School of Infrastructure Process Engineering and Technology (SIPET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/27
School of Infrastructure Process Engineering and Technology (SIPET)
Browse
Item Effect of Partial Replacement of Cement with Cow Dung Ash Using Bida Natural Coarse Aggregate(School of Environmental Technology, Federal University of Technology, Minna, 0022-10-05) Abbas, B. A.; YUSUF, Abdulazeez; Kolo, D. N; Aboje, A. A.; Mahmud, M.B.; Ndaiji, A. U.The research investigates the effect of partial replacement of cement with cow dung ash (CDA) in concrete production using Bida natural coarse aggregate. Water to cement ratio and mix ratio of 0.6 and 1:2:4 was adopted respectively. The aggregates used were characterized and the cow dung was calcined at a temperature between 400-500oC. Concrete was produced using CDA as cement replacement at 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35% and 40%. Slump of the freshly produced concrete was determined and the compressive strength of the hardened concrete was determined at 7, 21 and 28 days of curing. The sum of SiO2, Al2O3 and Fe2O3 in CDA exceeds the 70% minimum specified by ASTMC 618-12. The slump of the fresh concrete ranges from 0 – 40 mm while the compressive strength at 28 days curing duration ranges from 12.59N/mm2 19.29N/mm2 and density was 2323.95kg/m3– 2554.59kg/m3 respectively. The test results revealed that the compressive strength decrease with increase in CDA content and increase with curing age. The strength results indicate that there was no much significant difference between the control specimen with 0% CDA and that containing 5% CDA. This implies that concrete made using CDA as partial replacement for cement can be used for structural applications such as in the construction of reinforced concrete slabs, beams, columns and foundations. The study concluded that CDA has pozzolanic properties and can be used to replace up to 10% cement in concrete produced using Bida natural coarse aggregate.Item Development of Mathematical Model for the Assessment of Hydrogen Sulphide Pollutant in the Air(Journal of Research in Engineering (JRIE), 2008) Olutoye, M. A.; Eterigho, Elizabeth JumokeThis work is aimed at developing a mathematical model to determine the concentration of Hydrogen Sulphide pollutant in air from the gas flare of a refinery. To achieve this, experimental data on concentration of Hydrogen Sulphide from Kaduna refinery and petrochemical company Nigeria were collected and the dispersion model was developed based on Gaussian distribution principle. The simulation of the model was carried out using visual basic programming. It was observed from the simulated result that the gas dispersion model developed for Hydrogen Sulphide showed a remarkable agreement with the dispersion pattern, and agrees with the experimental results with a correlation co efficient of 0.98. Thus, the model can be used to determine the safe distance for human habitation from an industrial area and the refinery in particular.Item Catalytic Cracking of Tryglyceride by Sulphated Zirconia for Fatty Aciud Methyl Ester with High Selectivity(American Institute of Chemical Engineers (AIChE) Annaul Conference meeting, Minneapolis, MN, United State, 2010-07-21) Eterigho, Elizabeth Jumoke; Lee, Jon G. M.; Harvey, Adam P.Conventional wet-precipitation method was used to synthesis sulphated zirconia using two different molar ratios of sulphating agents. (1) the first was using a molar ratio of 1: 45 of ZrOCl2.8H20 impregnated with 1 M H2SO4, (wp) and (2) a molar ratio of 1: 6 was used for the modified conventional wet-precipitation method, (wp). The properties of both catalysts were examined by various techniques: EDX, XPS, FTIR, SEM, XRDP, Py-DRIFTS and BET nitrogen adsorption techniques. The variation in the molar ratio of the sulphating agent used during preparation led to sulphated zirconia that exhibited different properties in terms of specific surface areas, acid sites, thermal stability and surface sulphate. Both catalysts were catalytically active for triglycerides cracking for fatty acid methyl esters in a thermocatalytic reaction. The SZ not only exhibited higher conversion of triglycerides but higher FAMEs yield, approximately 50% after 3 h, as compared to SZ2 (39%). Interestingly, SZ1 was selective towards unsaturated esters whereas SZ2 was towards saturated esters.Item Delaying transition in a Blasius boundary layer with finite compliant panels(Fourth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD),, 