abubakar, M.; Yusuf, A.; Kolo, D. N.; Shehu, M.The analysis of reinforced concrete waffle bridge deck using Chanchaga bridge as a case study was carried out with the aid of computer program written in MATLAB. The bridge deck which is a beam bridge was idealized to be a waffle slab. A mathematical model of the bridge was developed using the method of grillages because very complex shapes of problem domain with prescribed conditions can be handled easily using the method. The bridge deck was modelled as interconnection of grid elements. The analysis was carried out using direct stiffness matrix method. The nodal displacements and the resulting static internal forces; shear forces, bending moments and twisting moments of each grid element were determined using the matrix. The results obtained using the method of grillages were then compared with beam line analysis and the former method gave a 10% decrease in forces which will result in the reduction of overall design and materials by 10%.Item An Investigation of Partial Shading Effects on Solar Photovoltaic Module Performance Using Infrared Thermography(4th International Engineering Conference (IEC 2022) Federal University of Technology, Minna, Nigeria, 2023-03-21) Jaji, .U. F.; Bori IgePartial shading is detrimental to the performance of a solar PV module. This is because it not only reduces the current and voltage of the module which leads to power loss in the module but may also lead to the formation of hotspots. This work presents an investigation carried out on the cross-comparison of two different PV modules subjected to the same ambient conditions in a tropical hot climatic region, to observe the effects of partial shading on them and if hotspots are formed, determine if they are heightened by the climatic condition of the environment. Different shading patterns and shading due to partial obstruction of direct radiation were considered. Shading was achieved using opaque shading sheets. The results of the experiment showed that the efficiency or performance of these modules is dependent on the type and direction of shading. This implies that as the percentage of shading increases, there is a decrease in power output and ultimately its efficiency. Also, thermal images obtained showed that asides temperature difference between the modules, hotspots formed on the test modules were not magnified by climatic conditions. The Infrared image indicated the likelihood of an internal defect in the control module. Considering the emergence of new solar technologies to improve its efficiency, it’s recommended that a similar investigation under real outdoor conditions be carried out on Perovskite solar cells. Results of the outcome of the findings should be compared to those of the silicon crystalline modules, to determine which solar technologies perform better.Item An Investigation On Ventilation and Air Conditioning (VAC) Installation, Design and Performances of Selected Buildings in Ilorin, Kwara State, Nigeria(2nd International Engineering Conference (IEC 2017) Federal University of Technology, Minna, Nigeria, 2017-10-17) Yusuf, .A. W.; Bori Ige; Nasir, .A.time. Heating, ventilation and air-conditioning (HVAC) play an important role in providing a comfortable condition for occupants in a building. This work concerns air conditioning designs, installations, and performances of some event centres namely: Banquet Hall, Atlantic Event Centre and Nimatoni Event Centre and some offices within the Kwara State Ministry of Water Resources. The impact of the effect of improper design and ventilation on energy efficiency and consumption were also considered. The event centres and offices were studied, by taking both the temperature and relative humidity values for over a period ranging from 75 minutes to 130 minutes, with the use of a device referred to as HOBOware temperature/relative humidity data logger coupled with a HOBOware Software interface installed on a personal computer, for post processing of acquired data. The obtained results of the event centres showed variations in the capacities of the installed air-condition understudied. Also from the results obtained, the cubic meter per minute (cmm) values were found to be 0.0896, 0.2908 and 0.0404 for Banquet hall, Atlantic Event Centre and Nimatoni Event Centre respectively, and these were below the standard recommended value of 0.4245 in the literature.Item Analysis of Solar Energy Potentials in Katsina and Sokoto States, Nigeria(Nigerian Institution of Mechanical Engineers (NiMeCHE), 2020-10-20) Irekeola, .B. J.; Bori Ige; Adedipe, .O.; Babawuya, .A.For many years, Nigeria has been facing energy crisis that is hampering her economic development. Energy is one of the key fundamentals for economic development and it is also fundamental to all human activities in this era. In this study, renewable energy