School of Infrastructure Process Engineering and Technology (SIPET)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/41

School of Infrastructure Process Engineering and Technology (SIPET)

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    HEAT TRANSFER IN COOLED AERO-DERIVATIVE TURBINE BLADE: A NUMERICAL ANALYSIS
    (Journal of NIMechE, 2019-03-15) Orah, A. .M.; Nasir, .A.; Hassan, .A. B.; Bori Ige
    Aero-derivative gas turbines have found extensive applications as mechanical drives and in medium-sized utility power plants. It has a higher efficiency due to its high pressure and temperature operations; hence, the need for proper cooling techniques to achieve the required creep life and attain reliability. In this paper, the heat transfer in a cooled aero-derivative gas turbine blade is determined numerically using the Alternating Direction Implicit (ADI) scheme of Computational Fluid Dynamics. The convective heat transfer coefficient of the governing Newton’s law of cooling equation is the basis. A solver was developed for the heat transfer problem based on the selected boundary conditions and designed cooling parameters of the GE PGT25+ aero-derivative gas turbine to obtain the temperature distribution within a cooled blade for 30 minutes in-service operation. There is no significant change in the temperature profiles across the nodal points, varying between 90oC – 600oC. The temperatures within the blade are significantly constant throughout the operating time of the turbine blade, inferring that there was effective heat transfer from the blades to the cooling air since the temperature variation did not exceed the melting point of the blade material. The ADI strategy is, therefore, suitable for heat transfer design computations for complex systems like the gas turbine engine.
  • Item
    Numerical Investigation of Thermomechanical Fatigue Behavior in Aeroderivative Gas Turbine Blades
    (NIPES Journal of Science and Technology Research, 2021-08-31) Orah, .A. M.; Nasir, .A.; Hassan, .A. B.; Bori Ige
    The hot gas component of the gas turbine engine comprises the burner, the turbine stages, and the exhaust nozzles/ducts. However, the turbine blades experience high thermal and mechanical loading. As a result, they suffer thermo-mechanical fatigue (TMF). The design process usually involves the appropriate selection of the turbine blade materials. Therefore, the need to carry out thermo-mechanical fatigue studies on gas turbine blades to predict blade life. During TMF loading, fatigue, oxidation, and creep damages are induced, and the relative contributions of these damages vary with the different materials and loading conditions. The study employed the finite element method to examine the high temperature and stress effects on the blades during TMF. The blade material considered in this study is a nickel-based super-alloy, Inconel 738 Low Carbon (IN738LC). The finite element method predicted the temperature and stress distributions in the blade, illustrating the blade sections prone to damage during thermomechanical fatigue. The equations from the law of heat conduction of Fourier and the cooling law of Newton predicted the heat transfer process of the interaction between the blade, hot gases, and cooling air. Therefore, the finite element method is suitable for studying the thermomechanical fatigue behavior of turbine blade metals, which is a precursor to blade life predictions.