2011-07-18) Bori Ige; Zhao, .X.; Yeo, .K. S.Compliant surfaces have been shown to be a promising passive control measure for controlling and delaying boundary layer transition in various theoretical studies [1-2]. In this paper, we report on a recent study we have done on the evolution of pulse-initiated disturbance wavepackets over one or more finite-length compliant panels. The broadband nature of a wavepacket offers a central advantage in permitting natural selection of most dominant waves to operate through the sum of its growth processes. This may be helpful in identifying the critical waves and key processes that are involved at the various stages in natural transition. The initiation, evolution and final breakdown of wavepackets into the incipient turbulent spots in a Blasius boundary layer was modelled by Direct Numerical Simulation (DNS) briefly described in [3]. The comparative evolution and transition performance of three cases are discussed here, namely the rigid-wall case, a single-panel wall and a two-panel wall. In all cases, a fixed vertical-directed delta pulse of small amplitude was initiated at the point x / 349.4, where 2.3182103m is the displacement thickness of the boundary layer at the initiation point. The evolution and breakdown of the wavepacket in a Blasius boundary layer on a rigid wall has already been reported in [3]. For the single-panel case, a finite section of the wall from x / 450 to 762 was replaced by a tensioned membrane on a viscoelastic foundation, whose properties were designed to inhibit the development of compliant-wall modes. The simulation results showed that, the upstream intervention by the finite compliant panel effectively delayed the onset of the incipient turbulent spot by a distance of about 100 cm ( x / 430). This represents an approximately 30% increase in the transition distance measured from the point of wavepacket initiation. Spectral study indicated that the relatively short membrane panel was able to effectively attenuate the primary 2-D Tollmien-Schlichting (TS) wave mode so that resultant wavepacket after the panel was dominated by a pair of oblique waves. Subharmonic secondary instabilities [4-5], which are responsible for nonlinear disturbance wave amplification on a rigid wall, were thus inhibited by the absence or near absence of the 2-D TS wave mode. Staggered Λ-structures and streamwise streaky structures similar to those found in the rigid wall case were observed for the single-panel case, but much further downstream. A second tensioned membrane panel of the same length was added at x / 1359-1658 to form the two-panel case. The last stage of the present simulation shows the wavepacket arriving the location x / 2000 in a perfectly laminar form ( max | u | /U 0.05 ) – this already represents an increase in transition distance of about 50% over the corresponding rigid-wall case. The eventual breakdown location will be further downstream as the wavepacket has not displayed the usual structural features that signify imminent breakdown. This study has shown the efficacy of short compliant panel(s) in controlling and delaying transition.Item Delaying transition further with the aid of a short compliant panel in a Blasius boundary layer flow(The Chinese Society of Theoretical and Applied Mechanics (CSTAM), Fluid Mechanics Division Conference, Guilin, China., 2012-11-12) Bori Ige; Yeo, .K. S.; Dou, .H-S.; Zhao, .X.The cost of fuelling especially for those in the transport industries could be reduced drastically if there is a means of reducing drag force over their vehicles while in motion. One way to overcome this is to use compliant (membrane) surface; a passive control means which has been proved in various theoretical studies as a promising tool in delaying transition further. In this paper, following the earlier work done on flow over rigid wall within a Blasius boundary layer, we account for the current study carried out on the evolution of pulse-initiated disturbance wavepackets over a finite-length compliant panel by direct numerical simulation (DNS) method. For the single-panel case, a finite section of the wall from X = x/δ0 = 450 -762, was replaced by a tensioned membrane on a viscoelastic foundation, whose properties were designed to inhibit the development of compliant-wall modes. Where δ0 is the displacement thickness at the perturbation location. A small amplitude vertical initiating delta pulse was introduced from the wall streamwise location X0 = 349.4 (x0 = 81cm), and study in detail both spatially