potentials in Sokoto and Katsina states were analyzed respectively. Data covering a period of ten years (2007 - 2017) were obtained from the Nigerian Meteorological Agency (NIMET), Abuja, for monthly average daily solar radiation, maximum and minimum temperatures for the two states under investigations. The data were subjected to statistical analysis such as normality test, to examine whether the data is normally distributed using standardized coefficient of skewness, and kurtosis using a 250 Watts by 1.68m square solar panel; the results show that the solar radiations are negatively skewed by a value of -0.6 and -0.43, which makes the two states more reliable during the dry season of the year. The two states have a kurtosis of -1.17 and -1.38 indicating that the bell shape is slightly flatten than normal distribution shape. A linear regression model was also developed to predict the trends in solar radiation for the study area. The results show that Katsina state has a higher reliability (0.86) for solar energy potentials than Sokoto state (0.72).Item Application of Inverse method to Reconstruct the form of Pulse During Impulsive damage to Pipelines(International Engineering Conference (IEC), 2015) O. A. Olugboji; J. Hale; J. Y. Jiya; C. K. JackPetroleum pipelines damages if untimely detected, poses a tremendous challenge to the oil sector of an economy as it causes oil spillage, theft or explosion of the petroleum products while on transit. It is against this backlash an inverse pulse propagation method for reconstructing the form of pulse generated during pipeline defects was devised and presented in this paper. Inverse problem occurs in several branches of science and engineering. It involves the determination of the parameters of a model that describes or explains a set of observed data .This work deals with an inversion technique that was developed to reconstruct the form of a pulse after it has been propagated along a pipe. To test the suitability of the developed technique, a mathematical model was developed. The theoretical model was validated by experiment using a developed pipeline system. The experimental test rig comprises of a flexible hose pipe 23m long and 19mm diameter with four pressure sensors distributed along the pipeline and connected to the data acquisition system. Static and flowing air in the pipeline were use in the experimental test to validate the developed inverse technique model. The inverse method showed a close relationship to the original pulse.Item Assessment of Safety Provisions on Building Construction Sites in Abuja, Nigeria: Professionals and Workers Perspectives(Proceedings of the 2nd International Engineering Conference, Federal University of Technology Minna, Nigeria., 2017-01-02) Kolo, D. N.; Yitmen, I.; Tsado, T. Y.; Abdullahi, M.; Yakubu, D. M.Despite the growth of the building construction sector in Nigeria, the provision of the basic safety materials and facilities to workers remains a challenge. The construction industry is believed to be a pillar of domestic economy in most nations; it is believed to contribute about 2.08% to the GDP of Nigeria. Yet, the rate of non-fatal, fatal injuries and illnesses exceeds that of many other industries, the construction industry has the most fatality rate when compared to other industry sectors. This paper examines the level of provision of the basic safety materials and facilities to workers by contractors in the Nigerian construction industry, the study employed the work study and field survey research method. Structured questionnaire were administered to the Architects, Engineers, Project managers and Contractors as well as the workers engaged in construction. The research exposed the neglect in the provision of safety materials and facilities on the part of the contractors. Scaffolds and shovels where the materials readily provided by the contractors from the list of safety materials provided as recommended by the regulatory authorities. The Institute of safety professionals of Nigeria, Council of registered builders of Nigeria and other statutory government agencies should be more diligent to effectively monitor the activities of building construction contractors in Abuja, Nigeria.Item Barriers to the Adoption of Building Information Modelling in Nigerian Construction Industry(Proceedings of the 1st International Civil Engineering Conference, Department of Civil Engineering, Federal University of Technology Minna, Nigeria, 2018-01-02) Kolo, D. N.; Tsado, T. Y.; Bala, A.; Adinoyi, S. A.; Kolo, D. N.Building Information Modeling (BIM) involves the development and use of computer generated n-D models to simulate, plan, design, construct, adapt, operate, maintain, renovate, and ultimately beneficially deconstruct a building at the end of its life cycle. BIM represents a new paradigm in construction, it