Books
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/3
Books
Browse
2 results
Search Results
Item An Accelerated Iterative Technique: Third Refinement of Gauss–Seidel Algorithm for Linear Systems(Multidisciplinary Digital Publishing Institute, Switszerland, 2023-04-28) Khaddejah James Audu; James Nkereuwem EssienObtaining an approximation for the majority of sparse linear systems found in engineering and applied sciences requires efficient iteration approaches. Solving such linear systems using iterative techniques is possible, but the number of iterations is high. To acquire approximate solutions with rapid convergence, the need arises to redesign or make changes to the current approaches. In this study, a modified approach, termed the “third refinement” of the Gauss-Seidel algorithm, for solving linear systems is proposed. The primary objective of this research is to optimize for convergence speed by reducing the number of iterations and the spectral radius. Decomposing the coefficient matrix using a standard splitting strategy and performing an interpolation operation on the resulting simpler matrices led to the development of the proposed method. We investigated and established the convergence of the proposed accelerated technique for some classes of matrices. The efficiency of the proposed technique was examined numerically, and the findings revealed a substantial enhancement over its previous modificationsItem A THIRD REFINEMENT OF JACOBI METHOD FOR SOLUTIONS TO SYSTEM OF LINEAR EQUATIONS(Federal University, Dutsin Ma, Nigeria, 2023-10-15) Khadeejah James Audu; James Nkereuwem Essien; Abraham Baba Zhiri; Aliyu Rasheed TaiwoSolving linear systems of equations stands as one of the fundamental challenges in linear algebra, given their prevalence across various fields. The demand for an efficient and rapid method capable of addressing diverse linear systems remains evident. In scenarios involving large and sparse systems, iterative techniques come into play to deliver solutions. This research paper contributes by introducing a refinement to the existing Jacobi method, referred to as the "Third Refinement of Jacobi Method." This novel iterative approach exhibits its validity when applied to coefficient matrices exhibiting characteristics such as symmetry, positive definiteness, strict diagonal dominance, and 𝑀 -matrix properties. Importantly, the proposed method significantly reduces the spectral radius, thereby curtailing the number of iterations and substantially enhancing the rate of convergence. Numerical experiments were conducted to assess its performance against the original Jacobi method, the second refinement of Jacobi, and the Gauss-Seidel method. The outcomes underscore the "Third Refinement of Jacobi" method's potential to enhance the efficiency of linear system solving, thereby making it a valuable addition to the toolkit of numerical methodologies in scientific and engineering domains.