School of Electrical Engineering and Technology (SEET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/24
School of Electrical Engineering and Technology (SEET)
Browse
2 results
Search Results
Item Impact of Gaussian Noise on the Optimization of Medical Image Registration(2024) Sokomba, A. Z.; Dogo, E. M.; Maliki, D.; Abdullahi, I. M.Gaussian noise often poses a significant challenge to medical image registration, impacting the accuracy and reliability of alignment across varying imaging modalities. The research investigates the effect of Gaussian noise on medical image registration by comparing four optimization techniques: a direct approach, an optimization using FMINCON, a multiscale approach, and a combined optimization strategy that integrates FMINCON and the multiscale approach. The comparative analysis assesses each method's robustness against Gaussian noise, evaluating registration accuracy through three key similarity metrics: Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). The results reveal that while each approach demonstrates a degree of resilience to noise, the combined optimization method significantly outperforms the others, achieving the lowest MSE, highest PSNR, and superior SSIM. These findings suggest that the combined approach effectively enhances the optimization process by leveraging the strengths of both FMINCON and multiscale frameworks, thus providing a more accurate and noise-resistant solution for medical image registration. The analysis highlights the necessity of image filtering techniques to mitigate noise interference and improve the image registration process in clinical applications.Item Bluetooth Assisted Misplaced Object Finder Using DFRobot Arduino Integrated with Android Application(2024) Dogo, E. M.; Emeni, B.; Nuhu, B. K.; Ajao, L. A.Finding lost or misplaced items can be time-consuming and frustrating. Yet, this is common and occurs to many individuals daily and globally. This paper has developed a system that allows users to locate their misplaced or lost items by leveraging the capabilities of Bluetooth technology and a microcontroller-based control system. The DFRobot Bettle BLE Arduino microcontroller is the main component for communication and control. By interfacing the microcontroller with an LED and a buzzer, the system provides visual and auditory signals to assist in locating the target device or item. The search pro-cess is initiated through an Android application, through establishing a Blue-tooth connection between the microcontroller and the target device, permitting the exchange of signals for tracking purposes. When the device is within range, the LED indicator illuminates, and the buzzer produces audible alerts, guiding the user to the device’s location. The application also provides an estimated distance of the object using Bluetooth signal strength. Tests carried out on the system proved its effectiveness in terms of quick response to signals and reliability in both indoor and outdoor environments.