encourages the integration of roles of construction stakeholders enabling them to visualize the project to be built and further identifying potential issues that may occur during the operational phase of buildings. This study assessed the barriers to the adoption of BIM in the Nigerian construction industry and further highlighted ways to improve its adoption. A total of 50 questionnaires were administered to construction professionals in Abuja, Nigeria. Forty (40) retrieved questionnaires were analysed using Statistical Package for social Sciences (SPSS 21) and used for this study, it was revealed that there was generally a low awareness on the use of BIM among construction professionals. The major barrier to using BIM was lack of skilled personnel while the major means of ensuring its adoption was Provision of basic BIM infrastructure. These problems can be effectively tackled by increased support from government and construction industry stakeholders for its use; stressing the benefits derivable, training and retraining of key construction professionals taking into consideration peculiarities to the Nigerian construction industry.Item Delaying transition further with the aid of a short compliant panel in a Blasius boundary layer flow(The Chinese Society of Theoretical and Applied Mechanics (CSTAM), Fluid Mechanics Division Conference, Guilin, China., 2012-11-12) Bori Ige; Yeo, .K. S.; Dou, .H-S.; Zhao, .X.The cost of fuelling especially for those in the transport industries could be reduced drastically if there is a means of reducing drag force over their vehicles while in motion. One way to overcome this is to use compliant (membrane) surface; a passive control means which has been proved in various theoretical studies as a promising tool in delaying transition further. In this paper, following the earlier work done on flow over rigid wall within a Blasius boundary layer, we account for the current study carried out on the evolution of pulse-initiated disturbance wavepackets over a finite-length compliant panel by direct numerical simulation (DNS) method. For the single-panel case, a finite section of the wall from X = x/δ0 = 450 -762, was replaced by a tensioned membrane on a viscoelastic foundation, whose properties were designed to inhibit the development of compliant-wall modes. Where δ0 is the displacement thickness at the perturbation location. A small amplitude vertical initiating delta pulse was introduced from the wall streamwise location X0 = 349.4 (x0 = 81cm), and study in detail both spatially and spectrally how the wavepackets generated evolve from the initiating point to the breakdown location over a Blasius boundary layer. The simulation results showed that, the upstream intervention by the finite compliant panel effectively delayed the onset of the incipient turbulent spot by a further distance of Δx = 550, when compared with the rigid wall case results that earlier broke down at X = 1420. This represents an approximately 51% increase in the transition distance measured from the point of wavepacket initiation. Spectral study indicated that the relatively short compliant panel was able to effectively weaken the primary 2-D Tollmien-Schlichting (TS) wave mode, thereby extending the linear regime, so that resultant wavepacket after the panel is dominated by two oblique wave modes and this is the effective strategy of transition delay.Item Delaying transition in a Blasius boundary layer with finite compliant panels(Fourth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD),, 2011-07-18) Bori Ige; Zhao, .X.; Yeo, .K. S.Compliant surfaces have been shown to be a promising passive control measure for controlling and delaying boundary layer transition in various theoretical studies [1-2]. In this paper, we report on a recent study we have done on the evolution of pulse-initiated disturbance wavepackets over one or more finite-length compliant panels. The broadband nature of a wavepacket offers a central advantage in permitting natural selection of most dominant waves to operate through the sum of its growth processes. This may be helpful in identifying the critical waves and key processes that are involved at the various stages in natural transition. The initiation, evolution and final breakdown of wavepackets into the incipient turbulent spots in a Blasius boundary layer was modelled by Direct Numerical Simulation (DNS) briefly described in [3]. The comparative evolution and transition performance of three cases are discussed here, namely the rigid-wall case, a single-panel wall and a two-panel wall. In all cases, a fixed vertical-directed delta pulse of small amplitude was initiated at the point x / 349.4, where 2.3182103m is the displacement thickness of the boundary layer at the initiation point. The evolution and breakdown of the wavepacket in a Blasius boundary layer on