School of Electrical Engineering and Technology (SEET)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/24

School of Electrical Engineering and Technology (SEET)

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Web-Based Decision Support System for Diagnosis of Ebola Virus Disease Using Bayesian Networks
    (2016) Dogo, E. M.; Kolo, J. G.; Aror, O.; Rahman, A. T.
    The recent epidemic of the Ebola Virus Disease (EVD) left many dead in West Africa and in other parts of the world. A major problem faced was late diagnosis or diagnostic error of the disease; this was due to largely unavailability of medical professionals familiar with the disease and low doctor to patient ratio. An accessible method for reliable diagnosis is required to offset the low ratio of doctors to population. This paper presents the application of Bayesian networks for diagnosis of EVD. A general procedure for implementing a Bayesian network model is proposed; thereafter we demonstrate how the resulting Bayesian network can be applied in a medical diagnostic decision support system. The system uses the questionnaire method to elicit symptoms and is accessible through web browsers over the internet and mobile phones to potential patients and medical practitioners. The system developed is able to provide diagnosis in the form of probabilities, for the presence or absence of EVD in an individual. The probability of an individual infected by the disease depends on present or absent of particular symptoms according to the gathered disease pathology. The system was successfully developed, and had a diagnostic accuracy of 77% when compared to the World Health Organization (WHO) algorithm, but refinements of the conditional probability distribution would provide the most accurate sensitivity to symptoms and also improve the accuracy of diagnosis. Finally, web functionality, performance and usability test on the developed web application is carried out by simulating various load patterns and the result was generally acceptable.
  • Item
    A Model for an Enterprise Automated RFID-Based Pay and Park System
    (ceur-ws.org, 2016) Dogo, E. M.; Ahmed, A.; Adelakun, M. O.
    Traffic management is one of the challenging problems in urban cities as vehicle owners look for where to park and queue to pay for rented car parks usually on an hourly basis. Therefore, the choice of a suitable, reliable and flexible architecture for Radio Frequency Identification (RFID) based pay and park system readily comes to mind. It is assumed in this work that the parking lot is already known and secured by the vehicle owner in a closed car park; this paper therefore seeks to address and automate the billing system for enterprise car parks. To achieve this, a reliable and accurate enterprise star topology networked RFID based system, that computes the amount to be paid by a user which is calculated based on the time the user enters and exits the park, and the amount the park owner is charging at a particular point in time is proposed for the automated pay and park system. The system comprises of both software and hardware components integrated together. The developed prototype system is able to grant authorized users access to the park within 30ms after verification and open the barrier in 30ms whenever the emergency button is pressed for safety consideration.
  • Item
    Development of feedback mechanism for microcontroller based SMS electronic strolling message display board
    (2014) Dogo, E. M.; Akogbe, A. M.; Folorunso, T. A.; Maliki, D.; Akindele, A. A.
  • Item
    Performance evaluation of mobile intelligent poultry liquid feed dispensing system using two-way controller technique
    (The AIMS Publications, 2015) Olaniyi, O. M.; Folorunso, T. A.; Dogo, E. M.; Bima, M. E.; Adejumo, A.
  • Item
    Development and Implementation of Microcontroller-based Improved Digital Timer and Alarm System
    (2016) Ajao, L. A.; Adegboye, M. A,; Dogo, E. M.; Aliyu, S. O.; Maliki, D.
    Time plays an important role in our daily activities, more particularly in sectional events or conference arena where there is need for accurate time management. This paper focuses on the development and implementation of an improved digital timer with audio-visual unit using (PIC16F887) microcontroller chip and other electronics component such as LCD, 7-segment display, LED and buzzer as an I/O device. Thus, the need for this device in our daily activities is to monitor the time scheduled for events, updating and alert the audience using an audio-visual approach. The proposed system allows apt time management and avoids time wastage during seminar presentations and the likes. It particularly helps presenters to be time conscious, thus, making them to naturally adjust such that the allotted time is enough to cover up their presentation. The digital timer and alarm system presented herewith is also of advantage to the physically challenged like the deaf and blind in monitoring their sectional activities and to be fully involved about the event situation. The system was designed in different modules, and all were interfaced together with firmware chip to simplify the mechanism’s fault diagnoses and fault corrections.