and spectrally how the wavepackets generated evolve from the initiating point to the breakdown location over a Blasius boundary layer. The simulation results showed that, the upstream intervention by the finite compliant panel effectively delayed the onset of the incipient turbulent spot by a further distance of Δx = 550, when compared with the rigid wall case results that earlier broke down at X = 1420. This represents an approximately 51% increase in the transition distance measured from the point of wavepacket initiation. Spectral study indicated that the relatively short compliant panel was able to effectively weaken the primary 2-D Tollmien-Schlichting (TS) wave mode, thereby extending the linear regime, so that resultant wavepacket after the panel is dominated by two oblique wave modes and this is the effective strategy of transition delay.Item Reactive-extraction of pongamia seeds for biodiesel production(Journal of Scientific & Industrial Research (J SCI IND RES), 2012-11-17) Porwala, Jyoti; Garga, M. O.; Savita Kaul; Harvey, A. P.; Lee, J. G. M.; Kasim, F. H.; Eterigho, E. J.; Bangwala, DineshBiodiesel (FAME) was produced from Pongamia seeds (commonly known as Karanja) by reactive-extraction. Reactiveextraction involves contacting ground seeds directly with alcohol and catalyst i.e. without intervening extraction of the vegetable oil. This process has the potential to reduce cost by removing the need for capital and running cost-intensive steps such as oil extraction of seeds. Reaction parameters such as seed size (>2 mm to <1 mm), seed/solvent ratio (wt/wt) (1:2-1:4), temperature (30-60oC) and rate of mixing (250-550 rpm) were studied. The maximum 98.5% conversion to biodiesel was achieved at: seed size (<1 mm), seed/solvent ratio (wt/wt) (1:4), rate of mixing (550 rpm) at 60 oC for 1 hr with 0.1 M catalyst (KOH) concentration, meeting International (ASTM) as well as National (BIS) specificationsItem Evolution of wavepacket over short compliant panels in a Blasius boundary layer(American Physical Society (APS), 65th Annual Meeting Division of Fluid Dynamics (DFD), 2012-11-18) Bori Ige; Yeo, .K. S.; Dou, .H-S.Compliant surface has been proved in various theoretical studies as a promising tool in delaying transition. This study concerns our recent work carried on the evolution of pulse-initiated disturbance wavepackets over finite-length compliant panels in a Blasius boundary layer by direct numerical simulation (DNS) method. A finite section of the wall was replaced by a tensioned membrane on a damped foundation. By comparing with the rigid wall case, the upstream intervention by a finite compliant panel was found to effectively delay the onset of the incipient turbulent spot – an increase of about 40% in the transition distance with respect to the initiation point was obtained. Transition distance to the occurrence of the incipient turbulent spot was increased further to about 75% relative to a rigid wall when a second compliant panel was introduced. Spectral analysis shows the important role of the fundamental 2D modes in wavepacket evolution and the roles played by compliant panels in transition delay.Item Event Reconstruction by Digital Filtering(Horizon Research Publishing. Advances in Signal Processing, 2013) O. A. Olugboji; J. Y. Jiya; J. M. HaleThis work deals with a digital filtering technique that was developed to reconstruct a pulse after it has propagated along a pipe; a complex pulse that is progressively distorted. The technique developed makes use of the theory of digital filtering used in communications to remove distortion in long telephone links.Item Partial Replacement of Sand with Sawdust in Concrete Production(3rd Biennial Engineering Conference, Federal University of Technology, Minna, May, 2013, 2013) Abdullahi, A.; Abubakar, Mahmud; Afolayan, A.The rising costs of building construction in developing countries have been a source of concern to government and private developers. This study investigated the use of sawdust as partial replacement for fine aggregates in concrete production. Sawdust was used to replace fine aggregates from 0% to 50% in steps of 10%. Concrete cubes measuring 150 x 150 x 150mm were cast and their compressive strengths evaluated at 7, 14, 21 and 28 days. Increase in percentage of sawdust in concrete cubes led to a corresponding reduction in compressive strength values. From the results, the optimum sawdust content was obtained at 10% and its corresponding compressive strength at 28 days is 7.41 N/mm2 which falls within