a rigid wall has already been reported in [3]. For the single-panel case, a finite section of the wall from x / 450 to 762 was replaced by a tensioned membrane on a viscoelastic foundation, whose properties were designed to inhibit the development of compliant-wall modes. The simulation results showed that, the upstream intervention by the finite compliant panel effectively delayed the onset of the incipient turbulent spot by a distance of about 100 cm ( x / 430). This represents an approximately 30% increase in the transition distance measured from the point of wavepacket initiation. Spectral study indicated that the relatively short membrane panel was able to effectively attenuate the primary 2-D Tollmien-Schlichting (TS) wave mode so that resultant wavepacket after the panel was dominated by a pair of oblique waves. Subharmonic secondary instabilities [4-5], which are responsible for nonlinear disturbance wave amplification on a rigid wall, were thus inhibited by the absence or near absence of the 2-D TS wave mode. Staggered Λ-structures and streamwise streaky structures similar to those found in the rigid wall case were observed for the single-panel case, but much further downstream. A second tensioned membrane panel of the same length was added at x / 1359-1658 to form the two-panel case. The last stage of the present simulation shows the wavepacket arriving the location x / 2000 in a perfectly laminar form ( max | u | /U 0.05 ) – this already represents an increase in transition distance of about 50% over the corresponding rigid-wall case. The eventual breakdown location will be further downstream as the wavepacket has not displayed the usual structural features that signify imminent breakdown. This study has shown the efficacy of short compliant panel(s) in controlling and delaying transition.Item Design and Fabrication of Rice De-Stoning Machine(Food Science and Technology, 2014) O. A. Olugboji; J. Y. JiyaThis work aims at meeting the ever increasing demands of quality rice, avoiding losses and improving the income of local farmers. Mild steel was used in the construction of the machine. Standard equations were used to determine the dimension of the parts. The machine is driven by a 1Hp electric motor with 688.17 W required power. The machine has a capacity of 47.39 Kg/hr and an efficiency of 82.47 %Item Design, Fabrication and Testing Of a Motorized Paper Perforation Machine(International Journal of scientific research and management (IJSRM), 2015) J. Y. Jiya; M. S. Abolarin; O. A. Olugboji; R. I. Ngoffia; C. K. AjaniThis is concern with design and fabrication of a powered paper perforating machine with efficiency and less cost for bindery department in printing industries. It is a machine that will compete favorably with the manually operated ones and reduce human efforts with minimum time consumption. It perforates up to 15 sheets of paper at each stroke and is powered by a horse power electric motor whose rotational motion is converted to a reciprocating motion in the perforation pin by the principle of eccentricity.Item DEVELOPMENT OF A BRAKE DRUM MODEL WITH FINS INCORPORATION FOR HEAT DISSIPATION ENHANCEMENT(5th Multi-disciplinary academic conference, Ahmadu Bello University, Zaria. January 11, 2018. Pp. 190 – 205., 2018-01-11) Bako, .S.; Bori IgeExtreme heat within an automobile brake drum could cause brake failure which could as well lead to death of passengers and lost of properties. One of the ways to dissipate heat faster from an automobile brake drum is by incorporating fin on the outer surface of the brake drum as pointed out in many literatures. This work concerns converting 1/10 0f the overall height thickness of the brake drum into fins for effective heat dissipation by both conduction and convection. During the modified brake drum development process, necessary fin design formulae were taken into account. Modeling and simulation analysis were carried out using Solidworks (2013) software, followed by validation using theoretical Finite Element analysis. The minimum temperatures obtained from the simulation analysis were 4935K and 4927K for the existing and the modified brake drum model respectively. While maximum displacements obtained from the simulation analysis were 5142×10−5𝑚𝑚 and 5102×10−5𝑚𝑚 for the existing and the modified brake drum model respectively. This implies that the modified brake drum have improved strength and better heat dissipation than the existing model. This is as the result of the circumferential arrangement of the fins on the outer surface of the brake drum.Item Development of Footstep Electricity Energy Generating Machine using Dual Generator(Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria, 2019-05-15) Igbo, .E. B.; Bori IgeFootstep electricity energy generation machine have been seen in most populated country and the different