School of Electrical Engineering and Technology (SEET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/24
School of Electrical Engineering and Technology (SEET)
Browse
4 results
Search Results
Item Design and Implementation of Real Time Internet of Things (IoT) Enhanced Irrigation System(El-Amin University Journal of Computing (EAUJC), 2024-04-01) J. A. Ojo; Ajiboye, Johnson Adegbenga; M. A. Ajiboye; D. J. Ajiboye; H. O. Ohize; A. A. IsaIrrigation is a practice that has existed for a long time. Irrigation is the process of supplying water to the soil during drought or unfavourable weather conditions. Over the years, irrigation practices have evolved in order to eliminate the risk of manual irrigation. This risk includes over irrigation, under irrigation, erosion among others. Modern irrigation practices aim to reduce these problems by incorporating sensor technology, Internet of Things (IoT) and automations. The aim of this work is to design and a Real-Time IoT enhanced irrigation system which utilizes data about the condition of the environment to automate the irrigation process. This system makes use of soil moisture sensor, a rain sensor and a temperature and humidity sensor to capture real time environmental data and makes logic decisions based on the collected data. An ESP 32 microcontroller functions as the brain of the system by collecting data from the sensors and controlling the pump accordingly. The system also employs lot technology using Arduino Cloud loT platform in order to provide remote accessibility. The experimental evaluation involved subjecting the irrigation system to two distinct soil conditions; one dry and the other wet. The results demonstrate the functionality of the system: when rain sensor readings fall below the set threshold of 30% and soil moisture sensor readings drop below 15%, the irrigation pump is activated to compensate for the lack of rainfall and soil moisture. Furthermore, the system responds to environmental conditions, activating the pump for an extended period when relative humidity is below 60% and the temperature exceeds 25°C. Conversely, when the soil is already wet, indicated by high soil moisture sensor readings, the pump remains permanently turned off. This automated irrigation system showcases the potential to optimize water usage and enhance efficiency in response to dynamic environmental factors.Item DEVELOPMENT OF MODEL METRICS FOR INDIVIDUALS AND PAIR PROGRAMMERS AMONG SOFTWARE DEVELOPERS IN AN AGILE ENVIRONMENT(2023) Ajiboye M.A; Ajiboye, Johnson Adegbenga; Audu W.M; Ajiboye D.J; Ohize H.O; Majin R.N; Abolarin M.SIn this work, maintainability as a function of time to correct codes was examined among various categories of software developers. Deliberate errors, ranging from two to ten, were introduced into sets of agile codes written in python programming language and given to 100 programmers each in the groups of Individual Junior, Individual Expert, Random, Expert pairs, junior pairs and Junior Expert pairs. The time spent to correct the errors was analysed using regression model for prediction. Bivariate correlation was used to check the relationships between the number of bugs in projects and the time spent to correct the errors. The correlation between the number of bugs and time of debugging was highly significant, strong and positive. This revealed that the time spent in correcting system software errors increased significantly as the number of bugs increased. Linear, logarithmic, inverse, quadratic, cubic and exponential regression models were used to generate metrics with time spent on error as dependent variable and number of bugs as independent variable for each of the pair and individual programmers. On the average, cubic model gave the highest R2 value of 0.639 in comparison to other models. Therefore, Cubic model gave the best fit as it explains the patterns of the relationship between the dependent and independent variable most appropriately.Item Comparative Analysis of Macro Femto Networks Interference Mitigation Techniques(IJWMT, 2022-12-20) Katfun Philemon Dawar; Abraham U. Usman; Bala Alhaji Salihu; Michael David; Supreme Ayewoh Okoh; Ajiboye, Johnson AdegbengaWhen interference is reduced, the benefits of using a macrocell and femtocell heterogeneous network (Macro-Femto) heterogeneous network (HetNet) can be increased to their full potential. In this study, Enhanced Active Power Control (EAPC), Active Power Control (APC), and Power Control (PC1) interference mitigation strategies are applied, and their performances in uplink and downlink transmission of 5G Non-Stand-Alone (NSA) architecture are compared. According to the findings of a MATLAB simulation, the EAPC technique utilized a lower amount of transmit power for the Macro User Equipment (MUE), the Home User Equipment (HUE), and the femtocell logical node (Hen-gNB), in comparison to the APC and PC1 techniques. While PC1 approach required less en-gNB transmission power. The MUE, HUE, hen-gNB, and en-gNB throughput of the EAPC approach was much higher. This work will enable wireless system designers and network engineers know the appropriate technique to utilize to achieve desired Quality of Service (QoS) while conserving network resourcesItem DSP in Communication Engineering - A Review(I3C 2024, 2024-04-22) Ajiboye, Johnson Adegbenga; Jiya Z.J; Paul M.; Ajiboye M.A; Ajiboye D.J; Majin R.NThis paper provides a comprehensive review of Digital Signal Processing (DSP) in communication engineering, elucidating its fundamental principles, practical applications, and recent advancements. Beginning with an overview of DSP's distinguishing features and historical evolution, the paper delineates its pivotal role in processing real-world signals, including speech, image, and seismic data. Furthermore, the introduction of Software Defined Radio (SDR) is examined, underscoring its transformative impact on communication systems by enabling dynamic spectrum access and multi-standard operation through DSP algorithms. Additionally, the emergence of Quantum Signal Processing is explored, highlighting its significance in secure communication through Quantum Key Distribution (QKD) and Quantum Error Correction. Despite the benefits offered by DSP, challenges such as computational complexity and signal distortions are addressed, emphasizing the need for advanced techniques and algorithms to mitigate these issues. Ultimately, this paper elucidates DSP's enduring relevance and innovation in shaping the future of communication engineering.