the characteristic strength of plain concrete (7 – 10 N/mm2). This concrete cannot be used for structural applications.Item Alternative Production of Fatty Acid Methyl Esters from Triglycerides using Sulphated Zirconia(Nigerian Journal of Technological Research (NJTR), 2013) Eterigho, Elizabeth Jumoke; Lee, J. G. M.; Harvey, A. P.Sulphated zirconia (SZ) was synthesized using two different methods with the same molar ratio (1:6) of reactants: (1) the direct mixing of ZrOCl.8H20 and (NH4),SO4, designated as SZ,; and (2) via the conventional wet-precipitation method with a molar ratio of l:6 rather than the conventional 15 ml H2SO4 to Ig of Zr(OH)4, denoted by (SZ,). The catalysts physiochemical properties were precisely characterized by FTIR, SEM, X-ray diffraction, EDX, XPS, and Py-DRIFTS techniques. The two methods of preparation with same molar ratio of sulphating agents led to sulphated zirconia that exhibited different morphological and structural properties in terms of specific surface areas, thermal stability, acid sites, and surface sulphate. The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yield of approximately 59% after 3h as compared to SZ, (32%). In addition, the sulphated zirconia, SZ, was selective towards unsaturated esters whereas SZ, was selective towards saturated esters.Item Design and Fabrication of Rice De-Stoning Machine(Food Science and Technology, 2014) O. A. Olugboji; J. Y. JiyaThis work aims at meeting the ever increasing demands of quality rice, avoiding losses and improving the income of local farmers. Mild steel was used in the construction of the machine. Standard equations were used to determine the dimension of the parts. The machine is driven by a 1Hp electric motor with 688.17 W required power. The machine has a capacity of 47.39 Kg/hr and an efficiency of 82.47 %Item Extraction and Characterization of Cashew Nut (Anacardium Occidentale) Oil and Cashew Shell Liquid Oil(Academic Research International, 2014-05) Idah, P. A.; Simeon, Meshack Imologie; Mohammed M. A.This study was carried out to extract oils from cashew shell and its kernel and to characterize the oils, with the view to ascertaining their suitability for consumption and other uses. The Soxhlet apparatus was used for the extraction using hexane as solvent. The physical and chemical properties of the extracted oil were analyzed. The percentage of oil extracted from the shell of the cashew was found to be 25.5%, while that extracted from the kernel was 11.8%. The results of the physical analysis showed that the cashew kernel oil (CKO) is light yellow, while the Cashew Nut Shell Liquid (CNSL) is dark brown. The boiling points for shell and kernel oil were 92 0c and 95 0c, respectively. The cashew kernel oil is non-toxic, and the properties of CNSL conformed, to a greater extent, to those exhibited by linseed oil. This suggests its application in the processing and manufacturing industries. The kernel oil confirmed both in its physical and chemical properties to those of groundnut and melon oil, and thus could be used in the food and pharmaceutical industries.Item Application of Inverse method to Reconstruct the form of Pulse During Impulsive damage to Pipelines(International Engineering Conference (IEC), 2015) O. A. Olugboji; J. Hale; J. Y. Jiya; C. K. JackPetroleum pipelines damages if untimely detected, poses a tremendous challenge to the oil sector of an economy as it causes oil spillage, theft or explosion of the petroleum products while on transit. It is against this backlash an inverse pulse propagation method for reconstructing the form of pulse generated during pipeline defects was devised and presented in this paper. Inverse problem occurs in several branches of science and engineering. It involves the determination of the parameters of a model that describes or explains a set of observed data .This work deals with an inversion technique that was developed to reconstruct the form of a pulse after it has been propagated along a pipe. To test the suitability of the developed technique, a mathematical model was developed. The theoretical model was validated by experiment using a developed pipeline system. The experimental test rig comprises of a flexible hose pipe 23m long and 19mm diameter with four pressure sensors distributed along the pipeline and connected to the data acquisition system. Static and flowing air in the pipeline were use in the experimental test to validate the developed inverse technique model. The inverse method showed a close relationship to the