existing machines have various capacity of generated electricity power. The concept and the technology is simply the production of electrical energy by weight which acts on the footsteps. Footstep electrical energy generation is of three types namely; rack and pinion, piezoelectric method, fuel and piston method. It was comparatively discovered that the rack and pinion mechanism is more effective, efficient with less cost of operation and maintenance. In the existing rack and pinion method, energy was not adequately harvested from footsteps as a result of many gears, shafts and incorporation of a single generator. This takes time to generate electricity and the output capacity is low in watt. With this motivation, a prototype footstep electricity energy generating machine using dual generators, chains and sprockets was developed. This was designed by considering parameters such as human weights, speed and low cost. The prototype was designed to be a value for money production in the power generation sectors. For designing the work rack and pinion, human weight were studies to understand the operation. At the end, the machine was fabricated using local material. The machine upon fabrication was evaluated at ten (10) different human weights of 40, 50, 53, 56, 60, 70, 85, 101, 105, 108 kgs and power of 6.69, 6.949, 3.92, 10.848, 8.29, 8.339, 12. 064, 11.349, 11. 359 and 11.359 watts, with angular speeds of 5.08, 5.28, 2.98, 8.24, 6.30, 6.33, 9.16, 8.62, 8.63, 9.35 rpm were obtained respectively. The result showed that weight is directly proportional to both power and angular speed. The result showed that optimism occurred at 85kg. Using a dual generators increase higher electricity energy generation, effective and efficient harvesting of footstep energy.Item Development of Screw-Type Briquetting Machine for Municipal Solid Waste(2nd International Engineering Conference (IEC 2017) Federal University of Technology, Minna, Nigeria, 2017-10-17) Okegbile, .O. J.; Bori Ige; Danlami, .S. M.The Hydra headed problem of deforestation and Municipal Solid Waste (MSW) Management has bedeviled Nigerian States. Deforestation has put Nigeria on the world’s map as the highest contributor to the world’s deforestation of its primary forest (contributing over 50%), as over 70% of its population depends on firewood and charcoal for cooking and heating. The rising profile of MSW, characterized by inefficient management methods make most Nigerian cities an eye sore, with uncollected waste littering almost every available space, drainages and water channels which poses great danger to human existence. Without alternative energy source available to the growing population, deforestation will continue unabated and in the nearest future Nigeria risk losing all of its forest resource. A Screw-Type briquetting machine was developed that utilizes crushed, combustible MSW to form briquettes to be used for cooking and heating, which is using one problem to fix another. MSW was formulated, crushed and used to form briquette. The briquettes produced burn in similar way to charcoal when compared. This will reduce to the barest minimum, deforestation rate and improve the management of MSW by utilizing as a resource what is termed waste. The developed machine has a throughput capacity of 2605.4Kg/hr and is driven by a 5 Horsepower (5 hp) electric motor.Item Effect of Partial Replacement of Cement with Cow Dung Ash Using Bida Natural Coarse Aggregate(2023-02-04) Abbas, B. A.; Yusuf, A.; Kolo, D. N.; Aboje, A. A.; Mahmud, M. B.; Ndaiji, A. U.The research investigates the effect of partial replacement of cement with cow dung ash (CDA) in concrete production using Bida natural coarse aggregate. Water to cement ratio and mix ratio of 0.6 and 1:2:4 was adopted respectively. The aggregates used were characterized and the cow dung was calcined at a temperature between 400-500oC. Concrete was produced using CDA as cement replacement at 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40%. Slump of the freshly produced concrete was determined and the compressive strength of the hardened concrete was determined at 7, 21 and 28 days of curing. The sum of SiO2, Al2O3 and Fe2O3 in CDA exceeds the 70% minimum specified by ASTMC 618-12. The slump of the fresh concrete ranges from 0 – 40 mm while the compressive strength at 28 days curing duration ranges from 12.59N/mm2 19.29N/mm2 and density was 2323.95kg/m3 – 2554.59kg/m3 respectively. The test results revealed that the compressive strength decrease with increase in CDA content and increase with curing age. The strength results indicate that there was no much significant difference between the control specimen with 0% CDA and that containing 5% CDA. This implies that concrete made using CDA as partial replacement for cement can be used for structural applications such as in the construction of reinforced concrete slabs, beams, columns and foundations. The study concluded that CDA has pozzolanic properties and can be used to replace up to 10% cement in concrete produced using Bida natural coarse aggregate.Item Effectiveness of Locust Bean Epicarp Extract on Re-vibrated Concrete Using Pebbles from Bida Environs as Coarse Aggregate(Proceedings of the Sustainable Education and Development Research Conference, University of Environment and Sustainable Development, Somanya, Ghana, 2023-01-02) Abbas, B. A.; Mohammed, T. A.; Yusuf, A.; Kolo, D. N.; Abubakar, M.; Abdullahi, A.Item Event Reconstruction by Digital Filtering(Horizon Research Publishing. Advances in Signal Processing, 2013) O. A. Olugboji; J. Y. Jiya; J. M. HaleThis work deals with a digital filtering technique that was developed to reconstruct a pulse after it has propagated along a pipe; a complex pulse that is progressively distorted. The technique developed makes use of the theory of digital filtering used in communications to remove distortion in long telephone links.Item Evolution of wavepacket over short compliant panels in a Blasius boundary layer(American Physical Society (APS), 65th Annual Meeting Division of Fluid Dynamics (DFD), 2012-11-18) Bori Ige; Yeo, .K. S.; Dou, .H-S.Compliant surface has been proved in various theoretical studies as a promising tool in delaying transition. This study concerns our recent work carried on the evolution of pulse-initiated disturbance wavepackets over finite-length compliant panels in a Blasius boundary layer by direct numerical simulation (DNS) method. A finite section of the wall was replaced by a tensioned membrane on a damped foundation. By comparing with the rigid wall case, the upstream intervention by a finite compliant panel was found to effectively delay the onset of the incipient turbulent spot – an increase of about 40% in the transition distance with respect to the initiation point was obtained. Transition distance to the occurrence of the incipient turbulent spot was increased further to about 75% relative to a rigid wall when a second compliant panel was introduced. Spectral analysis shows the important role of the fundamental 2D modes in wavepacket evolution and the roles played by compliant panels in transition delay.Item Experimental Study on Steel fibre reinforced Natural aggregate concrete(Ethiopian International Journal of Engineering and Technology (EIJET), 2024-01-02) Kolo, D. N.; Graham, M.; Milad, A.The rising volume of pollution is a significant threat to achieving the United Nations’ goal for a sustainable society. Various approaches have been used to tackle pollution, including recycling wastes into completely new products or utilizing them to improve other materials. In this respect, this article presents the results of an experimental study conducted on waste steel fiber sourced from waste tyres in concrete production. The fibers measuring 2, 4, and 6 cm were utilized using dosages of 0.5, 1, and 1.5% by mass of cement. The natural aggregate which is a bya -a product of the Precambrian deposits of the Bida trough was utilized as coarse aggregate. Iron moulds measuring 150 x 150 x 150mm were used for concrete production and were demoulded after 24 hours and cured. The optimum 28-day compressive strength of 27.19 N/mm2 was recorded with a 4 cm fiber length and 0.5% fiber content. This represented a 36.36% gain in the 28-day compressive strength of the concrete when compared to the control.Item Formation of Ceiling Boards by the Combination of Sugarcane Bagasse and Rice Husk(International conference on global & emerging trends, Baze University, Abuja, Nigeria. 2 - 4 May, 2018. Pp. 140 – 143., 2018-05-02) Jesuloluwa, .S. I.; Bori IgeConstructing housing components from agricultural wastes have become a special area of research in engineering. Hence a lot of resources is pushed into this to obtain sustainable, eco-friendly and low-cost houses. This work studies some properties of ceiling boards produced from sugarcane bagasse and rice husk. The ceiling boards were produced using water, cement as binder with binder composite ratio of 3:2 by weight, sugarcane bagasse and rice husk of varying ratios by weight from 100% of bagasse to 0% of it with a 25% decrease. The compression of the boards was done manually using moulded block as weight. From the results, it was observed that the ceiling board produced with 100% sugarcane bagasse has better properties to be considered for ceiling board as compared with the most commonly used ceiling boards like Plaster of Paris(POP), asbestos and Poly Vinyl Chloride(PVC). The properties examined are thermal conductivity, thermal resistivity, water absorption and density. The better ceiling board has thermal conductivity to be 2.27W/mK, thermal resistivity of 0.441 mK/W, water absorption of 16.89 and density of 470.3 kg/m3.