original pulse.Item Design, Fabrication and Testing Of a Motorized Paper Perforation Machine(International Journal of scientific research and management (IJSRM), 2015) J. Y. Jiya; M. S. Abolarin; O. A. Olugboji; R. I. Ngoffia; C. K. AjaniThis is concern with design and fabrication of a powered paper perforating machine with efficiency and less cost for bindery department in printing industries. It is a machine that will compete favorably with the manually operated ones and reduce human efforts with minimum time consumption. It perforates up to 15 sheets of paper at each stroke and is powered by a horse power electric motor whose rotational motion is converted to a reciprocating motion in the perforation pin by the principle of eccentricity.Item Transesterification of waste frying oil to methyl ester using activated Carbon supported Mg-Zn oxide as solid-base catalyst(1st International Engineering Conference (IEC) Federal University of Technology, Minna, Nigeria, 2015) Olutoye, M. A.; Eterigho, Elizabeth Jumoke; Suleiman, B.; Adeniyi, O. D.; Mohammed, I. A.; Musa, U.An activated carbon-supported Mg-Zn catalyst (Mg-Zn/AC) was prepared by using co-precipitation combined with incipient wetness impregnation methods. The catalyst structure was characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR), its microstructure was studied by the use of scanning electron microscopy (SEM)and the catalytic performance toward synthesis of methyl esters from waste frying oil (WFO) was investigated. The properties studied provided insight into the catalytic performance of the catalyst whereby the large surface area and pore volume of the support facilitated the distribution of metal particles and high dispersion of metals. The optimum reaction conditions were obtained by varying parameters such as methanol to oil ratio, catalyst loading, temperature and time. Under the conditions of reaction time of 5 h, temperature, 150 °C and catalyst dosage of 2.5 wt%, the methyl ester yield of >86% was achieved using 64 g of WFO, 38 g of methanol. The results showed that Mg-Zn/AC catalyst presented efficient activity during the transesterification reaction and is a promising heterogeneous catalyst for the production biodiesel fuel from vegetable oil feedstock.Item Effect Of Water Cement Ratio On The Compressive Strength Of Revibrated Concrete(Environmental Technology and Science Journal, 2015) Auta, S. M.; Abubakar, Mahmud; Yusuf, A.Effect of water cement-ratio on compressive strength of re-vibrated concrete is presented. The mix proportion of 1:2:4 aggregates were considered to cast 39 cubes each as laboratory specimen with 0.65, 0.70 and 0.75 water-cement ratios. Each of these categories were revibrated at time lag intervals of 10minutes for 120 minutes period of revibration process and cured for 7, 21 and 28 days. When tested for their respective compressive strength, the result obtained shows that there is a gradual increase in compressive strength of the concrete specimen with increase in time and in water-cement ratio. The maximum compressive strength at 120th minute for ages of 28 days are 25.42, 26.67 and 40.44N/mm2 for concrete with water-cement ratio of 0.65, 0.70 and 0.75 respectively. The maximum attained compressive strength for 28 days curing is 40.44N/mm2 (for 0.75w/c) appears to be higher than 25.42N/mm2 (for 0.65 w/c). Water-cement ratio has adversely enhanced the compressive strength of concrete when re-vibrated.Item Agriculture by-product: A Source for the Production of Biogas(Asian Journal of Engineering and Technology, 2015-04) Eterigho, Elizabeth Jumoke; Farrow T. S.Agricultural by-products, rice husk and maize bran were used anaerobically in this study to produce biogas. The suitability of these substrates as source of biogas and comparative study of the two substrates were investigated. Various analyses were carried out to determine the ash content, moisture content, volatile solids and fixed carbon content present in each substrate. The biogas produced was analysed using a gas chromatograph and was found to contain oxygen, nitrogen and methane in various proportions. From the results of the analyses, rice husk produced a larger volume of gas than the maize bran, though the maize bran's gas has a higher content of methane than that of rice husk (about 60.90%). The experiment was carried out under mesophilic temperature range and a pH of 6.2 - 7.6Item Design of A Composite Traffic Control System at Kpakungu Roundabout Minna, Niger State(Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2016) Kolo, S.S.; Adeleke, O. O.; Ayeni, S. J.; Akinmade, T.; Abubakar, Mahmud; Yusuf, A.A composite traffic control method is proposed to control traffic and ease congestion especially during peak periods at Kpakungu roundabout in Minna, Niger state. Reconnaissance survey of the roundabout was carried out to note predominant directions of traffic flow from each approach to the roundabout; manual counting of traffic for five working days was done between 7:00 am to 12 noon and 3:00 - 7:00 pm daily. The result of the survey shows that congestion occurs at the roundabout between 7:45 - 9:30 am and between 5:00-6:30 pm every day. Results also show that the peak hourly traffic flow rate occurs between 8:00 and 9:00 am, and 5:00 to 6:00 pm daily. The result of the traffic count was then forecasted for 2-years using data on annual vehicle registration in Minna for 2011 to 2015 obtained from the Niger State Board of Internal Revenue Service. The Webster method of signal timing was used to design traffic signals that will optimally allocate right of way time to conflicting traffic streams. A 5-phase signalization of 90- and 97-seconds cycle lengths were proposed for morning and evening peak periods, respectively.Item Design of A Composite Traffic Control System at Kpakungu Roundabout Minna, Niger State.(Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2016-08-10) Kolo S.S; Adeleke O. O; Ayeni S. J; Akinmade T; Abubakar M.; YUSUF, AbdulazeezA composite traffic control method is proposed to control traffic and ease congestion especially during peak periods at Kpakungu roundabout in Minna, Niger state. Reconnaissance survey of the roundabout was carried out to note predominant directions of traffic flow from each approach to the roundabout; manual counting of traffic for five working days was done between 7:00 am to 12 noon and 3:00 – 7:00 pm daily. The result of the survey shows that congestion occurs at the roundabout between 7:45 - 9:30 am and between 5:00 - 6:30 pm every day. Results also show that the peak hourly traffic flow rate occurs between 8:00 and 9:00 am, and 5:00 to 6:00 pm daily. The result of the traffic count was then forecasted for 2-years using data on annual vehicle registration in Minna for 2011 to 2015 obtained from the Niger State Board of Internal Revenue Service. The Webster method of signal timing was used to design traffic signals that will optimally allocate right of way time to conflicting traffic streams. A 5–phase signalization of 90 and 97 seconds cycle lengths were proposed for morning and evening peak periods, respectively.Item Dimensional Compliance and Compressive Strength of Sandcrete Hollow Blocks Produced in Minna Metropolis(International Engineering Conference (IEC 2017) Federal University of Technology, Minna, Nigeria, 2017) Yusuf, Abdulazeez; Aminulai, H.O.; Abdullahi, A; Alhaji, B; Alalade, A.I.The study was carried out to investigate the level of dimensional compliance of commercially produced sandcrete blocks in Minna metropolis and also determine the compressive strength of collected block samples. One hundred and sixty (160), nine (9) inch hollow sandcrete block samples were collected from ten sandcrete block producing companies. Fine aggregate samples were collected from the hollow sandcrete block companies along with the hollow sandcrete blocks. Sieve analysis was carried out on the soil samples. Density, water absorption and dimension of the collected Sandcrete block samples were determined. Compressive strength at 7 and 14 days curing age was also determined. Results indicate that the fine aggregates used were not suitable for block making as the coefficient of uniformity of soil samples range from 0.71 – 1.89 while the coefficient of curvature lie within 2.57 to 4.80 which do not conform to standard. None of the Sandcrete block production company met the required standard dimension as specified by Nigeria Industrial standard (NIS). Test results also revealed that the water abortion capacity of all collected block samples were below 12% maximum recommended by NIS except for block industry M which recorded 12.08%. The density was between 1.59 g/cm3 – 5.05 g/cm3, greater than 1.5g/cm3 specified by NIS. The average compressive strength was between 0.21N/mm2 - 1.11N/mm2 at 14 days curing age which was less than 3.45 N/mm2 specified by NIS. It was recommended that block producing industries should be enforced by the standard organization of Nigeria to follow the recommended standard dimensions by carrying out routine check.